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Abstract
Recent electron microscopic analyses of neurons in the Drosophila and rodent brain demonstrate that acute or chronic sleep 
loss can alter the structures of various organelles, including mitochondria, nucleus, and Golgi apparatus. Here, we discuss 
these findings in the context of biochemical findings from the sleep deprived brain, to clarify how these morphological 
changes may related to altered organelle function. We discuss how, taken together, the available data suggest that sleep 
loss (particularly chronic sleep loss) disrupts such fundamental cellular processes as transcription, translation, intracellular 
transport, and metabolism. A better understanding of these effects will have broad implications for understanding the 
biological importance of sleep, and the relationship of sleep loss to neuropathology.
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Sleep loss affects brain function in numerous ways, including 
disrupting both working and long-term memory, attention, and 
decision making. While the last two decades have provided new 
insights into how sleep loss affects neural activity [1–5], gene ex-
pression [6, 7], and protein translation [8-11], a complete under-
standing of the cell biological effects of sleep deprivation (SD) in 
the brain is still lacking. A recent study by Flores et al. in Sleep 
[12] addresses this question using serial block-face electron 

microscopy (SBEM) in a Drosophila brain structure involved in 
long-term memory storage. Kenyon cells are intrinsic neurons 
that integrate a variety of inputs within the mushroom bodies 
– an associative learning center analogous to the mammalian 
hippocampus. Previous work has shown that a few hours of 
brief SD increases spontaneous activity and olfactory responses 
in Kenyon cells [13]; this is associated with structural changes 
to Kenyon cells’ synaptic outputs indicating both decreases and 
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increases in synaptic strength [14]. Critically, however, longer-
duration SD (24 h or more) suppresses Kenyon cell activity and 
makes sensory responses unreliable [13]. To better understand 
the intracellular effects of prolonged SD on Kenyon cells, Flores 
et al. used SBEM to reconstruct their cell bodies and intracellular 
organelles after ad lib sleep, 11-h SD, and 35-h SD. This study 
built on previous work from the lab, using single-plane electron 
microscopy (EM) to resolve these structures in adolescent mouse 
prefrontal cortex [15]. The results of that work suggested that 
mitochondrial size and density within pyramidal neurons’ cell 
bodies was increased by chronic (multiple days) sleep disruption, 
and to a lesser extent, by acute (a few hours) sleep deprivation 

(Figure 1). Sleep loss also led to changes in the densities of  
pyramidal neurons’ lysosomes and early endosomes, suggesting 
subtle changes to intracellular trafficking [15].

Because the conclusions that can be drawn from single-
plane EM are necessarily limited, Flores et  al. now use full 
reconstruction of Kenyon cell bodies in the adult Drosophila 
brain, using serial block-face scanning electron microscopy 
(SBEM), to characterize cell structures following either ad lib 
sleep, 11-h SD, or 35-h SD. The authors quantified changes 
to organelles in both nucleus and cytoplasm components 
following SD (Figure 1). Consistent with the lab’s prior find-
ings in mouse neocortex [15], total Kenyon cell cytoplasmic 

Figure 1. Summary of both morphological and biochemical alterations to neuronal organelles following SD. While many organelles such as mitochondria, Golgi, and ER 

are also present in axons and dendrites, it is unclear how morphology changes in those structures with SD. It is also unclear whether biochemical/functional changes 

to organelles are cell compartment-specific. Figure was created with BioRender.com. 
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volume occupied by mitochondria showed a non-significant 
trend for increasing with increasing-duration sleep loss. The 
density of Golgi apparatus showed a similar (non-significant) 
trend, with a tendency for higher Golgi numbers per cell in 
35-h SD flies than freely-sleeping flies. More prolonged (i.e. 
35-h) SD was also associated with a (non-significant) trend 
for smaller nuclear volume and nucleus-to-cytoplasm volu-
metric ratio. Within the nucleus, the authors found statistic-
ally significant increases in the absolute number and density 
of electron-dense “dark clusters” of chromatin following SD of 
both durations. Among all the measures made by the authors, 
dark cluster density was the most important parameter for 
discriminating between Kenyon cells from flies in the three 
treatment groups.

