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ABSTRACT

Recent advances in genomic technologies have gen-
erated data on large-scale protein–DNA interactions
and open chromatin regions for many eukaryotic
species. How to identify condition-specific functions
of transcription factors using these data has become
a major challenge in genomic research. To solve
this problem, we have developed a method called
ConSReg, which provides a novel approach to in-
tegrate regulatory genomic data into predictive ma-
chine learning models of key regulatory genes. Us-
ing Arabidopsis as a model system, we tested our
approach to identify regulatory genes in data sets
from single cell gene expression and from abiotic
stress treatments. Our results showed that ConSReg
accurately predicted transcription factors that reg-
ulate differentially expressed genes with an aver-
age auROC of 0.84, which is 23.5–25% better than
enrichment-based approaches. To further validate
the performance of ConSReg, we analyzed an inde-
pendent data set related to plant nitrogen responses.
ConSReg provided better rankings of the correct
transcription factors in 61.7% of cases, which is three
times better than other plant tools. We applied Con-
SReg to Arabidopsis single cell RNA-seq data, suc-
cessfully identifying candidate regulatory genes that
control cell wall formation. Our methods provide a
new approach to define candidate regulatory genes
using integrated genomic data in plants.

INTRODUCTION

Understanding transcriptional regulation in plants is cru-
cial to the improvement of crop productivity under ad-
verse environmental conditions (1,2). Over the past decades,
thousands of expression profiles have been generated to

investigate how environmental perturbations and develop-
mental cues regulate gene expressions in plants (3). Protein–
DNA interaction assays such as large-scale chromatin im-
munoprecipitation sequencing (ChIP-seq) (4), protein bind-
ing microarrays (5), enhanced yeast one-hybrid (6–8), and
DNA affinity purification sequencing (DAP-seq) (9,10)
have generated millions of candidate TF–target gene inter-
actions. ATAC-seq (assay for transposase-accessible chro-
matin using sequencing) and DNase hypersensitive assays
have enabled profiling of active chromatin regions under
specific conditions or tissue types (11–15). With this large
amount of regulatory-genomic data becoming available, a
current major computational challenge is the integration of
data from protein-DNA interactions, active chromatin re-
gion measurements, and gene expression assays to discover
novel and key regulators that operate under specific condi-
tions in plants.

Regulatory mechanisms have been revealed by construct-
ing genetic regulatory networks (GRN) that contain thou-
sands of TF–target interactions. Many approaches have
been developed to construct GRNs by combining different
types of genomic data. Early attempts explored the use of
unsupervised methods, in which known TF–target informa-
tion was not considered. For example, relevance network
and other mutual information-based approaches have been
developed to infer interactions (16–19). Other unsupervised
methods have also been developed including those based on
partial correlation (20), weighted co-expression networks
(21) and ensemble approaches (22). By contrast, supervised
machine learning approaches which take known interac-
tions as prior knowledge, have also been applied. Several
commonly used supervised models can infer GRNs from
expression data, including support vector machine (23,24),
least angle regression (25), least absolute shrinkage and se-
lection operator (26,27) and elastic net (28). Some of these
approaches need gene expression data from multiple sam-
ples such as those from a time course experiment (26–30)
or multiple tissue- or cell-types (16–19). Such experiments
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are typically time consuming and are still not available for
many plant species (see Supplementary table S1 for a sum-
mary of published methods). For these methods, each in-
ferred interaction represents an association between a given
TF and its target genes across many observations. How-
ever, since regulatory interactions sometimes are character-
ized by condition-specific binding of TFs to cis-regulatory
elements (31), such binding events might not be reflected
across all data points used by an inference algorithm.

Other methods for the inference of interactions focus on
data types that represent direct binding events. Binding site
data have received much attention in recent years in plant
research as evidenced by databases such as PlantTFDB
(32), AGRIS (33) and Grassius (34), which have accumu-
lated substantial amounts of data documenting experimen-
tally identified binding sites. Previous studies have identi-
fied a considerable number of binding sites from data ob-
tained in vivo related to different environmental perturba-
tions in plants. For example, binding sites were screened to
construct regulatory networks in response to far red light
(35,36), hormones (37–39) and fungal infection (40) in Ara-
bidopsis thaliana. Based on available binding site data, sev-
eral web-based tools have been developed to prioritize the
targets of specific TFs for a group of genes using enrich-
ment analysis. Some examples include TF2Network (41)
and Cistome (42), which compute enrichment of binding
sites for corresponding TFs based on large collections of
documented binding sites in Arabidopsis. PlantPAN 3.0
(43) identifies enriched combinations of TFs for multiple
plant species. The direct evidence available for binding site
identification also has some limitations. For example, due to
the cost of ChIP-seq experiments, typically only a few TFs
have been screened under any specific condition. Compared
to ChIP-seq, DAP-seq can identify possible targets of thou-
sands of TFs efficiently (9). However, DAP-seq is an in vitro
technique (10), and some binding sites detected by DAP-seq
may not be available for binding under a given environmen-
tal perturbation. Therefore, integration of binding site and
expression data is key to improving prediction accuracy un-
der specific conditions or cell types.

In this study, we developed the condition specific regula-
tory network inference engine (ConSReg), a machine learn-
ing approach which integrates expression data, TF–DNA
binding data and open chromatin data to infer condition-
specific regulatory genes. In ConSReg, lists of differentially
expressed genes (DEGs) were supplied to machine learn-
ing models to perform binary classification with feature se-
lection by regularization. This procedure can prioritize and
select the most relevant TFs for a specific environmental
perturbation. We performed cross-validation for ConSReg
using a compendium of expression data sets obtained un-
der different environmental perturbations from 26 different
publications (see Supplementary Table S2). The evaluation
result shows that the features of the integrated representa-
tion can accurately predict the expression of target genes
(average area under curve for receiver operating character-
istic curve, AUC–ROC = 0.84) and is significantly better
than alternative approaches.

Our results highlight several important discoveries that
provide new insights into the regulation of gene expression
in plants. First, the appropriate selection of negative train-

ing data sets is crucial for the improvement of model per-
formance, specifically, undetected genes (UDGs) are bet-
ter negative training data than non-differentially expressed
genes (NDEGs). Second, we demonstrated that including
ATAC-seq data significantly improves model performance
regardless of the experimental conditions, whereas prior
publications of plant data only demonstrated enrichment
of binding sites or regulatory motifs in ATAC-seq peaks
(11,12,44,45). Third, we found that the length of promoter
regions contributes to model performance. Although pub-
lished studies show that stress-regulated motifs are enriched
in 500 bp upstream of the TSS of target genes (46), our
analysis showed that using 3KB upstream of TSS + 0.5KB
downstream of TSS as promoter provides better perfor-
mance across all data sets, which is consistent with an-
other independent report (41). The results of ConSReg are
compared with multiple published approaches (41–43) us-
ing an independent validation data set (47). We have found
that ConSReg consistently provide better ranking for true
regulatory genes than other existing approaches. Finally,
we applied ConSReg to two recently published single cell
sequencing data from plants to infer regulatory networks
at the single cell level and identified candidate regulatory
genes for cell wall formation in the endodermis. ConSReg
is implemented as an open source python package (GitHub
repository: https://github.com/LiLabAtVT/ConSReg) with
flexible parameter settings such that it can be used in other
eukaryotic species, which is demonstrated as we applied this
method to a recently published maize DAP-seq and ATAC-
seq data (15).

