
The genetic architecture of pediatric cognitive abilities in the 
Philadelphia Neurodevelopmental Cohort

Elise B. Robinson, ScDa,b,1, Andrew Kirby, BAa,b, Kosha Ruparel, MSEc, Jian Yang, PhDd, 
Lauren McGrath, PhDe, Verneri Anttila, PhDa,b,f, Benjamin M. Neale, PhDa,b, Kathleen 
Merikangas, PhDg, Thomas Lehner, PhDh, Patrick M.A. Sleiman, PhDi, Mark J. Daly, PhDa,b, 
Ruben Gur, PhDc, Raquel Gur, MD, PhDc,2,*, and Hakon Hakonarson, MD, PhDi,2,*

aAnalytic and Translational Genetics Unit, Massachusetts General Hospital and Department of 
Medicine, Harvard Medical School, Boston, MA 02114 bStanley Center for Psychiatric Research 
and Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, 
MA 02142 cDepartment of Psychiatry, Perelman of School of Medicine, University of 
Pennsylvania, Philadelphia, PA, 19104 dQueensland Brain Institute, University of Queensland, 
Brisbane, Australia ePsychiatric and Neurodevelopmental Genetics Unit, Center for Human 
Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA 
02114 fInstitute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland gGenetic 
Epidemiology Research Branch, Intramural Research Program, National Institute of Mental 
Health, National Institutes of Health, Bethesda, MD 20892 hOffice of Genomics Research 
Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 
20892 iCenter for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 
19104

Abstract

The objective of this analysis was to examine the genetic architecture of diverse cognitive abilities 

in children and adolescents, including the magnitude of common genetic effects and patterns of 

shared and unique genetic influences. Subjects included 3,689 members of the Philadelphia 

Neurodevelopmental Cohort, a general population sample of ages 8-21 years who completed an 

extensive battery of cognitive tests. We used genome-wide complex trait analysis (GCTA) to 

estimate the SNP-based heritability of each domain, as well as the genetic correlation between all 

domains that showed significant genetic influence. Several of the individual domains suggested 

strong influence of common genetic variants (e.g. reading ability, h2
g=0.43, p=4e-06; emotion 

identification, h2
g=0.36, p=1e-05; verbal memory, h2

g=0.24, p=0.005). The genetic correlations 

highlighted trait domains that are candidates for joint interrogation in future genetic studies (e.g. 
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language reasoning and spatial reasoning, r(g)=0.72, p=0.007). These results can be used to 

structure future genetic and neuropsychiatric investigations of diverse cognitive abilities.
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Introduction

Twin and family studies have consistently evidenced strong genetic influence on ‘g,’ or 

general intelligence, as well as several specific cognitive domains (1-3). Recent studies 

using population samples have estimated that common SNPs alone explain 22-46% of 

variance in intelligence in childhood and 40-51% of the same differences in adulthood (4-7).

There have been few molecular genetic investigations of the unique cognitive domains that 

may link brain systems to intelligence and behavior—for example: memory, social 

cognition, executive function, and reasoning. The purpose of these analyses was to examine 

the genetic architecture of diverse cognitive abilities in children, including the magnitude of 

common genetic effects and patterns of shared and unique genetic influences.

First, we use genome-wide complex trait analysis(8) (GCTA) to estimate the extent to which 

the traits are influenced by all common SNPs (chip heritability). The heritability of several 

of these traits has been previously estimated using twin and family studies (1, 2, 9-11), but a 

consistent molecular genetic approach has not been used across domains in a single pediatric 

sample. In doing so, this study aims to highlight cognitive traits, and measurement methods, 

that are amenable to genetic study in pediatric samples. In addition to nominating 

phenotypes for GWAS and sequencing analysis, traits with evidence of genetic influence 

may be strong candidates for endophenotypic research in neuropsychiatric disease. 

Schizophrenia and autism, for example, have been linked to familial deficits in several 

neuropsychiatric trait domains (12, 13). As knowledge of the genetic factors relevant to 

those disorders continues to improve (14), heritable traits measured on samples from the 

general population can be examined for evidence of shared genetic influence with 

neuropsychiatric disease and pursued for indicators of common underlying biology.

