REVIEW ARTICLE



# RETRACTED: Meta-analysis of Randomized Trials of Ivermectin to Treat SARS-CoV-2 Infection

Andrew Hill,<sup>1</sup> Anna Garratt,<sup>2</sup> Jacob Levi,<sup>3</sup> Jonathan Falconer,<sup>4</sup> Leah Ellis,<sup>5</sup> Kaitlyn McCann,<sup>5</sup> Victoria Pilkington,<sup>6</sup> Ambar Qavi,<sup>5</sup> Junzheng Wang,<sup>5</sup> and Hannah Wentzel<sup>5</sup>

<sup>1</sup>Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK, <sup>2</sup>Department of Infectious Diseases, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK, <sup>3</sup>Department of Intensive Care, University College London Hospital, ULCH NHS Trust, London, UK, <sup>4</sup>Department of Infectious Diseases, Chelsea and Westminster Hospital, Imperial NHS Trust, London, UK, <sup>5</sup>Faculty of Medicine, Imperial College London, London, UK, and <sup>6</sup>Oxford University Clinical Academic Graduate School, University of Oxford, Oxford, UK

Ivermectin is an antiparasitic drug being investigated for repurposing against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Ivermectin showed in vitro activity against SARS-COV-2, but only at high concentrations. This meta-analysis investigated ivermectin in 23 randomized clinical trials (3349 patients) identified through systematic searches of PUBMED, EMBASE, MedRxiv, and trial registries. The primary meta-analysis was carried out by excluding studies at a high risk of bias. Ivermectin did not show a statistically significant effect on survival (risk ratio [RR], 0.90; 95% CI, 0.57 to 1.42;  $P = 10^{\circ}$ ) or hospitalizations (RR, 0.63; 95% CI, 0.36 to 1.11; P = .11). Ivermectin displayed a borderline significant effect on duration the hospital ation in comparison with standard of care (mean difference, -1.14 days; 95% CI, -2.27 to -0.00; P = .05). There was no a mificant effect of ivermectin on time to clinical recovery (mean difference, -0.57 days; 95% CI, -1.31 to 0.17; P = .13) or binar clinical recovery (RR, 1.19; 95% CI, 0.94 to 1.50; P = .15). Currently, the World Health Organization recommends the use of ivermectir only node clinical trials. A network of large clinical trials is in progress to validate the results seen to date.

Keywords. COVID-19; ivermectin; repurposed; SARS-CoV-2.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to grow, with >550 000 new infections and >9000 deaths recorded worldwide daily in July 2021 [1]. Protective vaccines have been developed, but current supplies are too low to cover global demand i the coming months [2]. Researchers worldwide are urgently looking for interventions to prevent new infections, prevent disease progression, and lessen disease severity for chose ll-ready infected.

While research on new therapeutic agents for corol virus disease 2019 (COVID-19) is key, there is the great intensit in evaluating the potential of already existing medicines against COVID-19, and many clinic trials are in progress to "repurpose" drugs normally in tracted for other diseases. The known safety profiles, shortened by eloping in timelines, and well-established markes (with low race points and higher capacity to deliver escale) for most of the already existing compounds proposed for COVID-19 are particularly

Received 20 January 2021; editorial decision 1 July 2021; accepted 5 July 2021.

Correspondence: Andrew Hill, PhD, Department of Pharmacology and Therapeutics, University of Liverpool, 70 Pembroke Place, Liverpool L69 3GF, UK (microhaart@aol.com).

#### Open Forum Infectious Diseases<sup>®</sup>2021

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/ by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://doi.org/10.1093/ofid/ofab358 advantageous convared with new drug discovery in a pande nic situation. Three repurposed anti-inflammatory drugs h ve shown ignificant survival benefits to date: the cortice teroid examethasone in the UK RECOVERY trial [3] and the interleukin-6 (IL-6) receptor antagonist drugs to cm. mab and sarilumab in the REMAP-CAP trial and the RECOVERY trial [4, 5]. Other repurposed treatments such s hydroxychloroquine, lopinavir/ritonavir, remdesivir, and interferon-beta have shown no significant survival benefit in large randomized trials [3, 6] despite initial reports of efficacy, underscoring the need for caution when interpreting early clinical trial data.