MATERIALS AND METHODS

Single cell RNA-seq expression data preprocessing

The single cell data set was a combination of two sepa-
rate data sets from individual experiments (Gene Expres-
sion Omnibus (GEO) with accession number GSE122687
(48) and GSE123013 (49)). The R package Seurat v3.0 was
used to apply basic quality control procedures in order to
remove outliers in feature counts and to ensure no contam-
inated cells were included in our analyses (50). Once the
data sets were cleaned, they were normalized using Seu-
rat’s built-in ‘NormalizeData’ function which applies a log-
normalization to the feature counts across the rows of the
data set. The factor for each normalization process was kept
at 10,000 for each data set. Seurat’s built-in ‘merge’ function
was used to combine the data sets after they were normal-
ized individually. The resulting data set was a normalized
combination of the two original data sets. Expression ma-
trix was filtered by selecting cells that have a minimum of
two expressed genes and genes that are expressed in more
than one cell. The normalized expressions were used to clus-
ter cells by a graph-based clustering approach in the Seurat
package. The identified clusters were assigned with known
Arabidopsis root cell types by computing index of cell iden-
tity (ICI) scores (51). Next, we used clusters identified as
endodermis, cortex and quiescent center (QC) cells to com-
pute fold change of each gene. DEsingle package (52) was
used to identify differentially expressed genes between these
three cell types by pairwise comparisons.

https://github.com/LiLabAtVT/ConSReg
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Evaluation data set A and evaluation data set B

Details of bulk RNA-seq data processing, DAP-seq data
and ATAC-seq data processing are provided in the supple-
mentary text. We constructed different evaluation data sets.
The reason for using different evaluation data sets is to pro-
vide sufficient positive/negative training genes for machine
learning and feature selection methods. For all expression
experiments, we selected differential contrasts (evaluation
data set A) which can provide >500 positive and 500 neg-
ative genes for all three types of negative genes (NDEGs,
LEGs, UDGs, see supplementary table S2). After we deter-
mined that UDGs are the best negative training sets, we se-
lected differential contrasts (evaluation data set B) which
provide more than 500 positive and 500 negative genes for
only UDGs. This data set was then used to evaluate the
performance of integrating ATAC-seq data and the perfor-
mance of different types of DAP-seq data.

Feature construction

Based on expression data, we constructed differential con-
trasts between replicate groups of control and treatment
samples. Each replicate group typically includes expression
data from multiple samples and each differential contrast
produces a list of genes with fold change, mean expression
value and FDR adjusted P-values for differential expres-
sion. Supplementary table S2 provides more details regard-
ing the replicate group for each sample, and treatment and
control information for each differential contrast. Next, we
generated a feature matrix for each differential contrast by
two steps. First, for each differential contrast, we generated
a list of DEGs as positive training samples and sampled
equal number of negative samples from the genome. The
feature matrix X is a n by m matrix where n is the sum of
number of positive samples and negative samples, and m is
the number of TFs. In the second step, information from ex-
pression data, DAP-seq data and ATAC-seq data were inte-
grated to construct X. Each entry Xi j in the feature matrix
is computed by the following equations:

Xi j = Fjw (i, j ) (1)

w (i, j ) =
∑

p

∑
q

len
(
O

(
Di j p, Aiq

)) · S(A)
iq · S(D)

i j p

len
(
Di j p

) (2)

where j denotes j th TF and i denotes i th gene (either pos-
itive or negative gene). Fj is the log2 fold change value of
TF j . In equation (1), w(i, j ) is the weight for each Xi j .
In equation (2), Di j pdenotes the pth DAP-seq peak region
of TF j found in the promoter region of gene i . We evalu-
ated each DAP-seq peak region Di j p by information from
ATAC-seq, which was done by searching overlapping re-
gions between each DAP-seq peak on promoter of gene i
and all open chromatin regions on promoter of gene i . For
qth overlapped ATAC-seq region (denoted by Aiq ) on pro-
moter of gene i , its importance is weighted by both ATAC-
seq peak signal score (denoted by S(A)

iq ) and DAP-seq peak

signal score (denoted by S(D)
i j p ). When peak signal scores were

not used in the model, the default setting is S(A)
iq = 1 and

S(D)
i j p = 1. This integration method will give higher weight

w(i, j ), if DAP-seq peaks for a TF j have more overlapping
regions with the open chromatin regions found on promoter
gene i . The weight, w(i, j ), equals zero if (1) no DAP-seq
peaks of TF j can be found on promoter of gene i , (2) no
ATAC-seq peaks can be found on promoter of gene i , or (3)
no overlapping regions were detected between them.

To efficiently search for all overlaps, we constructed an
interval tree for ATAC-seq peaks in each chromosome then
iterated over each DAP-seq peak to find all overlaps be-
tween DAP-seq peak and ATAC-seq peaks. Python pack-
age Intervaltree (https://github.com/chaimleib/intervaltree)
was used to perform the search. While our current analy-
sis only explored the use of DAP-seq interaction data and
ATAC-seq open chromatin region data, other types of inter-
action data and chromatin feature data can be easily inte-
grated into Equations (1) and (2). We will leave this to future
exploration.

To construct feature matrices with only DAP-seq data,
we marked each entry Xi j by ‘1’ if binding site(s) of TF j
are found in promoter region of gene i and ‘0’ if not. We
normalized the feature matrices by min-max normalization.
Each Xi j was normalized by:

X
′
i j = Xi j − min (|X|)

max (|X|) − min (|X|)
where min(|X|) is the smallest absolute value in feature ma-
trix X and max(|X|) is the largest absolute value in feature
matrix X. During cross-validation, we computed min(|X|)
and max(|X|) from training feature matrix and used them
to normalize validation feature matrix and testing feature
matrix.

Machine learning models and feature selection

We tested several machine learning methods for classifica-
tion, including logistic regression (LR), support vector ma-
chine (SVM), random forest (RF) and deep neural network
(DNN). To perform feature selection, we applied different
regularization techniques to each classifier. The details of
classification for LRLASSO and DNN and feature selec-
tion methods are described below. Other methods are de-
scribed in the supplementary text.

LRLASSO. This method is logistic regression with lasso
penalty, which uses L1-regularization for feature selection
(53). LRLASSO minimizes the following loss function:

min
β

1
n

n∑
i = 1

−L (yi , ŷi ) + λ

m∑
j = 1

∣∣β j
∣∣

where yi and ŷi are the true label and predicted label for each
training sample, respectively. ŷi is estimated by the logistic
function:

ŷi = 1

1 + e
∑m

j Xi j β j

L(yi , ŷi ) is the log likelihood function and λ
∑m

j = 1 |β j |
is the L1 penalty term. β j is the coefficient for feature j

https://github.com/chaimleib/intervaltree
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(In our analysis, TF j ). L(yi , ŷi ) is calculated by the cross-
entropy loss function:

L (yi , ŷi ) = yi log ( ŷi ) + (1 − yi ) log (1 − ŷi )

To perform feature selection, we tuned the L1 penalty pa-
rameter � for this model using the R package gglasso (54).
Given a sequence of ordered � values, gglasso computes the
solution for each � iteratively. The computed solution for
current � will be used as the initial value for next � in the
sequence. For each round of cross-validation, we used a se-
quence of 100 � values which ranged from min(�) to max(�)
and were spaced evenly on a log scale. max(�) is the smallest
� value that shrinks all coefficients to zero. And min(�) =
� * max(�), where � is a factor specified by user. For more
details, see documentation for gglasso (54) and online docu-
mentation of the R package (https://cran.r-project.org/web/
packages/gglasso/gglasso.pdf). In this way, each � generates
a LRLASSO model by training on training data set and the
model was evaluated using validation data set to determine
which � gave the best prediction accuracy. Then the � and
the model with best prediction accuracy was again evalu-
ated by the test data set.