Second, we estimate genetic correlations between the cognitive traits that show evidence of 

common variant influence. While it has been shown that some genetic factors influence 

multiple cognitive abilities (i.e. “generalist genes”) (15-17), weak within-individual 

correlations between many domains suggest that other genetic effects are likely to be 

domain-specific or domain-preferential. A map of the genetic correlations between the traits 

could inform several types of neuropsychiatric research. For neuroscientists, the genetic 

correlation matrix, in conjunction with the phenotypic correlation matrix, may provide 

insight into ability domains most likely to share biological underpinnings. For example, 

there is a strong genetic correlation between schizophrenia and bipolar disorder, but no 

genetic correlation between either of those disorders and Crohn's disease (18). The 

difference between the correlations is hypothesized to reflect greater shared biology between 

schizophrenia and bipolar disorder, brain diseases associated with aberrant behavior, as 
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compared to Crohn's disease, a disease of the gastrointestinal tract and autoimmune system. 

A similar gradient in biological proximity may be predicted by genetic correlations among 

cognitive phenotypes. For researchers conducting GWAS and sequencing analysis, traits 

with strong genetic correlations can be jointly interrogated (19), thereby increasing the 

probability of collaborative analysis across cohorts with different phenotypic and 

measurement approaches. As very large sample sizes are required for association research in 

cognitive and neuropsychiatric disease (5), cross-cohort collaborations will be needed to 

identify informative genetic signals.

Subjects and Method

The Philadelphia Neurodevelopmental Cohort

The Philadelphia Neurodevelopmental Cohort (PNC) is a population-based sample from the 

greater Philadelphia area, including over 9000 individuals ages 8-21 years who received 

medical care within the Children's Hospital of Philadelphia (CHOP) network. The 

participants presented for a diverse set of medical needs, ranging from a general health 

checkup and minor problems (e.g. sports related bruise, rash) to chronic condition 

management (e.g. asthma, type 1 diabetes) to potentially life threatening health problems 

(e.g. cancer). They were initially enrolled in the genetic study at the Center for Applied 

Genomics (CAG) at CHOP. Upon assent/consent, the participants were genotyped during 

the time of their clinical visit and provided written permission to be recontacted for studies 

of complex pediatric disorders. The PNC participants were selected at random after 

stratification by sex, age and ethnicity. The overall inclusion criteria included: 1) ability to 

provide signed informed consent (parental consent was required for participants under age 

18), 2) English language proficiency, and 3) physical and cognitive ability to participate in 

computerized cognitive testing.

All PNC participants completed the Computerized Neurocognitive Battery (CNB) and were 

assessed psychiatrically with a structured interview. The CNB consists of tests that have 

been used in functional neuroimaging to probe specific brain systems and is administered 

with a web browser. It assesses performance on a range of cognitive tasks. The CNB was 

designed to capture variation in four ability domains, and includes three specific tasks within 

each domain: 1) executive control (abstraction and mental flexibility, attention, working 

memory); 2) episodic memory (verbal, facial, spatial); 3) reasoning (verbal, nonverbal, 

spatial); and 4) social cognition (emotion identification, emotion differentiation, age 

differentiation). The specific measurement strategy employed for each of the 12 tasks has 

been described elsewhere (20), but a summary of the measures and their psychometric 

properties in the PNC is included in the supplemental material (Table S1). The battery also 

included the reading items from the Wide Range Achievement Test (WRAT) (21).

Cleaning and imputation of genotype data

This study employed genome wide complex trait analysis (GCTA) to estimate the fractional 

contribution of common SNPs to phenotypic variation in cognitive ability in the general 

population. One can reduce bias in values estimated through GCTA by minimizing ancestral 

heterogeneity in the sample (8, 22). As the PNC cohort was drawn from a diverse United 
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States urban population, these analyses were limited at the outset to the subset of 

participants who identified themselves as white non-hispanic (WNH; n=5,141). All samples 

were genotyped on one of three Illumina arrays: the HumanHap550, HumanHap610, or 

OmniExpress v2. Within the self-described WNH group, population outliers were further 

excluded based on directly genotyped SNP data, prior to imputation. Data were cleaned 

using a standard approach (23)(Supplement), which reduced the sample by 584 individuals. 

Over half (62%) of these individuals were excluded for excess relatedness (the PNC 

included siblings). We conducted a principal components analysis in PLINK (24) (Figures 

S1a-S1d) which identified 527 individuals with outlying ethnicity, who were subsequently 

removed. An additional 341 individuals were removed in further phenotypic and genotypic 

exclusions, described below, resulting in a final analytic sample of 3,689 individuals.

The genotype data were imputed in a separate phase of the study at CHOP. Unobserved 

genotypes from each chip set were imputed using the IMPUTE2 package and the reference 

haplotypes in Phase I of the 1000 genomes data (June 2011 release) that included 

approximately 37,138,905 variants from 1,094 individuals from Africa, Asia, Europe and 

the Americas. Methodological details regarding the imputation are provided in the 

Supplement. The imputed genotype data were used in the GCTA analyses.

