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A B S T R A C T   

This paper reports a mini-resonant photoacoustic sensor for high-sensitivity trace gas sensing. The sensor pri
marily contains a sphere-cylinder coupled acoustic resonator, a cylindrical buffer chamber, and a fiber-optic 
acoustic sensor. The acoustic field distributions of this mini-resonant photoacoustic sensor and the conven
tional T-type resonant photoacoustic sensor have been carefully evaluated, showing that the first-order resonance 
frequency of the present mini-resonant photoacoustic sensor is reduced by nearly a half compared to that of the 
T-type resonant photoacoustic sensor. The volume of the developed photoacoustic cavity is only about 0.8 cm3. 
Trace methane is selected as the target analytical gas and a detection limit of 101 parts-per-billion at 100-s 
integration time has been achieved, corresponding to a normalized noise equivalent absorption (NNEA) coeffi
cient of 1.04 × 10− 8 W⋅cm− 1⋅Hz− 1/2. The developed mini-resonant photoacoustic sensor provides potential for 
high-sensitivity trace gas sensing in narrow spaces.   

1. Introduction 

Trace gas sensing is of great significance in the areas of medical 
diagnosis [1,2], combustion diagnostic [3], environmental monitoring 
[4,5], fire alarm [6], etc. Laser-based photoacoustic spectroscopy (PAS) 
has been successfully implemented for ultra-sensitive trace gas sensing 
in recent years [7–21]. The photoacoustic effect is that the modulated 
light source is absorbed resulting in periodic heating of the gas in a 
photoacoustic cell (PAC), generating acoustic waves that can be detec
ted by a microphone [22–25]. Hence, the performance of the micro
phone and the PAC has an important impact on the detection sensitivity 
of a PAS system. Recently, quartz tuning fork acoustic sensors [26–32] 
based on the electrical detection method and fiber-optic acoustic sensors 
[33–39] based on the optical detection method have been successfully 
implemented in PAS systems, featuring high sensitivity and small size. 

In recent years, the PAC, as one of the key components affecting the 
performance of the PAS sensing system, has gained a lot of attention 
[40]. Based on the operating modes of the PAC, it can be categorized 
into non-resonant and resonant PACs [41]. Compared with the 
non-resonant PACs, the resonant PACs are more widely used for trace 

gas detection due to their higher sensitivity and higher signal-to-noise 
ratio (SNR). The H-type resonant PAC (HR-PAC), featuring easy pro
cessing and good symmetry, has been frequently utilized in PAS for trace 
gas measurements [42]. Wang et al. designed and proposed an all-optical 
PAS system to detect trace acetylene gases by integrating a fiber-optic 
microphone into the HR-PAC [43]. The detection limit was 1.56 parts 
per billion (ppb) (SNR = 1) for a 1 s integration time. In 2020, Gong et al. 
optimized the dimensional relationship between buffer cavities and 
acoustic resonator of an HR-PAC to obtain a higher photoacoustic signal 
[44]. The final detection limit of nitrogen dioxide (NO2) reached 1.26 
ppb. To further improve the detection limit, Yin et al. used a differential 
HR-PAC, two condenser microphones, and a blue multimode diode laser 
(optical power: 3.5 W) to construct a PAS system for trace NO2 sensing 
[45]. A detection limit of 54 parts per trillion (ppt) was achieved for an 
integration time of 1 s. In 2022, Zhao et al. showed a highly sensitive CH4 
photoacoustic sensor based on a differential multi-pass HR-PAC [46]. 
With an integral time of 1 s, the corresponding detection limit and the 
normalized noise equivalent absorption (NNEA) coefficient were 19.9 
ppb and 1.79 × 10− 10 cm− 1⋅W⋅Hz− 1/2, respectively. However, the 
HR-PAC typically consists of two buffer chambers and one or two 
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resonators. As a result, the volume of the HR-PAC is large, leading to a 
relatively longer response time during gas measurements. 