DNN. This method is deep neural network with L1 regu-
larization for feature selection. The use of regularized DNN
for genomic feature selection has been investigated in a pre-
vious publication (55). The authors added a one-to-one
layer between the input layer and hidden layers. L1 and L2
regularization were applied to the one-to-one layer to se-
lect features. Due to the high computational cost of tuning
hyperparameters of DNN, we chose to use only L1 regular-
ization in the one-to-one layer and hidden layers. We used
a similar DNN architecture as in the previous publication
(55). In the input layer, there are 387 neurons and this num-
ber is equal to the number of input features (TFs). In the
second layer (one-to-one layer), the same number of neu-
rons are used, and each is connected to one neuron from the
input layer. Then we added two hidden layers which have 32
and 16 neurons after the one-to-one layer. The first hidden
layer is fully connected with one-to-one layer and second
hidden layer is fully connected with the first hidden layer.
The last layer is an output layer which only has one neuron.
Batch normalization was applied to one-to-one layer and
each hidden layer to accelerate the training process. See (55)
for more details about using DNN to select features.

For hyperparameter tuning, we tuned L1 regularization
parameter � for DNN model. We used a sequence of 10 �
values which range from 10−6 to 103 and are evenly spaced
on a log scale. Adam optimizer was used to train the DNN
model and learning rate � was fixed as 0.1. We compiled and
trained DNN model using Keras library (https://keras.io/)
with CUDA GPU acceleration. Training, hyperparameter
tuning and testing was performed in the same way as de-
scribed in other methods.

Evaluation strategy

Evaluating different conditions. To evaluate the effect of se-
lecting negative training samples, we tested three different
methods: (i) non-significantly differentially expressed genes
(NDEGs), which have P-value > 0.05; (ii) low-expressed

genes (LEGs), which have mean expression values between
0 and 0.5; (iii) undetected genes (UDGs), which have mean
expression values equal to zero. To evaluate the effect of
promoter region length, we constructed feature matrices us-
ing three different promoter lengths, which are (a) 5 kb up-
stream of TSS to 1 kb downstream of TSS; (b) 3 kb up-
stream of TSS to 0.5 kb downstream of TSS and (c) 0.5 kb
upstream of TSS to TSS. The promoter region length is
passed as an input argument to the ChIPseeker package to
search for corresponding genes for each DAP-seq peak. To
evaluate the effect of regular DAP-seq peaks and merged
DAP-seq peaks, we constructed the feature matrices us-
ing the DAP-seq peaks from regular DAP-seq (methylated
DAP-seq peaks) and the DAP-seq peaks from merged DAP-
seq peaks. The performance of two methods were then com-
pared.

Cross-validation. For each feature matrix, we randomly
split the matrix into three subsets: 60% for training, 20%
for validation (hyperparameter tuning) and 20% for testing.
We trained the machine learning models on training data
set and found the optimal set of hyperparameters by evalu-
ating the trained model on validation data set (Figure 1B).
Then the final performance of model with optimal hyper-
parameters was evaluated using the test data set. We used
AUC–ROC and AUC–PRC as the metrics for evaluation.
This process was repeated five times for each feature matrix
to obtain the mean and standard deviation of AUC–ROC
and AUC–PRC.

Compare to enrichment-based method. We compared our
methods to enrichment-based method. Similar to the ap-
proach used in TF2Network (41), we computed the statisti-
cal significance of enrichment for each individual TF by hy-
pergeometric test. The probability mass function is defined
as:

P (x = i ) =

(
N
i

) (
M − N
n − i

)
(

M
N

)
where each parameter is explained below:

i is the number of DEGs that have DAP-seq peak(s) of the
current TF.

N is the total number of DEGs in the current differential
contrast.

n is the total number of protein-coding genes that have
DAP-seq peak(s) of the current TF.

M is the total number of protein-coding genes.

P-values for all TFs were then computed by hypergeo-
metric test and corrected by Benjamini–Hochberg correc-
tion (56). We used the same training set of positive genes and
negative genes to compare LRLASSO with enrichment-
based method. For each condition, this training set is the
same feature matrix we used to evaluate machine learning
models

To calculate AUC–ROC value for the enrichment-based
method, we first ranked all TFs by ascending order using
corrected P-values. Then we iterated over the ranked list of

https://cran.r-project.org/web/packages/gglasso/gglasso.pdf
https://keras.io/
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Figure 1. Flowchart of ConSReg pipeline. (A) Analysis workflow. (B) Genomic data integration strategy. DAP-seq and ATAC-seq regions were intersected
and the weight for each intersected region was computed, and then summed up as the final weight for each TF–gene pair. The product of TF fold change
and final weight is filled into corresponding entry of the feature matrix (see Materials and Methods for more details). parameters a, b, c, d, e, f, g are
lengths of corresponding regions. (C) Cross-validation strategy. Final AUC–ROC values were computed from the 20% test data. We repeated this analysis
five times for each integrated data set and calculated average and standard deviation of AUC–ROC values.

TFs. In each iteration, we used top kTFs as predictors and
k is increased by one in next iteration until all 387 available
TFs were included as predictors. Gene is considered as pre-
dicted positive if it has any predictor’ peak regions in its pro-
moter region and predicted negative if not. Therefore, false
positive genes are those predicted as positive but are neg-
ative in the training set and false negative genes are those
predicted as negative but are positive in the training set. We
calculated false positive rate F P

N and false negative rate F N
P

in each iteration and then all points of ( F P
N , F N

P ) were put to-
gether to construct ROC curve for computing AUC–ROC
value.

Since hold-out test will not be applicable for enrichment-
based method, for both LRLASSO and enrichment-based
method, training and testing were performed using the same
training set to have fair comparison.

Ranking TFs by stability selection

Since coefficients generated by LRLASSO model do not re-
flect the importance of each TF and the selected set of TFs
would be slightly different when coefficients are initialized
randomly, we applied stability selection (57) to generate ro-
bust feature selection result from LRLASSO.

Randomized lasso was proposed as an implementation
of stability selection for the lasso method. The difference
between randomized lasso and regular lasso is that subsam-
pling of training samples and random perturbations for fea-
tures are introduced into the feature selection process (57).
Briefly, a subset of training samples were selected, and their

features were randomly perturbed. Then a lasso model was
trained using the perturbed subset of the original training
data set. This process was then repeated multiple times. The
idea is that important features will be selected more often
than the unimportant ones during this randomized process.
When used with LRLASSO, the objective function of ran-
domized lasso can be written as:

min
β

−L (yi , ŷi ) + λ

n∑
j = 1

|β j |
w j

where L(yi , ŷi ) is the log likelihood function as described
previously in Materials and Methods. β j is the coefficient
for feature j. λ

∑n
j = 1

|β j |
w j

can be considered as the penalty
term for randomized lasso, similar to L1 penalty term for
regular lasso model. The only difference here is that random
perturbation is introduced by w j , a scaling factor sampled
from the range (0,1). For simplicity of implementation, fea-
tures can be rescaled to have the same effect with rescaling
the coefficients (57).