Phenotypic analyses

We created an index of the overall severity of participant medical conditions based on 

information obtained from parent or adult proband (ages 18-21) interviews and electronic 

medical records (EMR). The index included the following levels: 1) None or Minor (43.4% 

of analytic sample)- no ongoing medical conditions requiring sustained intervention (e.g. 

well child visit or sprained ankle); 2) Mild (33.5% of analytic sample)- conditions requiring 

pediatric visits and at times medications but mild in severity (e.g. asthma, allergies); 3) 

Moderate (22.8% of analytic sample)-medical conditions requiring standing medications and 

monitoring (e.g. diabetes; lupus); 4) Severe- medical conditions requiring multiple 

procedures and monitoring that can be life threatening. Individuals with medical rating 4 

(n=274) were excluded from the analysis to avoid conflation of their cognitive ability with 

the physical symptoms of their medical phenotype, which may influence test-taking 

performance.

Age of the participants was distributed uniformly between 8 and 21 years (mean=13.7 

years). Both age and sex were associated with mean differences in CNB performance (20), 

and were regressed out of all CNB variables, as well as the WRAT, prior to analysis. 

Individuals with scores more than four standard deviations from the mean of any CNB 

variable were designated missing for that variable. Using the age- and sex-regressed scores, 

we conducted common factor and principal components analyses to examine their 

correlation structure. Common factor analysis (CFA) analyzes the structure of the shared 

variance of a variable set; principal components analysis (PCA) examines all observed 

variance. We generated common factor and principal components scores—continuous 

variables that indicate individual rank within the standardized distribution of the factor or 

principal component—for use in the genetic analyses. Both the CFA and PCA analyses used 

promax rotation, allowing the factors to be correlated. Phenotypic analyses were conducted 

Robinson et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2015 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in SAS version 9.3 (25). An unrotated principal components analysis was conducted for 

purposes of comparison and yielded similar results (Table S2). Given the strong correlation 

between the variables, only the rotated factor and principal components scores were 

included in the genetic analyses. There were 46 individuals missing the cognitive battery 

who were not included in the analysis.

GCTA

The approach underlying GCTA has been described previously (5, 8, 22). In brief, one uses 

common SNPs to create a genomic relatedness matrix (GRM) that includes pairwise 

relatedness estimates for all individuals in a sample. The GRM can be estimated using all 

typed SNPs (across the genome) or using a particular subset of SNPs, for example those on a 

specific chromosome. Using the GCTA software tool (8), one compares phenotypic 

similarity with genotypic similarity, which provides an estimate of the fraction of 

phenotypic variation attributable to the additive effects of common SNPs (SNP-based 

heritability). For example, a univariate GCTA estimate of 0.35 suggests that 35% of 

variation in a trait is attributable to the SNPs used to make the GRM, as well as additional 

variants with which the typed markers are in linkage disequilibrium (LD; correlated 

variants). If the GRM was estimated using all genotyped SNPs, that fraction reflects the 

contribution of all common SNPs; if the GRM was estimated using just the SNPs on a single 

chromosome, that fraction reflects the specific contribution of common SNPs on that 

chromosome.

We constructed the primary GRM from all imputed, autosomal SNPs with minor allele 

frequency greater than 1% and Impute2 info score, an imputation quality metric, greater than 

0.6 (n=7,635,695 SNPs) (26). This GRM was used in the primary GCTA analyses. After 

constructing the GRM, we removed the remaining individuals with relatedness above 0.05 

(n=20) (26), which yielded the final analytic sample of 3689 individuals. In the univariate 

analyses, we first estimated the fraction of phenotypic variation in each cognitive trait 

explained by all common SNPs. Secondly, we estimated genetic correlations between each 

of the traits with nominally significant (p<0.05) univariate values. Genetic correlations 

provide an estimate of the degree to which the common variant influences on two traits are 

shared. A correlation of 1 suggests that the traits share all of their common genetic 

influences; a correlation of 0 suggests their influences are independent.