Here we discuss what these findings could mean, in the 
context of other recent data, for our understanding of how SD 
affects the basic cellular biology of neurons in the brain. We 
also discuss some questions raised by these data that need to 
be answered in order to understand how SD affects neuronal 
function.

Effects of Sleep Loss on Neuronal Nuclear 
Function
The reported increase in dark, roundish nuclear clusters in 
Kenyon cells suggests possible epigenetic changes to neurons 
as a function of sleep loss. A similar phenomenon was recently 
reported using EM – with electron-dense clusters observed 
in rat hippocampal neurons’ nuclei after chronic (14-day) 
sleep restriction, with or without caffeine administration 
[16]. Although the exact driver of cluster formation is still un-
clear, such clusters likely reflect the same process of hetero-
chromatin formation observed in mammals in the context 
of both cellular senescence [17] and neuronal plasticity [18]. 
The increased number and density of heterochromatin clus-
ters after longer-duration SD suggests that long-term sleep 
loss may disrupt patterns of transcriptionally-active DNA in 
neurons. Several lines of evidence support this idea (Figure 1). 
For example, one recent study using an assay for transposase-
accessible chromatin with sequencing (ATAC-seq) to identify 
transcriptionally-accessible regions of DNA showed that SD 
rapidly (within as little as 3 h) and dramatically changes chro-
matin accessibility in the mouse cerebral cortex. Surprisingly, 
however, the vast majority of the differentially accessible DNA 
sites showed increased, rather than decreased, accessibility 
after SD [19] – which is more typical of euchromatin. SD may 
also affect transcription by altering DNA methylation. Studies 
using methylated DNA immunoprecipitation in rat cortex [20] 
and 5 mC and 5 hmC arrays in mouse cortex [21] have demon-
strated altered methylation patterns after as little as 3-6 h of 
SD, which are associated with bidirectional changes in gene 
transcription. SD may also affect histone acetylation, which 
increases DNA accessibility to transcription factors. Recent 
findings suggest that both acute and chronic SD increase his-
tone deacetylase activity, reducing levels of histone H3 and H4 
acetylation in mouse and rat brain [22–24]. Treating animals 
with histone deacetylase inhibitors rescued both SD-induced 
cognitive disruption [22, 24] and late long-term potentiation 
(LTP) impairments caused by SD [22]. Histone deacetylation 
could drive the formation of heterochromatin, and thus the 

formation of electron-dense nuclear clusters reported by Flores 
et al. and Xie et al. [12, 16].

However, another possibility is that these dark clusters re-
flect sites of DNA damage, such as those occurring during 
senescence [17]. It is thought that heterochromatin regula-
tion after DNA damage is important for silencing damaged 
genes, maintaining genomic stability [25]. Prolonged wake in-
duces double-strand breaks in DNA within Drosophila neurons 
(Figure 1), and SD can disrupt repair of these breaks [26]. More 
recent work in zebrafish has shown that sleep facilitates neur-
onal chromosome rearrangements essential for DNA repair, 
while SD disrupts these mechanisms [27]. One possibility is that 
DNA damage accumulation during SD (through generation of 
reactive oxygen species; ROS [28, 29], or other mechanisms) ul-
timately leads to neuronal senescence and cell death. Indeed, 
recent data suggest that neurodegeneration can be triggered in 
the mammalian brain through this SD-driven mechanism [30].

Thus, a critical unanswered question from the Flores et al. 
study centers on clarifying the precise nature of these electron-
dense nuclear clusters. Understanding how their formation re-
flects DNA damage, repair, and transcriptional regulation will 
be essential for understanding how SD affects the most funda-
mental cell biological processes of neurons – i.e. central dogma 
(DNA→mRNA→protein) and cell survival.