In our analysis, we randomly sampled half of the train-
ing samples from a feature matrix. Features were randomly
perturbed by a scaling factor randomly sampled from (0,1).
Randomized lasso was performed n times for each feature
matrix. For each feature, the final importance score was cal-
culated as number of times the feature gets non-zero coeffi-
cient divided by n. In our analysis, we set n = 200.
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RESULTS

Analysis overview

In this work, we focused on using protein-DNA interaction
data and open chromatin data to predict the combinations
of TFs that can best explain observed differential gene ex-
pression under different environmental perturbations or cell
types. To achieve this goal, we have tested multiple machine
learning methods in combination with different feature se-
lection techniques to determine the optimal parameters and
training strategies. Our pipeline consists of two major steps
(see Figure 1A). The first step is to integrate genomic data
sets including interaction data generated from DAP-seq,
open chromatin region data from ATAC-seq and expression
data from RNA-seq/microarray experiments. This step pro-
duces training, validation, and testing data set for machine
learning models. The second step is to perform binary clas-
sification with sparse feature selection methods. The input
feature matrix for classification was constructed from bind-
ing site information and activated chromatin regions for a
list of differentially expressed genes. These genes were ob-
tained by standard statistical approaches (see Supplemen-
tary Text) using a contrast between a replicate group of
treated samples and a replicate group of control samples
(58).

For each gene, the feature matrix consists of all inter-
actions between TFs and their target genes specified by
DAP-seq experiments. Open chromatin regions were used
to set a weight on the feature matrix (see Figure 1B). Our
method can also incorporate peak heights from DAP-seq
and ATAC-seq when calculating the weight of the feature
matrix, but the improvement is small (Supplementary figure
S1 and Supplementary Table S3). Up- and down-regulated
genes were analyzed separately to train up-regulated (UR)
and down-regulated (DR) models. Performance of machine
learning models was evaluated by AUC–ROC and AUC–
PRC computed from cross-validation. To prioritize impor-
tant TFs for each condition, we assigned an importance
score to each TF by performing stability selection (57). We
performed multiple analyses to identify optimal settings for
machine learning models. Our analyses include tests of (i)
different machine learning approaches, (ii) different types of
negative training samples, (iii) lengths of promoter region,
(iv) combinations of data types and (v) difference between
regular DAP-seq and amp-DAP-seq, where effects of DNA-
methylation were removed by amplification.

Evaluation of different negative training samples and differ-
ent machine learning approaches

The choice of negative training samples has been shown
to significantly affect the performance of machine learn-
ing models (59). We evaluated three methods to select neg-
ative training samples: (i) non significantly differentially ex-
pressed genes (NDEGs), which have P-value > 0.05; (ii) low-
expressed genes (LEGs), which have average expression be-
tween 0 and 0.5 FPKM and (iii) undetected genes (UDGs),
which have a mean expression value equal to zero FPKM.
The three methods were tested using evaluation data set A
(see Materials and Methods), where we constructed both
an up-regulated feature matrix and a down-regulated fea-

ture matrix for each differential contrast. Machine learn-
ing models tested in this analysis include logistic regression
(LR), support vector machine (SVM), random forest (RF)
and deep neural networks (DNN). See Methods and Sup-
plementary Text for more details about the machine learn-
ing models.

Figure 2A shows a boxplot of all AUC-ROC values com-
puted from the six machine learning approaches. These re-
sults show that AUC–ROC values of UDGs are signifi-
cantly higher than NDEGs and LEGs (Wilcoxon signed-
rank tests, P-values < 0.001). This suggests that machine
learning classifiers perform better when UDGs are used as
negative training samples. However, we did not find obvious
differences for the number of selected TFs among the three
types of negative training genes (embedded plot in Figure
2A). We further compared the performance of different ma-
chine learning approaches and found the six machine learn-
ing approaches achieved similar AUC–ROC values (Figure
2B, C for UR and DR respectively). However, the numbers
of selected TFs obtained from different machine learning
models are quite different (Figure 2B, C). LRLASSO con-
sistently selected fewer TFs than other methods.

In recent years, the deep neural network (DNN) method
has been extensively applied in the field of genomics
to model gene regulation (60–62). We further explored
whether DNN can bring better performance than LR-
LASSO. A previous study has introduced a DNN-based
feature selection method (55). We used a similar strategy in
our analysis (see Materials and Methods) to prioritize TFs
and compare the result to LRLASSO. DNN usually needs
large number of training samples to estimate model param-
eters. However, most of the expression data sets used in
this study have fewer than 2000 genes available for training
(see Supplementary table S2). Therefore, a comparison us-
ing multiple data sets in evaluation data set A or evaluation
data set B (see Materials and Methods) resulted in an only
poorly fitted DNN model. We selected a differential con-
trast which has the largest number of training samples (8948
genes for UR and DR feature matrices, respectively). For
the UR feature matrix, the performance of LRLASSO is
significantly better than DNN (Figure 2D, Wilcoxon rank-
sum test, P-value < 0.01), whereas the performance does
not show significant difference for DR feature matrix (Fig-
ure 2D, Wilcoxon rank-sum test, P-value > 0.05). At the
same time, LRLASSO selected fewer TFs (embedded plot
in Figure 2D) and has smaller variation in the number of
selected TFs than DNN.

Although positive training genes in this study reflect
condition-specific activities, it is unclear whether negative
training genes are also condition specific. One possibility
is that all negative training genes are not detected under
any tested condition. We checked whether UDGs are differ-
ent under different environmental perturbations. For each
differential contrast in each environmental perturbation,
we computed the percentage of UDGs that are detected
(FPKM > 0) in other perturbations. Then the percent-
ages were averaged for each environmental perturbation.
We found that this average percentage ranges from 72.54%
to 91.76%, suggesting that UDGs in one condition are typi-
cally expressed under other environmental perturbation(s).
Therefore, a large portion of UDGs are inactive in one or
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Figure 2. A comprehensive evaluation of model performance under different conditions. (A) Evaluation of different negative samples. UDGs: undetected
genes, NDEGs: non-differentially expressed genes, LEGs: low-expression genes. Box plot demonstrates AUC–ROC for different negative samples (three
boxes on the left: UR models, three boxes on the right: DR models). The embedded bar plot shows the number of TFs obtained using different negative
data sets. (B, C) Evaluation of different classifiers. LRLASSO: logistic regression with LASSO penalty, LGLASSO: logistic group LASSO, LREN: logistic
regression with an elastic net penalty. LRPCC: logistic regression with Pearson correlation coefficient, GRRF: Guided regularized random forest, LSVM:
linear support vector machine. B shows the AUC–ROC values for UR model and C shows the AUC–ROC values for DR model. In both B and C, box
plots show AUC-ROC values and embedded bar plots show the number of selected TFs. (D) Comparison between LRLASSO and DNN. (E) evaluation
for different promoter region lengths. A curve in the major plot area shows AUC–ROC values for UR model and curve in the embedded plot area shows
AUC-ROC values for DR model. (F) comparison between merged DAP-seq and regular DAP-seq. Medians were marked by black bars. (G) Evaluation of
different integration strategies. The box plot shows a comparison of AUC–ROC values and an embedded bar plot shows a comparison of the number of
selected TFs. *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001; ns: not significant. P-value was computed from the Wilcoxon signed-rank test.

multiple specific environmental perturbations (Supplemen-
tary Figure S2).