The second set of analyses examined the genomic distribution of genetic influence on the 

accuracy factor scores. We segmented the 7.6 million SNPs used in the primary GRM into: 

a) 22 chromosome-specific GRMs and b) genic or intergenic space using three genic 

window definitions(22). For each gene, all genic footprints were defined using the RefSeq 

transcript with the longest spliced protein-coding DNA sequence (27). All genome files 

were adjusted for incomplete LD between tagged and causal SNPs, as described by Yang et 

al. (2011). All analyses controlled for the first ten principal components of ancestry, which 

collectively explained less than 2% of phenotypic variation in the common factor score.
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Results

Phenotypic Analyses

The common factor analysis suggested that the measures have a single factor solution; only 

one factor had an Eigenvalue exceeding one (Figures S2a). In PCA, accuracy had a 

dominant first component but two additional interpretable components with Eigenvalues 

greater than one. The first principal component consisted of the reasoning and executive 

function items, along with the WRAT. The second principal component included the social 

cognition items; the third principal component included the memory items (Figure S2b). 

Factor loadings for both the full sample and age-specific subgroups, as well as the 

phenotypic correlations, are included in the Supplement (Table S3a-b).

Univariate GCTA Analysis

Table 1 presents the univariate GCTA results. The individual trait scores suggested a wide 

range of common variant influence, ranging from 0% (emotion differentiation) to 43% 

(WRAT) of phenotypic variation explained. The reasoning traits had the strongest SNP-

based heritabilities, with estimates between 0.30 (s.e.= 0.10; p=2e-04) and 0.41 (s.e.= 0.10; 

p=4e-06). The heritability estimates of the factor and principal component scores reflected 

the results of their component traits—the first principal component score (reasoning/

executive function) was the most genetically influenced of the summary measures (0.46; 

s.e.= 0.11; p=8e-06). Strong common variant influence was also suggested for the common 

factor score (0.36; s.e.=0.11; p=5e-04). As indicated in Table 1, GCTA estimates for 7 of the 

outcome variables remained significantly different from 0 following a Bonferroni correction 

for 17 independent tests, which is conservative given that the outcome variables are 

correlated.

Bivariate GCTA Analysis

First, we estimated bivariate correlations between each of the variables with nominally 

significant (p<0.05) univariate heritability (Table 2). The genetic correlations ranged from 

-0.25 (emotion identification and nonverbal reasoning; s.e. 0.20; p(rg=0)=0.09) to 1.00 

(WRAT and language reasoning; s.e. 0.15; p(rg=0)=2e-07). More than forty percent of 

variation in the genetic correlations (40.8%) was explained by the phenotypic correlations 

(p=0.01), which led the variables to cluster genetically in a manner similar to that predicted 

by the phenotypic factor and principal component analyses. As shown in Figure S3, the 

genetic correlations were, on average, greater than the phenotypic correlations, reflecting 

substantial pleiotropy across cognitive traits.

Second, we correlated the individual tasks (e.g. language reasoning) with the common factor 

score. These correlations indicate the strength of the genetic relationship between the 

variable and the factor, and the extent of genetic influences on the variable that are distinct 

from those on the factor (Table S4). With the exception of the association between emotion 

identification and the factor score (rg=0.18; s.e. 0.18; p(rg=0)=0.2), each of the genetic 

correlations exceeded 0.5. However, of the six item-to-factor genetic correlations, four were 

significantly different from one (p(rg=1)<0.05). This further suggests that while many of the 
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genetic influences on cognitive ability are shared, cognitive domains often also have unique 

genetic influences.

Genomic partitioning

We estimated the association between chromosome length and phenotypic variation 

explained per chromosome for the common factor score, which suggested that the factor is 

highly polygenic. Chromosome length explained 31.1% (p=0.007) of variation in GRM 

prediction (Figure 1). The polygenic model is further supported by the regional analyses. 

SNPs in both genic and intergenic space were significantly associated with variation in 

cognitive ability (p(joint association with genic and intergenic regions)=0.009-0.08; Figure 

S4).

Discussion

These analyses suggest that many cognitive domains are influenced by common genetic 

variants, and that the domains' degree of genetic overlap is strongly predicted by their 

phenotypic associations. The more genetically proximal traits in the analysis (e.g. language 

reasoning and reading) are better candidates for joint interrogation in future genetic and 

neurobiological studies; the traits with limited association (e.g. emotion identification and 

nonverbal reasoning) are more likely to reflect largely independent physiological influences.

Several aspects of these analyses may introduce variation between the findings reported here 

and heritability assessed in a different population. First, SNP-based heritabilities, like any 

association metric, are influenced by the approach taken to assess the phenotype. These 

results accordingly reflect both the common genetic influences on cognitive domains, as 

well as the domains' methods of measurement in the PNC. The measures in this analysis that 

have lower reliability may accordingly have higher estimated heritability in a sample in 

which the construct has been assessed differently. While the measures used in this analysis 

have been previously validated (28), it will be important to evaluate the genetic influences 

on these constructs using additional assessment approaches.