In order to obtain a resonant PAC with a smaller volume and higher 
performance, Gong et al. reported a T-type resonant PAC (TR-PAC), 
which mainly consisted of a buffer volume, and a resonator [35]. 
Compared with the HR-PAC, the TR-PAC featured a higher photo
acoustic signal, a smaller volume, a larger cell constant. In 2022, Xiao et 
al. introduced an ultra-high sensitivity all-optical differential PAS 
sensor, primarily composed of two fiber-optic microphones and a 
two-channel differential TR-PAC, which had a sub-ppb detection limit 
for methane (CH4) [36]. In 2023, Zhou et al. reported a miniature 
dual-resonance PAS sensor based on a piezoelectric ceramics slice and a 
miniature TR-PAC [47]. The volume of the entire sensor was reduced by 
optimizing the size of the TR-PAC’s resonator and buffer chamber. 
Finally, the sensor volume was only 3.75 cm3. The natural resonant 
frequencies of the piezoelectric ceramic slice and the TR-PAC were 
designed to be 8280 Hz and 8350 Hz, respectively, to obtain the double 
resonance effect. The sensor had a detection limit of 15 ppm for CH4 gas 
with an integral time of 10 s. Although the newly reported miniature 
dual-resonance PAS sensor had a small size, the operating frequency of 
this sensor was placed at a high frequency (8350 Hz), resulting in a low 
photoacoustic signal and thus a poorer detection limit. Thus, there is a 
trade-off between a small-size resonant PAC and a high photoacoustic 
signal. 

This paper proposes a novel mini-resonant photoacoustic sensor with 
mini-resonant PAC but much higher photoacoustic signal, compared 
with the traditional TR-PAC-based sensor. The acoustic field distribu
tions of both the mini-resonant photoacoustic sensor and the traditional 
TR-PAC-based sensor have been simulated. A laser-based PAS system, 
employing the mini-resonant photoacoustic sensor as the detection unit, 
a 1650.96 nm distributed feedback laser (DFB) as the excitation unit, 
and a high-speed spectrometer as the demodulation unit, has been 
developed to validate the performance of the mini-resonant photo
acoustic sensor. 

2. Sensor structure and simulation analysis 

The sketch of the mini-resonant photoacoustic sensor is shown in  
Fig. 1(a), mainly including a fiber-optic collimator, a buffer cavity, a 
sphere-cylinder coupled acoustic resonator, a fiber-optic acoustic 
microphone, an air inlet, and an air outlet. The collimator has a diameter 
of 1.8 mm and a working distance of 120 mm. Fig. 1(b) presents the 
mechanical schematic diagram of the photoacoustic cavity. The buffer 
cavity has a dimension of 5 mm (r1) × 8 mm (l1). The cylindrical acoustic 
resonator has a dimension of 1.5 mm (r2) × 8 mm(l2). The 3D models of 

the cylindrical resonator and the sphere-cylinder coupled resonator are 
developed by utilizing the finite element analysis method based on 
COMSOL Multiphysics software. The simulation model mainly employs 
the pressure acoustics module in the acoustic physics field. The thermo- 
adhesive boundary layer in the acoustic module is also utilized to make 
the simulated frequency response results consistent with the actual 
application scenarios. The scanning ranges of the resonant frequency are 
set at 3500–5000 Hz for the cylindrical resonator and 8500–11140 Hz 
for the sphere-cylinder coupled resonator, with a frequency step of 
10 Hz. Fig. 2(a) and (b) depict the acoustic pressure field cloud maps of 
the two types of resonators at their resonant frequencies, respectively. 
As can be seen from Fig. 2(a) and (b), the acoustic pressure field cloud 
maps of both PACs demonstrate that the resonator end is the antinode 
position of the photoacoustic signal. Thus, a fiber-optic acoustic sensor is 
placed here to detect the maximum photoacoustic signal amplitude. In 
addition, the corresponding simulated frequency response curves of the 

Fig. 1. (a) The sketch of the mini-resonant photoacoustic sensor (b) the mechanical schematic diagram of the photoacoustic cavity.  
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Fig. 2. The acoustic pressure field cloud maps of (a) the sphere-cylinder 
coupled resonator (b) the cylindrical resonator at their resonant frequencies. 
(c) The corresponding simulated frequency response curves of the two acous
tic resonators. 
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two acoustic resonators are described in Fig. 2(c). The simulated reso
nance frequency of the cylindrical resonator of TR-PAC is 9840 Hz, 
while the simulated resonance frequency of the sphere-cylinder coupled 
resonator is only about a half, i.e., 4470 Hz. 

Numerical simulation has been carried out to further analyze the 
influence of different spherical radii of the sphere-cylinder coupled 

acoustic resonator on the first-order resonance frequency and photo
acoustic signals. The simulated frequency response curves for the 
sphere-cylinder coupled acoustic resonator with radii of 2 mm, 3 mm, 
4 mm and 5 mm are shown in Fig. 3. As the increasing of the spherical 
radius, the first-order resonance frequency decreases while the ampli
tude of the photoacoustic signal first increases and then decreases. 
Moreover, when the spherical radius of the sphere-cylinder coupled 
acoustic resonator is 3 mm, the amplitude of the photoacoustic signal is 
maximum. Fig. 3(b) depicts the relationship between first-order reso
nance frequency and the spherical radius of the sphere-cylinder coupled 
acoustic resonator, where a R2 value of 0.96 has been achieved, showing 
that the first-order resonance frequency and the spherical radius of the 
sphere-cylinder coupled acoustic resonator have a good linear rela
tionship. Considering the performance of the sensor, as well as the 
sampling frequency of the spectrometer, the spherical radius(r3) of the 
sphere-cylinder coupled acoustic resonator is chosen to be 3 mm. The 
sensor is fabricated by 3D printing technology using a photosensitive 
resin with a manufacturing precision of 0.2 mm. 