Choice of promoter region length affects model performance

TFs regulate expressions of target genes by binding to reg-
ulatory elements located in the promoter regions of these
genes. It has been shown that binding sites located within
the 5 kb upstream region of transcription start sites (TSS)
can better explain any regulatory effects on the target genes
than shorter regions (41). To test the effect of promoter

length on model performance, we set the promoter region
length up to 5 kb upstream of TSS and 1 kb downstream
of TSS in feature construction step. We tested three types
of promoter regions: (i) 5 kb upstream of TSS to 1 kb
downstream of TSS; (ii) 3 kb upstream of TSS to 0.5 kb
downstream of TSS and (iii) 0.5 kb upstream of TSS. Fig-
ure 2E shows AUC–ROC values for three types of pro-
moter regions evaluated on evaluation data set B (see Ma-
terials & Methods). We observed consistent improvements
when promoter region length was extended from 0.5 to 3
kb upstream + 0.5 kb downstream. When the promoter re-
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gion was further extended to 5 kb upstream + 1 kb down-
stream, no significant improvement was found. Additional
promoter lengths were also tested, and the results are shown
in Supplementary Table S3 and Supplementary figure S1.
As shown in Figure 2E, these results are consistent between
UR models and DR models.

In addition to the length of promoter regions, we also
checked model performance when first intron sequences
were included, because early molecular results suggest that
first introns are important for regulating expression for
some genes in plants (63,64). Our results do not show signif-
icant changes when first introns are included (Supplemen-
tary Figure S1 and Supplementary Table S3). For molecu-
lar validations of promoter functions, using intergenic se-
quences instead of fixed sequence length is very common
(65,66). We tested our model performance by using inter-
genic sequences which have a specific length for each gene
depending on the upstream gene location. We also did not
see significant changes in the model performance (Supple-
mentary Figure S1 and Supplementary Table S3). In sum-
mary, our findings suggest that most of the binding sites
predictive of gene expressions were successfully captured
within 3 kb upstream + 0.5 kb downstream region.

Types of DAP-seq experiments do not significantly affect
model performance

As described previously (9), DAP-seq can be performed in
two ways: (i) sequence regular genomic DNA (gDNA), (ii)
sequence gDNA libraries in which methyl-cytosines were re-
moved by PCR. The former is regular DAP-seq and the lat-
ter is called ‘ampDAP-seq’ (9). We tested the performance
of two sets of binding sites: (a) using all available DAP-seq
binding sites, which is the merged set of regular DAP-seq
binding sites and ampDAP-seq binding sites (b) using only
regular DAP-seq binding sites. It was reported that many
DAP-seq binding sites (∼180 000) are occluded by DNA
methylation, which is likely to affect the binding of TFs.
However, our result shows that, compared to using regu-
lar DAP-seq binding sites, the merged set of DAP-seq bind-
ing sites does not provide better prediction result (Figure
2F). In particular, for reproductive tissues where gene ex-
pressions were known to be significantly impacted by DNA
methylation (67), we do not see a significant difference in
model performance using different types of DAP-seq data
(Supplementary Table S3).

ATAC-seq data significantly improves model performance

Since all DAP-seq binding sites are detected in vitro, and
some of the binding sites in vitro might not be accessible
in living cells, it has been suggested that this limitation can
be overcome by integrating DAP-seq data with open chro-
matin data (10,68). Therefore, we encoded open chromatin
information from ATAC-seq data into the feature matri-
ces (see Figure 1B and Materials and Methods). To as-
sess the impact of chromatin accessibility, the feature ma-
trices were constructed either with, or without, integrating
ATAC-seq data. We then compared the model performance
of ATAC-seq included feature matrices to ATAC-seq free
feature matrices using evaluation data set B (see Materials

and Methods). For both UR and DR genes, there are con-
sistent improvements when ATAC-seq data were included
in the feature matrices (Figure 2G). The other noticeable
advantage of including ATAC-seq data is that fewer TFs
were selected (embedded plot in Figure 2G). We further in-
vestigated whether including condition-specific expression
and ATAC-seq data can better predict expression than us-
ing DAP-seq binding site information alone. Our results
show that including all three types of data has consistently
improved model performance (Figure 2G).

ConSReg outperforms a simple enrichment test

Enrichment tests have been applied in recent studies to iden-
tify candidate regulatory TFs given a set of input genes
(41,42,69,70). We compared our prediction pipeline to a
simple enrichment-test-based method (see Materials and
Methods) and computed AUC–ROC values using evalua-
tion data set B. As shown in Figure 3A, enrichment tests
achieved an average AUC–ROC of 0.68 and 0.67 for UR
and DR genes respectively. In contrast, ConSReg achieved
average AUC–ROC of 0.84 and 0.84 for UR and DR genes
respectively. AUC–ROC values for ConSReg are signifi-
cantly higher than enrichment test (Wilcoxon rank-sum
test, P-value < 0.001 for both UR and DR feature matri-
ces).

ConSReg recovered TFs known to be involved in nitrogen re-
sponse

Although ConSReg shows consistent better performance in
AUC–ROC and AUC-PRC, it is unknown whether the TFs
selected by ConSReg are key regulators of actual underly-
ing biological processes. This is a challenging problem be-
cause there is no gold standard data set to evaluate such
predictions. Traditional molecular genetic approaches typ-
ically involve the study of one or a few TFs at a time and,
consequently, cannot rule out the possibility that other TFs
are also involved in the same process. ChIP-seq or DAP-
seq can only detect binding events but it is unclear whether
any specific TF–target interaction is indeed actively regulat-
ing gene expression. To evaluate whether ConSReg can re-
call known TFs involved in a specific environmental pertur-
bation, we applied ConSReg to a recently published study
of TARGET (transient assay reporting genome-wide effects
of transcription factors) which provides an ideal validation
data set (47). This study used an updated TARGET assay
(71) to evaluate how nitrogen (N) response TFs can impact
the gene expressions of their target genes. In this study, 33
TFs were selected, and the TARGET system was designed
such that genes were differentially expressed only due to
the effect of each of these 33 TFs. We applied ConSReg
to this RNA-seq data set and evaluated how many of the
selected TFs can be recovered by ConSReg. Among 33 se-
lected TFs, 17 TFs were also found in DAP-seq data. We
therefore used these 17 TFs for our evaluation (see Figure
3D and Figure 3E for TF gene names). We re-analyzed the
published TARGET data using DESeq2 (58) and generated
differential contrasts (see Supplementary Table S2) as input
for ConSReg.