In a pediatric population, age of the participants is also likely to introduce variation in SNP-

based heritabilities. An association between age and the heritability of IQ has been shown in 

pediatric samples (29); specifically, genetic variation appears to have a greater influence on 

IQ as children mature. The present analyses should accordingly be interpreted in the context 

of the participants' age distribution, and mean age of 13.7 years. Despite the broad age 

distribution of the PNC sample, the univariate heritability results we present for the common 

factor score, and the domains that are most correlated with intelligence (e.g. reasoning), are 

similar to those reported for IQ in pediatric populations of similar mean age (5).

The extent to which the genetic correlations may be associated with age is less clear. The 

phenotypic correlations were strongly associated with the genetic correlations in this 

analysis; age-based stability in the genetic correlations is accordingly suggested by the 

consistent phenotypic associations we report across age groups. Further, both twin and 

molecular genetic studies have suggested that, despite increasing heritability estimates, the 

genetic influences on intelligence are largely stable over time (6, 30). If the genetic 
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influences on cognition are themselves stable, it would follow for the genetic correlations to 

be relatively stable as well.

While this study introduces the largest dataset available with this array of cognitive 

assessments, it was limited by the size of the standard errors in both the univariate 

heritability and genetic correlation analyses. In particular, the strong relationship between 

the phenotypic and genetic correlations suggests a nonrandom ranking of genetic 

correlations. However, the standard errors associated with the genetic correlation estimates 

make them difficult to compare statistically, either independently or as a set. After multiple 

testing correction, it is unlikely that many of the genetic correlations would be significantly 

different from others within Table 2. The results should accordingly be primarily used to 

highlight pairs of variables with high degrees of genetic sharing (e.g. reading and language 

reasoning) or variables with strong common genetic influence (e.g. the reasoning and 

executive function principal component).

These analyses were also limited by the need to reduce the sample to individuals of 

European ancestry. Future studies will be needed to assess the extent to which the present 

findings extend to non-European populations. Further analysis will also be necessary to 

replicate the present findings and examine these patterns for age and sex effects. This 

sample was not large enough to stratify by age or sex, as we would not have had the 

statistical power necessary to meaningfully compare any group-specific estimates.

These analyses are among the first to use a molecular genetic approach to evaluate a system 

of complex cognitive traits in a pediatric sample. The development of genetic relationship 

matrices among cognitive and behavioral phenotypes introduces an opportunity to more 

effectively study those traits, and gain insight into the neuropsychiatric disorders existing at 

the tail of the impairment distributions (31).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genetic influences on complex cognition are distributed across the genome
Note: Mb=megabases; Rsquared= phenotypic variation attributable to chromosome length.
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Table 1
Contribution of common genetic variation to population differences in the Computerized 
Neurocognitive Battery

Variable N V(G)/Vp SE p

Domain Scores

Abstraction and Mental Flexibility 3657 0.064 0.096 0.3

Attention 3618 0.148 0.097 0.07

Working Memory 3577 0.108 0.096 0.1

Facial Memory 3652 0.064 0.093 0.2

Spatial Memory 3643 0.028 0.090 0.4

Verbal Memory 3638 0.244 0.097 0.005

Language Reasoning 3651 0.302 0.098 0.0008*

Nonverbal Reasoning 3654 0.406 0.096 4e-06*

Spatial Reasoning 3581 0.357 0.101 0.0002*

Age Differentiation 3637 0.039 0.098 0.4

Emotion Differentiation 3650 0.000 0.092 >0.5

Emotion Identification 3661 0.357 0.093 1e-05*

Wide Range Achievement Test (Reading) 3680 0.433 0.098 4e-06*

Factor and Principal Component Scores

Common Factor Score 3380 0.360 .108 0.0005*

PC1 (Reasoning & Executive Function) 3380 0.460 0.107 8e-06*

PC2 (Memory) 3380 0.124 0.102 0.1

PC3 (Social Cognition) 3380 0.149 0.104 0.08

Note: V(G)/Vp=Estimate of the percentage of phenotypic variation attributable to the additive influence of common single nucleotide 
polymorphisms; SE=standard error of V(G)/Vp; p= [p(V(G)/Vp=0)]; WRAT= Wide Range Achievement Test; blue shading= executive function; 
beige= memory; green= complex cognition; purple=social cognition; PC=principal component; gray= reading;

*
= p<0.05 following conservative correction for 17 independent tests.
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