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Abstract

Biomarkers can be used to enrich a clinical trial for patients at higher risk for an outcome, a

strategy termed "prognostic enrichment." Methodology is needed to evaluate biomarkers for

prognostic enrichment of trials with time-to-event endpoints such as survival. Key consider-

ations when considering prognostic enrichment include: clinical trial sample size; the number

of patients one must screen to enroll the trial; and total patient screening costs and total per-

patient trial costs. The Biomarker Prognostic Enrichment Tool for Survival Outcomes (BioPET-

surv) is a suite of methods for estimating these elements to evaluate a prognostic enrichment

biomarker and/or plan a prognostically enriched clinical trial with a time-to-event primary end-

point. BioPETsurv allows investigators to analyze data on a candidate biomarker and poten-

tially censored survival times. Alternatively, BioPETsurv can simulate data to match a

particular clinical setting. BioPETsurv’s data simulator enables investigators to explore the

potential utility of a prognostic enrichment biomarker for their clinical setting. Results demon-

strate that both modestly prognostic and strongly prognostic biomarkers can improve trial met-

rics such as reducing sample size or trial costs. In addition to the quantitative analysis provided

by BioPETsurv, investigators should consider the generalizability of trial results and evaluate

the ethics of trial eligibility criteria. BioPETsurv is freely available as a package for the R statisti-

cal computing platform, and as a webtool at www.prognosticenrichment.com/surv.

Introduction

Biomarkers are used for various purposes across research and clinical contexts. In a clinical

trial of an intervention intended to prevent or delay some unwanted clinical event, a bio-

marker may be useful for “prognostic enrichment” of the trial [1–5]. A prognostically enriched

trial uses a biomarker to enroll only patients at relatively higher risk of the unwanted clinical
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event. Since study power depends on observing events, running a trial in an enriched study

population can allow for a smaller trial compared to an unenriched trial [6, 7]. Moreover, it

may be more ethically acceptable to test an intervention only on patients at high risk for the

clinical event, and ethically preferable to test on a smaller study sample. Prognostic enrichment

can produce greater efficiency in evaluating new interventions, potentially benefiting patients,

sponsors, and public health.

There is a substantial literature on biomarkers that are predictive of treatment efficacy [8–

12], also referred to as treatment-selection biomarkers [13–16]. In contrast, little has been writ-

ten about evaluating biomarkers for prognostic enrichment [1, 2]. As noted by Temple [1],

prognostic enrichment is well-established in cardiovascular disease, where it is common that

interventions are first studied in individuals who are at high risk. CONSENSUS, the first trial

of enalapril, enrolled only very high-risk patients (6-month mortality of 44%). CONSENSUS

demonstrated efficacy of enalapril with only 253 patients. Subsequent trials in groups with less

severe disease needed to be much larger.

In nephrology, a trial for patient with autosomal dominant polycystic kidney disease

(ADPKD) enriched for those at greater risk of a substantial decline in renal function [17].

Total Kidney Volume (TKV), measured at baseline, was used in combination with patient age

and estimated glomerular filtration rate (eGFR) to identify high risk patients. Without TKV, it

was determined that 13 patients would need to be screened to enroll 11 patients to observe one

event. With TKV, 25 patients would need to be screened to enroll 9 patients and observe one

event. The FDA qualified TKV as a prognostic biomarker for use in clinical trials for ADPKD

on August 31, 2015 [18]. The PRIORITY trial in patients with type 2 diabetes enriched for

patients at high-risk of the primary endpoint, confirmed microalbuminuria, which occurred

in 28% of participants classified as high-risk and only 9% of those classified as low-risk [19].

Although the trial did not establish that spironolactone is efficacious for the primary endpoint,

without enrichment a sample size 3–4 times as large would have been needed and many more

patients would have been exposed to a therapy that has side effects.

Despite prognostic enrichment being well-established in cardiology and employed in other

clinical areas, little has been written about how to evaluate a biomarker for prognostic enrich-

ment or to consider the trade-offs of an enriched vs. unenriched trial [4, 6]. For trials with a

binary primary outcome, our group previously published the Biomarker Prognostic Enrich-

ment Tool (BioPET) [7]. We identified key considerations for evaluating a biomarker for prog-

nostic enrichment, including: clinical trial sample size; number of patients to screen to enroll

the trial; total patient screening costs and the total of per-patient costs for patients in the trial.

BioPET includes methods and graphical devices to evaluate a biomarker on these dimensions

for trials with a binary outcome, but cannot be used for trials with a time-to-event outcome

such as survival. Compared to trials with binary outcomes, trials with time-to-event outcomes

can utilize more information in the data and accommodate the partial information available in

censored outcomes. This article describes new methods and open source software, BioPET-

surv, for such trials.