Sleep Deprivation, Cellular Energetics, and 
Mitochondrial Function
Mitochondria produce energy for the brain in the form of ATP. 
This bioenergetic function is regulated by sleep-wake cycles, 
with higher levels of ATP in wake-active regions of the brain 
during spontaneous sleep, and ATP reduction during SD [31]. 
As a byproduct of ATP production, mitochondria generate ROS. 
Alterations in mitochondrial function could thus couple sleep 
loss to oxidative stress-mediated DNA damage. Multiple studies 
across species have found that ROS are generated at higher 
levels in the brain during prolonged SD [32–34] (Figure 1). This 
is despite (or perhaps, due to) the fact that prolonged sleep 
disruption reduces efficiency of the ATP-generating mitochon-
drial electron transport chain. Critically, this reduction persists 
in some regions of the brain even after the opportunity for re-
covery sleep [35]. In turn, generation of ROS in mitochondria is 
directly coupled to sleep homeostatic responses in sleep regu-
lating neurons in the Drosophila brain [29, 32].

Beyond the effects of SD on mitochondrial energetics, 
long-term sleep disruption has also been shown to increase 
Bax expression in mitochondria in the hippocampus, and re-
lease of cytochrome c from mitochondria into the cytoplasm [36] 
(Figure 1). These changes have been linked to both reduced excit-
ability in hippocampal neurons (likely due to reduced ATP [36]) 
and initiation of neuronal apoptosis and neurodegeneration [37].

Available data suggest that at least in the first hours of sleep 
loss, neuronal mitochondria respond to this energetic chal-
lenge in several ways. Mitochondria in the mammalian neo-
cortex show upregulation of cytochrome c oxidase expression 
and activity [38–40] and antioxidant responses [33] after 3–12 h 
of SD (Figure 1). The morphological changes described in Flores 
et al. after more prolonged SD in flies [12], and described in de 
Vivo et  al. in mice [15], may also be an adaptive response to 
SD-driven disruption of mitochondrial metabolic function. One 
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possibility is increasing mitochondrial abundance in neuronal 
somata is essential for neurons to survive SD-induced disrup-
tion of electron transport chain efficiency. This process could be 
driven by de novo organelle biogenesis [41], mitochondrial trans-
portation to the soma from other cellular compartments (i.e. 
neurites) [42], or increased mitochondrial biogenesis through 
fission [43]. The recent report of an increased proportion of 
“hourglass”-shaped mitochondria after SD in mouse pyramidal 
neurons [15] (Figure 1) suggests that either mitochondrial fission 
or fusion may be enhanced by sleep loss. Reported increases in 
“hourglass”-shaped mitochondria, the presence of “extra-large” 
mitochondria [15], and a trend toward higher proportion of 
hyperfused mitochondria [12] after prolonged SD may also re-
flect the formation of so-called “megamitochondria” through 
membrane fusion. Megamitochondrial formation likely reflects 
a process aimed at combating the unfavorable cellular environ-
ments and decreasing intracellular ROS level [44] following acute 
or prolonged SD. While both fission and fusion can be adaptive 
cellular responses to mitochondrial stress, it is important to 
note that both are also an essential feature of apoptosis [44, 45].

Other morphological changes to neuronal mitochondria 
themselves have been reported after prolonged SD – e.g. de-
creased relative volume of intercristal space, which have been 
reported in both rat hippocampus and neocortex [46]. These 
intra-organelle morphological changes may relate to SD-driven 
changes in mitochondrial cristae functions – e.g. changes in 
cytochrome c storage or electron transport chain activity [46–48]. 
Taken together, the reported effects of SD on mitochondrial 
morphology suggest a major impact of sleep loss on neuronal 
energy production, and potentially also on neuronal viability.