We first compared importance scores of these TFs un-
der two conditions: (i) cycloheximide (CHX) and N-treated
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Figure 3. Comparison of different computational methods. (A) AUC-ROC for enrichment test and ConSReg. Two clusters on the left represent AUC-ROC
values for UR models and two clusters on the right represent AUC–ROC values for DR models. (B) Importance scores of the 17 TFs for TF transfected
root cells and CHX treated root cells. Two boxes on the left represent importance scores for UR models and two boxes on the right represent importance
scores for DR models. (C) Number of recovered TFs for ConSReg, TF2Network, and PlantPAN 3.0 in different ranking cutoffs. Results predicted from
UR models are plotted in the major plot area and results predicted from DR models are plotted in the embedded plot. (D, E) Ranking for each of the 17
nitrogen response TFs predicted by ConSReg, TF2Network, PlantPAN 3.0. Ranking for each TF was mapped to a color scale represented by a color bar
on the right. A lighter color indicates better ranking. (D) The results predicted by UR model and (E) shows the results predicted by DR model. *P-value
< 0.05; **P-value < 0.01; ***P-value < 0.001; ns: not significant. P-value was computed from the Wilcoxon signed-rank test.

TF transfected root cells VS empty vector transfected root
cells and (ii) CHX and N treated VS N treated EV trans-
fected root cells. CHX was used to block downstream regu-
lation of secondary TF targets (47). For the first condition,
we expected that DEGs are mainly direct targets for each of
these TFs, whereas for the second condition, the DEGs are
not induced by any of these TFs specifically. We generated
DEGs (see Supplementary Table S2) and obtained impor-
tance scores for all 17 TFs from these DEGs in both condi-
tions. For both UR and DR genes, the importance scores of
these TFs from the first condition were significantly higher
than the second condition (Figure 3B, Wilcoxon signed-
rank test, P-value < 0.001 for both), suggesting that Con-
SReg can generate higher importance scores for the true reg-
ulatory TFs as compared to EV control experiments.

We then compared the result obtained using the 17 TFs
to the result generated from TF2Network, and plantPAN

3.0, methods that can infer regulators for a given list of tar-
get genes. We set different cutoffs for ranking and counted
how many TFs can be recovered at different ranking thresh-
old (Figure 3C, Supplementary data file 1). As an exam-
ple, when the ranking cutoff is set to the top 30 predicted
TFs, ConSReg can recover 12/17 nitrogen-response TFs
from UR models, which is better than the recovery rates
of TF2Network (11/17), and PlantPAN 3.0 (9/17). For
DR models, ConSReg was able to recover 14/17 nitrogen-
response TFs from the top 30 predicted TFs, compared to
the recovery rate of TF2Network (3/17), and PlantPAN3.0
(4/17). ConSReg provided better or had the same rank-
ing for the correct TFs than other methods in 61.7% of
all cases (10 TFs in UR models and 11 TFs in DR mod-
els). In contrast, TF2Network and PlantPAN 3.0 both pro-
vided better ranking for 20.6% of all cases. This result shows
that ConSReg performs three times better than alterna-
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tive methods in selecting regulatory genes in this testing
data set.

As shown in Figure 3D and Figure 3E, there is a con-
siderable overlap of TFs (10 TFs) between UR and DR
models predicted by ConSReg and this number is higher
than TF2Network (6 TFs) and PlantPAN 3.0 (3 TFs). This
observation is consistent with the previously reported re-
sults that some of these TFs can act as both an inducer
and a repressor of target genes (47). Detailed ranking re-
sults showed that for many recovered TFs, ConSReg as-
signed better rankings compared to other tools. For ex-
ample, five recovered UR model TFs (WRKY18, VRN1,
bZIP3, TGA4 and DIV1) were ranked as top 1 by Con-
SReg and these rankings are better than the other two
tools (see Figure 3D). Notably, a few TFs predicted by
PlantPAN 3.0 achieved ranking of top 1, while others
predicted by PlantPAN 3.0 were assigned very low rank-
ings (187 for VRN1, 208 for HB6, see Figure 3D). This
is not surprising because many TFs predicted by Plant-
PAN 3.0 have identical support values. These TFs will
therefore share identical ranking. For example, although
WRKY18 was ranked as top 1 by PlantPAN 3.0 in UR
models, there are 187 other TFs which were assigned the
same ranking (see Supplementary data file 1). ConSReg
only predicted one other TF that shared the same ranking as
WRKY18. Compared to PlantPAN 3.0, this result is more
specific.

Importance score can indicate predictive power of TF

To evaluate the predictive power of highly ranked TFs and
verify whether these TFs can be more predictive of gene ex-
pressions than other TFs, we performed simulation of per-
turbation to TFs with high importance scores (importance
score > 0.5). In this simulation, we compiled three sets of
TFs in each differential contrast: (i) all TFs with importance
scores > 0.5; (ii) replace the top five TFs in (i) using five
lowest ranked TFs; and (iii) replace the top ten TFs in (i) us-
ing ten lowest ranked TFs. We evaluated the performance of
the three sets of TFs using the same cross-validation strat-
egy shown in Figure 1B. The results are shown in Figure 4.
The reported AUC-ROC and AUC-PRC values for (i) are
significantly higher than other two sets of TFs (Wilcoxon
signed-rank test,). This can be observed clearly in Figure
4A and B, where performance of UR models was evaluated.
A similar pattern was not apparent for DR feature matri-
ces (Figure 4C and D), suggesting that DR regulatory pro-
cesses are more difficult to be modeled than UR. Taken to-
gether, we concluded that for modeling UR genes, TFs with
higher importance scores can be more predictive of gene
expressions.

Case studies of using ConSReg in selecting candidate TFs

With the improved performance of ConSReg, we demon-
strate here several examples of how ConSReg can be used
to generate hypotheses based on integration of genomic
data. These hypotheses are novel, data-driven hypotheses
that were not generated by the original publication of these
regulatory genes, or by expression data or any type of regu-
latory genomic data alone.

Case 1. New hypothetical function of a stress related tran-
scription factor ZAT10

We performed a comprehensive investigation of TFs that
are active under multiple abiotic environmental perturba-
tions, encompassing nine common environmental perturba-
tions: cold, heat, drought, salt, wounding, osmotic stress,
red light, blue light and high light. For each differential
contrast under each environmental condition, we assigned
an importance score to each TF by ConSReg. The highest
importance score was selected as a representative score for
each TF under each environmental condition. This anal-
ysis can identify many known stress regulated genes, for
example, MYB and ERF protein families are known for
regulating many abiotic stress responsive genes (72,73). In
our top 20 candidates generated from UR feature matrices,
five TFs from the MYB/MYB related family (AT1G18330,
AT3G50060, AT1G49010, AT5G67300 and AT1G74650)
and two TFs from the ERF family (AT2G31230 and
AT4G16750) have been identified. Results of the analysis
are provided in Supplementary Tables S4 and S5.