As a motivating example, consider the population of patients with a hospitalized episode of

acute kidney injury [20] and a hypothetical intervention intended to prevent or delay the onset

of chronic kidney disease. A randomized trial will compare the hazard for chronic kidney dis-

ease in a treatment group and a control group. As a proof-of-principle illustration, in this arti-

cle we use synthetic data that mimic an existing cohort [20] to illustrate BioPETsurv for

prognostic enrichment in this setting (Example 1).

BioPETsurv accommodates two trial designs. The first design is a fixed-duration trial – the

observation period is the same for all patients. The second design has an accrual period plus a
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follow-up period. For example, there may be a 1-year accrual period and a 3-year follow-up

period, so that the observation period varies between 3 and 4 years for study participants.

BioPETsurv can be used to evaluate a biomarker and (possibly right-censored) survival data

on a sample of patients. Alternatively, investigators can specify some essential features such as

the event rate without enrichment and the prognostic capacity of the biomarker in terms of a

hazard ratio. BioPETsurv can simulate biomarker and survival data matching these specifica-

tions, allowing investigators to explore prognostic enrichment for their clinical setting.

In this article, “biomarker” can refer to either a single measured characteristic or a “com-

posite biomarker” [2] combining multiple prognostic factors [7]. For simplicity, we use "sur-

vival" for any time-to-event variable.

Methods

Without loss of generality, assume that patients with higher levels of the biomarker tend to

experience the unwanted clinical outcome sooner. For a binary outcome, the area under the

ROC curve (AUC) summarizes the discrimination performance of a biomarker. For a survival

outcome, BioPETsurv displays the Kaplan-Meier survival curves for the entire patient popula-

tion and for enriched subsets.

A continuous biomarker can, in principle, be used for a low or high level of enrichment of a

trial. The level of enrichment is the threshold (percentile in the biomarker) above which

patients are eligible for the trial. For example, excluding patients from the trial below the 10th

percentile in the biomarker would be a low level of enrichment; requiring patients in the trial

to be in the top quartile would be a high level of enrichment. Based on the level of enrichment,

the prognostic strength of the biomarker, and the length of the trial, BioPETsurv estimates the

expected event rate absent intervention. The expected event rate together with statistical test-

ing specifications (e.g., power) and the treatment effect to detect determine the trial sample

size. The total number of patients screened to enroll the trial depends on the trial sample size

and the level of enrichment. For example, a trial with a 50% level of enrichment requires, on

average, 2 patients to be evaluated to identify one eligible for the trial. Under the assumption

that patients express interest in enrolling in the trial at a constant rate over time, ‘total number

of patients screened’ is a proxy for the calendar time to enroll the trial [7].

For cost analysis, BioPETsurv allows the cost for a patient in the trial to be either constant,

or depend on the time the patient is in the trial before the primary endpoint. The latter may be

realistic if the endpoint is death. The cost of screening, such as assay costs or patient work-up,

must also be specified. Based on these user-specified costs, BioPETsurv calculates total trial

cost for each enrichment level.

A key element in prognostic enrichment is the time-specific event rate by the end of the

trial in enriched subgroups, which must be estimated. This can be done using Kaplan-Meier

methods in subgroups. Alternatively, the nearest neighbor estimation method [4] allows the

censoring process to depend on the biomarker and guarantees monotone estimated Receiver

Operating Characteristic curves for time-specified outcomes. BioPETsurv offers both methods

for fixed-duration trials and uses Kaplan-Meier methods for trials with an accrual period plus

a follow-up period.

Fixed-duration trials

Given type I error rate α, power 1-β, and treatment hazard ratio HR, the number of events

needed [21] is N0 ¼
4 z1� a=2

þz1� b

� �2

log2HR . For a given enrichment level and trial length, let Ŝ be
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estimated survival; the event rate is p̂C ¼ 1 � Ŝ in the control arm and p̂T ¼ 1 � ŜHR in the

treatment arm. Let N1
2

be the sample size in one arm of a trial planned to have equal sample

size in each arm. Then N1
2
� ðp̂C þ p̂TÞ ¼ N0, so total N is 2N1

2
¼ 2N0=ðp̂C þ p̂TÞ. Let C1 be the

cost for a patient in the trial and C2 the cost of screening (such as assay cost). For enrichment

at quantile t (patients with biomarker below quantile t are excluded), total cost is C1N þ C2
N

1� t.