3. Experiments and results 

3.1. Instrumentation 

Fig. 4(a) depicts the schematic of the experimental configuration to 
detect CH4 with the high-performance mini-resonant photoacoustic 
sensor. A distributed feedback laser diode is employed as the light source 
for CH4 absorption measurements with a center wavelength of 
1650.96 nm. The simulation results of the absorption coefficients of 
1 ppm CH4, and 5000 ppm H2O from 1650.2 nm to 1660 nm bands 
obtained through the HITRAN 2012 database are plotted in Fig. 4(b). 
Under this absorption line, the absorption coefficient of 1 ppm CH4 is 
2–3 orders of magnitude higher than that of 5000 ppm H2O and 
1000 ppm CO2. Thus, choosing this center wavelength (1650.96 nm) as 
the absorption line for CH4 avoids the influence of H2O and CO2 on the 
response of the target gas. A super-luminescent diode (SLD), with a 
center wavelength of 1550 nm and a spectral width of 60 nm, is served 
as the broadband probe light. A high-speed spectrometer with 512 pixels 
in total and a line frequency of up to 5 kHz is used to sample the 
interference spectrum. The mixed concentrations of CH4 and pure ni
trogen (N2) are controlled by two mass flow controllers. The DFB laser 
diode generates a laser beam first passing through a fiber-optic colli
mator (120-mm working distance at 1650.96 nm), and then injecting 
into the mini-resonant photoacoustic sensor without contacting with the 
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Fig. 3. (a) The simulated frequency response curves for sphere-cylinder 
coupled acoustic resonators with spherical radii of 2 mm, 3 mm, 4 mm and 
5 mm. (b) The first-order resonance frequencies as a function of the spherical 
radius of the sphere-cylinder coupled acoustic resonator. 

Fig. 4. (a) The schematic of the experimental configuration to detect CH4 with the mini-resonant photoacoustic sensor. (b) Absorption coefficients of 1 ppm CH4, 
5000 ppm H2O and 1000 ppm CO2 from 1650.2 nm to 1660 nm. 
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side wall of the PAC. The absorption of the pump light by CH4 gas leads 
to the periodic release of heat and thus to the production of photo
acoustic signal, which forces the vibration of the fiber-optic microphone. 
The broadband probe light generated by the SLD is injected into the 
Fabry-Perot cavity of the fiber-optic microphone through a circulator, 
and the corresponding interference spectrum are received by the high- 
speed spectrometer and demodulated by a digital lock-in amplifier to 
acquire the photoacoustic signal. 

3.2. Performance testing of the designed photoacoustic sensor 

The sample gas with a CH4 concentration of 2000 ppm is filled into 
the mini-resonant photoacoustic sensor to verify the first-order reso
nance frequency of the designed PAC. The temperature and the bias 
current of the DFB laser are set to 25 ℃ and 63.9 mA to obtain the 
maximum photoacoustic signal. The wavelength-modulated spectros
copy (WMS) technique is employed to capture the photoacoustic signal 
[48]. The experiment frequency response curve of the mini-resonant 
photoacoustic sensor obtained by changing the modulation frequency 
from 2050 Hz to 2500 Hz is presented in Fig. 5. The maximum 2 f signal 
appears at a modulation frequency of 2240 Hz. Therefore, the first-order 
resonance frequency of the PAC is 4480 Hz, which is basically consistent 
with the simulation results shown in Fig. 2. Finally, the experimental 
modulation frequency is fixed at 2240 Hz. 

A 2000 ppm CH4 gas is mixed with pure N2 through mass flow 
controllers to obtain CH4 sample gases with different concentrations 

(400–2000 ppm). The sample gases are passed into the photoacoustic 
sensor to test the sensitivity and linear response of the designed sensor.  
Fig. 6 exhibits the measured WMS-2f scan spectra with different CH4 
concentrations. The means and standard deviations of the 2 f peak sig
nals for different CH4 concentrations are obtained are obtained as shown 
in the Table 1. For each gas concentration the corresponding standard 
deviation is less than 0.02 nm, which shows that the designed photo
acoustic sensor has good repeatability, high accuracy and excellent 
stability during the test. Fig. 7 shows the means and standard deviations 
of the peak WMS-2f signal with different CH4 concentrations. The 
sensitivity of the mini-resonant photoacoustic sensor for CH4 is 
5.66 × 10− 4 nm/ppm. The R-squared value can reach up to 0.992, 
showing excellent linear response to CH4 gases. 