Among these top candidate genes, we found that ZAT10
(AT1G27730) was predicted to be a top candidate regulator
for all abiotic perturbations tested. Although our predic-
tion is solely based on integration of DAP-seq, ATAC-seq
and RNA-seq data, the predicted role of ZAT10 has been
supported by detailed molecular characterization. That is,
ZAT10 was reported to be involved in high light (74,75),
heat (76), cold (77), dehydration (76,77) and salt responses
(78). However, among numerous studies of ZAT10, no
study reported the effect of ZAT10 in blue-light or red-
light responses as predicted by ConSReg. Additional pub-
lished molecular interactions suggest that ZAT10 might be
indeed a regulator of blue/red light responses. For exam-
ple, a previous study identified ZAT10 as the substrate of
Mitogen-Activated Protein Kinase (MAPK) and showed
that ZAT10 can directly interact with two MAPKs: MPK3
and MPK6 (79). It has been reported that MPK3 and
MPK6 can be activated by blue light (80) or red light (81,82)
in plants. However, the regulatory mechanism involved has
not been well characterized. Therefore, we further investi-
gated whether ZAT10 is related to MPK3 and MPK6 un-
der blue light treatment. We computed PCC to quantify co-
expressions of ZAT10 with a gene that encodes MPK3 pro-
tein (AT3G45640), and with another gene encoding MPK6
protein (AT2G43790). Significance of co-expression was
computed by Fisher’s Z-transformation as described in (83).
Expression data used were from a GSE data set (GSE59699)
generated under blue light treatment. Our result shows that
ZAT10 has exhibited a significantly high co-expression with
MPK3 (PCC = 0.943, P-value = 4.232 × 10−12). How-
ever, ZAT10 was not significantly co-expressed with MPK6
(PCC = 0.190, P-value = 0.228). Given the evidences above,
we hypothesize that ZAT10 is a candidate transcription fac-
tor that affects the blue light response by interacting with
MPK3.

Case 2, ConSReg uncovers combinatorial regulations

TFs are known to modulate expression of target genes by
combinatorial regulation in plants (84,85) through forming
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Figure 4. Simulation of perturbation for TFs. We performed simulation to perturb TFs with high importance scores (importance score > 0.5). Results
shown here were generated from evaluation data set B. For each differential contrast in evaluation data set B, we used TFs with importance scores > 0.5
to construct three sets of TFs for testing: (i) all TFs with importance scores > 0.5 (marked by ‘all’ in the figure); (ii) replace the top five TFs in 1) using
five lowest ranked TFs (marked by ‘5’ in the figure); (iii) replace the top ten TFs in (i) using ten lowest ranked TFs (marked by ‘10’ in the figure). (A, B)
AUC–ROC and AUC–PRC for UR models. (C, D) AUC–ROC and AUC–PRC for DR feature matrices. Significance level was marked by stars over the
boxes. *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001; ns: not significant. P-value was computed from Wilcoxon signed-rank test.

protein complexes between TFs, or indirect interactions be-
tween TFs (85). ConSReg was used to identify TFs with a
high importance score (> 0.5) for three environmental per-
turbations: cold, heat, drought which are known to regulate
similar sets of genes. Sub-networks of TFs for cold, heat and
drought were clustered using a simulation-annealing-based
algorithm (86), and the results were visualized (Supplemen-
tary Figures S3, S4 and Supplementary Tables S6, S7).

We identified co-regulating modules of TFs from each
GRN using a previously published tool (87), to identify
common co-regulating TFs across the three conditions.
While no common co-regulating TFs can be found for UR
GRNs, we found a pair of co-regulating TFs for DR GRNs:
MYB77 (AT3G50060) and MYB44 (AT5G67300) (Figure
5). Despite the fact that the two TFs are not differentially
expressed under the three abiotic stresses tested (cold, heat,
drought), they both have high importance scores under
other abiotic stresses (see Supplementary table S5). Sev-
eral published molecular and genetic studies support the
hypothesis that these two transcription factors are regu-
lated by the stress hormone ABA and that they regulate

auxin responsive genes (88–91). These results support the
predictions made by ConSReg. Although this finding was
not observed based solely on any single type of data, the
importance score generated by ConSReg was able to pro-
vide insight into putative regulatory roles for MYB77 and
MYB44. Taken together, we conclude that combinatorial
regulation between MYB77 and MYB44 confers abiotic
stress tolerance to plants.

Case 3, Identification of regulatory genes in root using single
cell gene expression

Single cell RNA-seq (scRNA-seq) is an emerging tech-
nology which has been successfully applied to character-
ize gene expression in Arabidopsis roots (48,49,92–94). To
use scRNA-seq data to generate new discoveries of regula-
tory genes in plants, we applied ConSReg to two published
scRNA-seq data sets (GSE122687 and GSE123013) of Ara-
bidopsis roots (48,49). Cell types were identified by index of
cell identity (ICI) scores as described in a previous publica-
tion (51). For simplicity, we focused on three cell types in
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Figure 5. Combinatorial regulation between MYB44 and MYB77. Plotted in the center are MYB44 and MYB77 which regulate many common target
genes under different abiotic stresses. The 20 top DEGs in each differential contrast were selected to be plotted in the figure. Edge list of this network can
be found in Supplementary Table S9.

this study: endodermis, cortex and quiescent center (QC).
UR and DR feature matrices were generated by comparing
cortex cells and endodermis cells to QC cells respectively
and importance scores for transcription factors were com-
puted (see Materials and Methods for details).

Among all the comparisons that we analyzed, the re-
sults from UR genes in endodermis versus QC and cor-
tex versus QC (Figure 6A) provided the highest AUC–
ROC and AUC–PRC values. We focus on these compar-
isons for the following analysis. ConSReg predicted more
regulators for the data set of GSE122687 than the data
set of GSE123013 regardless of the types of comparisons
(Figure 6B). This is because our processing pipeline gen-
erated more DEGs from GSE122687 (4366 DEGs) than
from GSE123013 (515 DEGs). The correlation of impor-
tance scores between GSE122687 and GSE123013 is 0.46.
We found that predicted regulators have higher similarity
as measured by Jaccard similarity (JS) than the differen-
tially expressed genes. We found one gene (AT1G69780,
ATHB13) that is consistently predicted as a regulator in
both endodermis and cortex (Figure 6C). This gene is a
known negative regulator of primary root length, suggest-
ing a role in both endodermis and cortex cells (95). We
further examined functions for predicted regulators only
in one cell type but not in the other. We found MYB107
and MYB63, two genes that are known to be regulators
of secondary cell wall formation (96), in particular, suberin
biosynthesis (97,98). Interestingly, both genes are only pre-
dicted as regulators in endodermis. This is highly consistent
with the biological function of endodermis where a water
non-permeable layer is developed to limit water flow in and
out of vascular tissue (99–102). In summary, ConSReg has

led to the discovery of key regulatory genes that perform
cell-type-specific function using single cell RNA-seq data.

DISCUSSION

Choice of negative training data and interpretation of TFs
selected by the model

We tested three types of background gene sets: (i) NDEGs,
which are non-significantly differentially expressed genes;
(ii) LEGs, which are low-expressed genes; and (iii) UDGs,
which are undetected genes. We showed that the average
model performance using UDGs as negative training data
is better than using NDEGs and LEGs. One possible ex-
planation for lower performance of NDEGs is that some
genes with P values that are marginally smaller than 0.05 are
included in NDEGs. Similarly, LEGs are lowly expressed,
but some LEGs could have fold changes close to significant
DEGs. The binding sites in these gene groups could com-
promise the performance of the model when used as a neg-
ative training set.