Let p̂ ¼ p̂C þ p̂T . We calculate the standard deviation (SD) from the delta method, SDðp̂Þ ¼

SDð2 � Ŝ � ŜHRÞ � ½1þHR � ŜHR� 1�SDðŜÞ and SDðNÞ ¼ SD 2N0

p̂

� �
�

2N0

p̂2 SDðp̂Þ. We treat No,

which comes from a standard sample size formula, as fixed; variability comes from p̂.

Trials with an accrual period and a follow-up period

Let a and f be the accrual and follow-up time respectively. The only difference from a fixed-

duration trial is in estimating the event rates, p̂C and p̂T , when participants are followed for dif-

ferent periods of time. Following [21], p̂C ¼ 1 � 1

6
½Ŝðf Þ þ 4Ŝðf þ 0:5aÞ þ Ŝðf þ aÞ� from

Simpson’s rule and p̂T ¼ 1 � 1

6
½Ŝðf ÞHR þ 4Ŝðf þ 0:5aÞHR þ Ŝðf þ aÞHR�, with standard errors

estimated by bootstrapping. All other trial characteristics follow as for fixed-duration trials.

Simulating data to allow investigators to explore prognostic enrichment

To allow investigators to explore prognostic enrichment without data on survival and the bio-

marker for a sample of patients, BioPETsurv can simulate data to mimic specific clinical

parameters. Survival is simulated from a Weibull distribution with user-specified shape

parameter k, which allows hazards to be constant, increasing, or decreasing. The user also

specifies the survival probability p at time T, which are used to solve for the Weibull scale

parameter a. We expect investigators will specify p based on knowledge of overall survival in

the patient population. The data simulator takes p as the survival probability for individuals

with mean biomarker level. The survival curve for this group is similar to the overall survival

curve. The prognostic strength of the biomarker is specified by the hazard ratio for a 1 stan-

dard deviation difference in the biomarker. Without loss of generality, the biomarker X is

mean-centered so that X = 0 is the baseline group. Given Weibull shape and scale parameters,

baseline hazards are l0ðtÞ ¼ k
a ð

t
aÞ

k� 1
and under proportional hazards an individual with bio-

marker X has hazard lðtÞ ¼ k
a ð

t
aÞ

k� 1ebX , which corresponds to a Weibull distribution with the

same shape parameter k and scale parameter a � e�
bX
k . Biomarker data are simulated to have

either a symmetric (normal) or right-skewed (lognormal) shape (user-specified). Based on bio-

marker value X = x, survival time is simulated from the appropriate Weibull distribution but

censored at time T. The joint distribution of simulated biomarker and survival times is used

for prognostic enrichment analysis.

Results

Example 1: A modestly prognostic biomarker and fixed-duration trial

Fig 1 and Table 1 show an example using BioPETsurv to evaluate a biomarker that is modestly

prognostic of the event, with HR 1.2 corresponding to one standard deviation difference in the

biomarker. The trial will be either 36 or 48 months. Fig 1A shows estimated survival curves for

screening threshold 0% (top curve), i.e., for all patients (no enrichment). The plot shows that

events accumulate more quickly in enriched subpopulations of patients, showing more quickly

decreasing survival curves for enrichment levels 25%, 50%, and 75% (meaning that patients with

biomarker below the 25th, 50th, or 75th percentile are excluded). Two vertical lines indicate the
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Fig 1. BioPETsurv analysis of a modestly prognostic biomarker for a fixed-duration 36-month or 48-month trial. Investigators are considering the biomarker for

enrichment of either a 36-month or 48-month trial and specified 90% power to detect a hazard ratio of 0.8 using two-sided testing and α = 0.05. For cost analysis, the

cost of screening was $500 and the cost of one patient in the trial was $4000 (36-month trial) and $5000 (48-month trial). The biomarker in this example has HR�1.2

corresponding to a 1 SD difference in the marker.

https://doi.org/10.1371/journal.pone.0239486.g001
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candidate trial lengths, 36 and 48 months. In all other panels in Fig 1, the horizontal axis is the

level of enrichment, with 0% representing an unenriched trial. Fig 1B shows the estimated event

rate as a function of the level of enrichment for both candidate trial lengths. Based on these event

rates and specifying 90% power to detect treatment hazard ratio 0.8 (two-sided testing, α = 0.05),

Fig 1C shows the sample size for each trial duration. As expected, the longer trial requires fewer

patients than the shorter trial. Fig 1D shows the number of patients needed to screen to enroll the

trial. With this modestly prognostic biomarker, the screening total increases with higher enrich-

ment, although the increase is modest below 50% enrichment. Fig 1E and 1F display the cost anal-

ysis, with per-patient costs of $4000 (36-month trial) and $5000 (48-month trial). The screening

cost was set at $500. In this example, with less than 25% enrichment an enriched trial is anticipated

to be more expensive than an unenriched trial because the decrease in sample size is not enough

to offset the cost of screening. The cost analysis shows cost savings for higher levels of enrichment.