An Allan-Werle deviation [49–53] analysis has been performed to 
evaluate the detection limit of the sensor and long-term stability. When 
the temperature, the modulation current, and the modulation frequency 
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Fig. 5. The experiment frequency response curve of the mini-resonant photo
acoustic sensor obtained by changing the modulation frequency from 2050 Hz 
to 2500 Hz. 
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Table 1 
The means and standard deviations corresponding to different gas 
concentrations.  

Gas concentration (ppm) Average value (nm) Standard deviation (nm) 

2000 
1500  

1.193 
0.827  

0.016 
0.0178 

1000  0.600  0.017 
800  0.48814  0.01177 
400  0.26512  0.01343  
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Fig. 7. The means and standard deviations of the peak WMS-2f signal with 
different CH4 concentrations. 
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of the laser are set to 25 ℃, 63.9 mA, and 2240 Hz, respectively, the 
WMS-2f peak signals are continuously measured and recorded. The 
Allan-Werle deviation is obtained, as shown in Fig. 8. The detection limit 
of the mini-resonant photoacoustic sensor, is found to be 1 ppm for CH4 
with a 1-s integration time, the corresponding noise level is 5.7 × 10− 4 

nm and the sensitivity is 5.66 × 10− 4 nm/ppm. Furthermore, when the 
integration time is extended to 100 s, the noise level is further reduced 
to 5.72 × 10− 5 nm, and the corresponding detection limit is inferred to 
be 101 ppb. The NNEA can reach up to 1.04 × 10− 8 W⋅cm− 1⋅Hz− 1/2 with 
a 1-s integration time (0.25 Hz bandwidth), when the output power of 
the DFB laser diode is 14 mW. 

The simulation analysis and experimental results demonstrate that 
the developed mini-resonant photoacoustic sensor has a high perfor
mance while maintaining a volume of less than 1 cubic centimeter. 
Benefiting from the integrated design of the spherical and cylindrical 
resonators, the mini-resonant photoacoustic sensor has a superior 
detection sensitivity and a relatively lower first-order resonance fre
quency compared to the conventional T-resonance PAC-based sensor. To 
further demonstrate the characteristics of the developed sensor, Table 1 
summarizes the performances of various CH4 photoacoustic gas sensors 
reported in recent years. It can be seen from Table 1 that the present 
mini-resonant photoacoustic sensor has a small cavity volume while 
maintaining comparable or even superior sensitivity and NNEA 
compared to the PAS sensors operating in resonant and non-resonant 
modes. Table 2. 

4. Conclusions 

In this work, a novel high-performance mini-resonant photoacoustic 
sensor for trace gas sensing is proposed, which primarily consists of a 
sphere-cylinder coupled acoustic resonator, a cylindrical buffer cham
ber, and a fiber-optic acoustic sensor. The acoustic field distributions of 
this mini-resonant photoacoustic sensor and the T-type resonant PAS 
sensor are analyzed by using COMSOL, indicating that the first-order 
resonance frequency of this mini-resonant photoacoustic sensor is 
reduced by nearly a half compared to the conventional T-type resonant 
PAS sensor. In addition, the influence of the radius of the spherical 
resonator on the resonance frequency and photoacoustic signal have 
been systematically analyzed through numerical simulations. The radius 
of the spherical resonator is finally determined to be 3 mm. The volume 
of the developed photoacoustic cavity is only about 0.8 cm3. Trace CH4 
is the target analytical gas, and the detection limit is 1 ppm at 1-s 
integration time, corresponding to an NNEA coefficient of 1.04 × 10− 8 

W⋅cm− 1⋅Hz− 1/2, which can be further improve by prolonging the inte
gration time. The proposed PAS sensor demonstrates superior perfor
mances compared to the previously developed resonant and non- 
resonant PAS sensors, and provides a new scheme for high-sensitivity 
miniaturized PAS-based trace gas sensing. Meanwhile, the perfor
mance of the developed mini-resonant photoacoustic CH4 sensor might 
be further improved by utilizing a near-infrared Raman fiber optic 
amplifier, a mid-infrared laser source, or an optical frequency comb light 
source. 
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