For all the machine learning methods that we tested in
this work, we also included a feature selection step (Fig-
ure 2B and C), where we found that LRLASSO consis-
tently selected the fewest features. We chose LRLASSO for
downstream analysis because it can provide fewer candi-
date genes for biological validation. Using fewer explana-
tory variables also aligns with other well-established model
selection methods (103,104). However, caution should be
taken in specific biological situations. For example, if two
TFs are highly homologous and have redundant functions,
feature selection methods may select only one with a slightly
higher performance. In this case, inspecting the raw data for
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AT5G13080 WRKY75 1 0.88 0.46 0.335 0.669
AT3G15500 NAC3 0.835 0.95 0.06 0.72 0.641

GSE122687 GSE123013

TF type ID name Cor VS QC Endo VS QC Cor VS QC Endo VS QC Endo - Cor
(GSE122687)

Endo - Cor
(GSE123013) Average of differences

Cor
regulators

AT5G11260 HY5 0.89 0 0.72 0.53 -0.89 -0.19 -0.54
AT5G45580 AT5G45580 0.98 0 0.035 0 -0.98 -0.035 -0.508
AT2G40620 AT2G40620 0.88 0 0 0 -0.88 0 -0.44
AT3G24120 PHL2 0.805 0 0 0 -0.805 0 -0.403
AT1G29280 WRKY65 0.8 0 0 0.005 -0.8 0.005 -0.398

GSE122687 GSE123013

TF type ID name Cor VS QC Endo VS QC Cor VS QC Endo VS QC Endo - Cor
(GSE122687)

Endo - Cor
(GSE123013) Average of differences
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regulators

AT1G79180 MYB63 0.025 0.855 0 0.015 0.83 0.015 0.423
AT4G34590 GBF6 0.105 1 0 0 0.895 0 0.448
AT3G02940 MYB107 0 0.995 0 0 0.995 0 0.498
AT4G05100 MYB74 0.07 0.88 0 0.32 0.81 0.32 0.565
AT3G28920 HB34 0.69 1 0.11 0.945 0.31 0.835 0.573

C
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Figure 6. Analysis for two single cell data sets using ConSReg. Cell types for these cells were mapped by ICI. Specifically, we focused on the analysis of
expression in endodermis (Endo) and cortex (Cor) cells. Differential contrasts were generated by comparing Endo cells to quiescent center (QC) cells, and
Cor cells to QC cells. (A) AUC-ROC values for different comparisons in two data sets. DR results for GSE123013 were missing because there were no DR
negative training genes that satisfied the selection criterion (0 < mean FPKM <0.5, –0.5 < log2 fold change < 0). (B) Venn diagram for the overlap of
DEGs and overlap of selected TFs. JS stands for Jaccard similarity score. (C) Predicted regulatory TFs ranked using importance score. Top table: regulators
common for Endo and Cor; Middle table: regulators specific to Cor; Bottom table: regulators specific to Endo. Only results from UR models were shown
here.

these similar TFs can be used to check the similarity of the
binding profiles of these TFs for a set of DEGs.

Apply ConSReg to other species and Arabidopsis single cell
expression data

The ConSReg pipeline is very flexible and uses standard in-
put data formats. To demonstrate the ability of using Con-
SReg in a different species, we applied ConSReg to recently
published DAP-seq, ATAC-seq and RNA-seq data from

maize (15). The maize genome is 2.3Gb and is substantially
larger than Arabidopsis. We performed ConSReg analysis
using promoter length as long as 100Kb. The resulting av-
erage AUC-ROC is lower than that of Arabidopsis (Sup-
plementary Table S8), and is likely due to the smaller num-
ber (32 TFs) of DAP-seq data that are available for maize
as compared to Arabidopsis (387 TFs). This will change
in the near future when more DAP-seq or other protein-
DNA interaction data become available for maize. Next, we
explored the application of ConSReg to single cell expres-
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sion data. Recent advances in single cell sequencing tech-
nology has enabled the investigation of gene expression in
individual cells in plants. We have demonstrated that Con-
SReg can identify transcriptional regulators using single cell
data to define cell type-specific functional TFs. Our results
also showed that the predicted regulators are more simi-
lar between different data sets than the differentially ex-
pressed genes (Figure 6B). It is expected that experimental
noise and technical variations may lead to identification of
DEGs that are not due to biological signals for single cell
data. For example, a large portion of zero read counts may
arise from technical noise or biological variability between
single cells (105). Our results suggest that using predicted
regulators may provide a better interpretation of the single
cell sequencing results through identifying common regula-
tory genes. In previous work, attempts were made to address
stochastic dropout by modeling it as a three component
mixture model (106), two-component mixture linear model
(107) or exponential function of expected expression (108).
Our results suggest that dropout events might be compen-
sated by incorporating regulatory network information into
the model of single cell sequencing data.

Potential future improvement with condition specific data

While ConSReg achieved good performance (average
ROC–AUC = 0.84), we think the results can be further
improved by including data types that indicate dynamic
regulation. Open chromatin regions have been reported to
be both cell-type-specific (109,110) and condition-specific
(111) as revealed by the distribution of DNaseI hypersen-
sitive sites (DHSs). In our analysis, expression data and
ATAC-seq data were not generated under the same condi-
tions nor from the same tissue type. This is because data
from roots and seedlings only are currently available for
Arabidopsis (11). We merged all open chromatin regions
detected in two tissue types to maximize the discovery of
potential interactions. This could introduce false positives,
which can be reduced by integrating open chromatin data
and expression data generated under the same conditions
and same tissue type. In our analysis, we did not include
any quantitative proteomics data or protein activities due
to post-translational modifications. A possible future im-
provement of ConSReg could also incorporate such infor-
mation into feature matrices.

Additional possible functionalities

To better understand how condition- or cell-type-specific
regulation changes across different condition or cell types,
networks inferred by ConSReg can be compared. For ex-
ample, when applied to single cell expression data, or bulk
expression data with many time points, network compar-
isons can identify different regulation patterns that occur at
different time points, resulting in inferences on how a given
network dynamically changes over a time series. This will al-
low the capture of transient and dynamic regulatory mech-
anisms. For cell-type-specific expression data, an effective
strategy might be to investigate the specificity of network
module(s) for each cell type or a group of cell types. Mod-
ules that are shared by many cell types (112) may reveal fun-

damental pathways. Modules that are common to a limited
number of cell types may play unique functional roles.

In summary, we have developed a novel computational
tool, ConSReg. We have performed comprehensive anal-
yses to identify the factors that affect the performance
of machine learning models and the optimal settings for
constructing a feature matrix. We have performed a sys-
tematic recovery of nitrogen-response TFs using ConSReg,
TF2Network, and PlantPAN 3.0 and showed that ConSReg
generated better ranking results and recovered more known
nitrogen-responsive TFs compared to other computational
tools. Network analysis for the GRNs inferred by Con-
SReg revealed new roles for ZAT10 in blue light regulation,
and a novel combinatorial regulation between MYB44 and
MYB77 in response to cold, heat and drought stresses. We
applied ConSReg to Arabidopsis scRNA-seq data of root
cell types and successfully identified cell type-specific reg-
ulators of cell wall formation which are supported by ex-
isting publications. In conclusion, ConSReg has the poten-
tial to transform any published gene expression data into
condition-specific gene regulatory networks which will pro-
vide a system level overview of transcriptional regulation in
plants.
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