Neuronal proteostasis, and intraneuronal transport – effects 
of sleep loss on Golgi, endoplasmic reticulum (ER), endosomes, 
and lysosomes

Flores et  al. report a non-significant trend for increased 
density of Golgi apparatus per Kenyon cell body after longer-
duration SD [12]. While de Vivo et al. did not directly measure 
Golgi or ER, they did report significant increases in pyramidal 
neurons’ lysosomal size and density with acute and chronic SD, 
respectively, and reductions in endosomal density with chronic 
SD [15]. Because the ER, Golgi, lysosomes, and endosomes me-
diate membrane-associated protein production, trafficking, and 
quality control, together these ultrastructural findings could 
reflect SD-induced alterations to intracellular transport and 
proteostasis.

Across species, biochemical [8, 49–52], transcriptomic [6, 53], 
and ribosome profiling [8, 11] data suggest that protein transla-
tion/quality control and transport are affected by acute sleep loss. 
For example, in nematodes, Drosophila, and mice [49, 51], a brief 
period of SD leads to an enhanced unfolded protein response 
(UPR; the cellular stress response to accumulation of misfolded 
protein in the ER lumen) (Figure 1). Early SD-induced UPR ef-
fects in the brain include suppression of protein translation [9], 
post-translational modification [54], and increased expression 
of molecular chaperones [52, 55, 56]. While these changes may 
aid in normalizing protein quality under conditions of cellular 
stress, sustained UPR activation engages pro-apoptotic path-
ways [57, 58], ultimately leading to neurodegeneration.

Disruption of ER function also impacts nuclear function. 
Critically, another site of potentially DNA-damaging ROS pro-
duction in neurons is the ER, where ROS are made in the process 
of chaperone-assisted protein folding [59, 60]. Thus, one possi-
bility is that some of the increased ROS observed in the brain 

with SD are generated by changes to biochemical processes 
within the ER (Figure 1).

Changes in Golgi density, lysosomal size and density, and 
endosome density after SD all suggest that neuronal transport 
and quality control of membrane-associated protein cargo may 
change with sleep loss. Critically, however, analysis of these 
structures within the cell body alone cannot give a complete 
picture of how sleep loss affects protein synthesis, quality con-
trol, and transport. Moreover, to date, there is no data on how 
sleep loss affects the subcellular distribution of the Golgi, ER, 
lysosomes, or endosomes in neurons. Appropriate subcellular 
localization and organization of these organelles is essential for 
spatial regulation of both protein and mRNA, which in neurons 
plays vital roles in neurotransmission, synaptic plasticity, and 
information storage [8, 61, 62]. Beyond these essential functions, 
the presence of Golgi and ER in neurites plays additional roles, 
including local calcium buffering, regulation of synaptic extra-
cellular glycoproteins, and lipid biogenesis [63, 64]. A  recent 
study from our lab, using neuronal compartment-specific ribo-
some profiling, demonstrates that mRNAs translated in these 
membrane-bound organelles vary dramatically with both prior 
learning and subsequent sleep or SD [8]. Understanding how 
sleep and SD affect intraneuronal movement of these organ-
elles and their functions in neurites will be essential to under-
standing how sleep and sleep loss affect neuronal cell biology.

Future Directions
The findings of Flores et al. provide new insights into how cel-
lular structures are affected by sleep loss in Kenyon cells, which 
play an essential role in Drosophila cognitive function. As is true 
with transcriptomic and biochemical responses to sleep loss, 
available data suggest that these changes may also be conserved 
in neurons across species. This raises a biologically important 
question – what do these structural changes indicate with re-
spect to the physiological and metabolic processes occurring 
within neurons? It will be vital for future studies to explore 
the relationships between the morphological changes present 
in neuronal organelles after SD, the biochemical and physio-
logical changes occurring within those organelles, and the neur-
onal and brain-level functional changes due to sleep disruption. 
Moreover, studies of how organelle morphology, function, and 
transport within axonal and dendritic cell compartments are af-
fected by sleep and SD will be vital to clarify how brain states 
affect the cell biology of these essential neuronal structures. 
Finally, further work is needed to understand (1) what aspects of 
sleep and SD control these basic mechanisms and (2) how neur-
onal cellular changes affect the brain and cognition. Progress 
on these fronts should yield clues to essential, evolutionarily-
conserved, sleep functions.
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