Example 2: Simulating data for a highly prognostic biomarker and a trial

with accrual period and follow-up period

We illustrate the BioPETsurv data simulator. We set simulation parameters to mimic the clini-

cal setting of Example 1 but anticipating a more highly prognostic biomarker. We simulated

Table 1. BioPETsurv analysis of a modestly prognostic biomarker (Example 1).

Screening Threshold Event Rate (%) Sample Size Total Screened Reduction in Total Cost (%)

36 mo 48 mo 36 mo 48 mo 36 mo 48 mo 36 mo 48 mo

0% 14 18 6819 5221 6819 5221 0 0

5% 14 18 6726 5102 7080 5371 -12 -8

10% 14 18 6605 5045 7339 5606 -10 -7

15% 14 19 6441 4879 7578 5740 -8 -4

20% 15 20 6155 4668 7694 5835 -4 -1

25% 15 20 6014 4542 8019 6056 -3 1

30% 16 21 5825 4408 8322 6298 -1 4

35% 16 22 5643 4317 8682 6642 1 5

40% 17 22 5540 4221 9234 7035 2 6

45% 18 23 5299 4013 9635 7297 5 9

50% 19 25 4949 3733 9898 7466 9 14

55% 19 25 4845 3648 10767 8107 9 15

60% 21 27 4407 3414 11018 8536 15 18

65% 22 29 4141 3189 11832 9112 18 21

70% 23 29 3956 3147 13187 10491 18 20

75% 24 29 3905 3179 15620 12716 14 15

80% 27 33 3445 2821 17226 14106 18 19

85% 32 39 2880 2373 19201 15821 23 24

90% 37 45 2497 2012 24971 20121 18 23

In 36 months the clinical event occurs in 13% +/- 1% of patients without intervention; and 18% +/- 1% in 48 months. Sample size calculations reflect 90% power to

detect 0.8 treatment hazard ratio using two-sided hypothesis testing and α = 0.05. The cost of screening is $500/patient and the per patient trial cost is $4000 (36-month

trial) or $5000 (48-month trial). Screening Threshold is the proportion of patients who will be screened out of the trial based on biomarker level. Event Rate is the

estimated rate of the clinical event in the enriched study population not receiving the intervention. Sample Size is the trial sample size calculated based on the event rate

and statistical testing specifications. Total Screened is the total number of patients who would need to be screened to enroll the trial, which depends on the sample size

and level of enrichment (screening threshold). Total Cost summarizes patient-related costs of different levels of enrichment, specifically the cost of biomarker-based

screening and the cost of having a patient in a trial. Results show the potential for the biomarker to allow substantially smaller trial sample size and cost savings, but

impose a greater burden on the total number of patients to screen to enroll the trial. These results are displayed in Fig 1, which also displays standard error estimates.

https://doi.org/10.1371/journal.pone.0239486.t001
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biomarker and survival data for n = 5,000 patients with event rate 18% at 48 months. We speci-

fied constant hazards, and a hazard ratio 2.8 corresponding to 1 standard deviation difference

in the biomarker, which we simulated as normally distributed. Fig 2 and Table 2 give prognos-

tic enrichment analysis using the simulated data and planning a trial with a 12-month accrual

period and a 36-month follow-up. We again specified 90% power to detect 0.8 treatment haz-

ard ratio, two-sided testing, and α = 0.05.

Fig 2A shows estimated survival curves for no enrichment, and 25%, 50%, and 75% enrich-

ment. Compared to Fig 1A, there is greater separation between the curves because the bio-

marker here is more prognostic. Fig 2B shows the average event rate for each level of

enrichment (the average accounts for the variable length of patient follow-up). Sample size

decreases steadily with greater enrichment (Fig 2C). The total number of patients to screen to

enroll the trial is gradually increasing for lower levels of enrichment but increases rapidly at

high levels of enrichment (Fig 2D). With $300 screening cost and a patient in the trial costing

$100/month before the clinical event, there is potential for substantial savings from prognostic

enrichment (Fig 2E and 2F).

Discussion

In this work we demonstrated a comprehensive framework for evaluating a biomarker for

prognostic enrichment of a clinical trial with a survival endpoint. In both Examples 1 and 2,

total trial costs are nearly monotone decreasing with greater levels of enrichment, but this will

not always be true. For example, one can use the data simulator with the following specifica-

tions: $100 screening cost, $1000 cost per patient in the trial, 50% survival at 10 years and a

trial planned for 5 years for 90% power to detect a treatment hazard ratio of 0.8. If the bio-

marker is highly prognostic (effect size 2.0), the total trial cost is U-shaped with a minimum at

about the 75% enrichment level (that is, the trial only enrolls patients in the highest quartile of

the biomarker). See S1 Fig and S1 Table. On the other hand, If the biomarker is weakly prog-

nostic (e.g., effect size 1.2), total cost is monotone increasing with the level of enrichment. See

S2 Fig and S2 Table. That is, at a 1:10 ratio of per patient screening and trial costs, it is not

cost-effective to use prognostic enrichment at any level with the weakly prognostic biomarker.

Interestingly, the number of patients screened can be either an increasing or decreasing

function of the level of enrichment. In both Examples 1 and 2 it was increasing. However, for

highly prognostic biomarkers, the number of patients screened can be decreasing because the

trial sample size drops precipitously and more than compensates for the additional patients

who must be screened for an enriched trial (see [7] for examples).

The BioPETsurv data simulator requires specification of the biomarker distribution, the

biomarker hazard ratio, the trend in hazards over time (increasing, constant, or decreasing),

and the event rate without enrichment. These elements are realistic for area specialists to iden-

tify. The simulation methodology incorporates proportional hazards. As with any data simula-

tion, results will be accurate only to the extent that the assumptions of the simulation hold.

When considering a prognostic enrichment strategy, investigators must consider multiple,

sometimes conflicting goals: trial sample size, number of patients to screen for eligibility, and

cost. BioPETsurv is useful for several types of questions in this arena. First, investigators with

data on a prognostic biomarker can use BioPETsurv to evaluate that biomarker for its utility

for prognostic enrichment for their clinical setting. Second, investigators with a prognostic

biomarker who are planning a trial can use BioPETsurv to decide whether, and to what extent,

to use the biomarker to plan and implement an enriched trial. Third, investigators working in

a particular clinical setting can use BioPETsurv’s simulation functionality to explore the prog-

nostic capacity that would be needed in order for a biomarker to be useful for prognostic
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Fig 2. BioPETsurv analysis of simulated biomarker for a trial with a 12-month accrual period and 36-month follow-up period. Investigators are planning a trial

with a 12-month accrual period plus a 36-month follow-up period, and anticipate having a marker with HR�2.8 corresponding to a 1 standard deviation difference in

the marker. The BioPETsurv data simulator generated data for a normally distributed biomarker with this prognostic strength. Sample size calculations specified 90%

power to detect a treatment hazard ratio of 0.8 using two-sided testing and α = 0.05. For cost analysis, patient screening cost was $300 and the cost of a patient in a trial

was $100/month before the clinical endpoint. Numeric results are in Table 2.

https://doi.org/10.1371/journal.pone.0239486.g002
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enrichment; results then inform biomarker research and development in that area [22–25].

BioPETsurv uses metrics that align with key trial elements. Together with important consider-

ations around generalizability and ethics, BioPETsurv facilitates a comprehensive evaluation

of competing dimensions in trial planning and the evaluation of prognostic enrichment

biomarkers.
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Table 2. BioPETsurv analysis of simulated biomarker for a trial with a 12-month accrual period and 36-month follow-up period (Example 2).

Screening Threshold Event Rate (%) Sample Size Total Screened Reduction in Total Cost (%)

0% 17 5394 5394 0

5% 18 5146 5417 -3

10% 19 4937 5486 1

15% 20 4720 5553 6

20% 21 4517 5647 10

25% 22 4311 5748 14

30% 22 4155 5936 17

35% 24 3905 6008 22

40% 25 3706 6177 26

45% 26 3518 6397 30

50% 28 3320 6640 34

55% 29 3131 6958 38

60% 31 2935 7338 41

65% 34 2741 7832 45

70% 36 2553 8511 48

75% 39 2360 9440 50

80% 43 2153 10766 53

85% 48 1916 12774 55

90% 54 1670 16701 54

Investigators are planning a trial with a 12-month accrucal period plus a 36-month follow-up period, and anticipate having a biomarker with HR�2.8 corresponding to

a 1 standard devfiation difference in the marker. The BioPETsurv data simulator generated data for a normally distributed biomarker with this prognostic strength.

Sample size calculatations specified 90% power to detect a treatment hazard ratio of 0.8 using two-sided testing and α = 0.05. For cost analysis, patient screening cost

was set to $300 and the cost of a patient in a trial was set to $100/month before the clinical endpoint. Results are displayed in Fig 2.

https://doi.org/10.1371/journal.pone.0239486.t002
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