Dexamethasone is recommended for use by the World Health Organization (WHO) and has proven survival benefits for oxygen-dependent patients with COVID-19, while tocilizumab and sarilumab improve survival for patients in intensive care [3, 4]. Preliminary data suggest that nitazoxanide and budesonide may have a role in mild infection [7, 8]. However, there are no approved treatments for patients with mild SARS-CoV-2 infection, either to prevent disease progression or reduce viral transmission. Treatments increasing the viral clearance rate may reduce the risk of onward transmission, but this requires empirical demonstration.

Ivermectin is a well-established antiparasitic drug used worldwide for a broad number of parasites and also for topical use against rosacea. The antiviral activity of ivermectin has been demonstrated recently for SARS-CoV-2 in Vero/hSLAM cells [9]. However, the concentrations required to inhibit viral replication in vitro (EC<sub>50</sub>, 2.2–2.8  $\mu$ M; EC<sub>90</sub>, 4.4  $\mu$ M) are not achieved systemically after oral administration of the drug to humans at clinically approved doses [9, 10].

While ivermectin is estimated to accumulate in lung tissues (2.67 times more than plasma) [11], this is also unlikely to be sufficient to maintain target concentrations for pulmonary antiviral activity [10, 12]. Notwithstanding, ivermectin is usually present as a mixture of 2 agents and, although mainly excreted unchanged in humans, has 2 major metabolites [13]. Current data are insufficient to determine whether the minor form or a circulating metabolite has higher direct potency against SARS-CoV-2, but it seems likely that ivermectin would need to be profoundly more potent than the reported values.

Ivermectin has also demonstrated immunomodulatory and anti-inflammatory mechanisms of action in preclinical models of several other diseases. In-vitro studies have demonstrated that ivermectin suppresses production of the inflammatory mediators nitric oxide and prostaglandin E2 [14]. Furthermore, avermectin (from which ivermectin is derived) significantly impairs pro-inflammatory cytokine secretion (IL-1 $\beta$  and tumor necrosis factor [TNF]- $\alpha$ ) and increases secretion of the immunoregulatory cytokine IL-10 [15]. Ivermectin also reduced TNF-α, IL-1, and and improved survival in mice given a lethal dose of lip polysaccharide [16]. Preclinical evidence to sur ... these immunomodulatory and anti-inflammatory mech hisms of action have also been generated in other m. in models [17, 18]. Finally, in Syrian golden ham lers infected with SARS-CoV-2, subcutaneous ivermecting constrated a reduction in the IL-6/IL-10 ratio in lying tissues. d prevented pathological deterioration [19], Ultimately, various potential mechanisms of action for 1 prme in against COVID-19 exist and are undergoing further vestigation, as recently summarized in a review rticle [20].

At standard doses of 2-0.4 Join for 1-2 days, ivermectin has a good safety profile and has been distributed to billions of patients worldwide in mass drug administration programs. A recent meta-analysis found no significant difference in adverse events in those given higher doses of ivermectin, of up to 2 mg/kg, and those receiving longer courses, of up to 4 days, compared with those receiving standard doses [21]. Ivermectin is not licensed for pregnant or breast-feeding women or children <15 kg. The WHO Guidelines Group found that in 16 randomized controlled trials (RCTs) with 2407 participants ivermectin improved mortality outcomes compared with control but rated the quality of available evidence as low or very low [22]. Currently, the WHO does not recommend the use of ivermectin outside clinical trials.

The objective of this syster of review and meta-analysis was to combine availe de results from new published or unpublished randomized trian of iverrectin in SARS-CoV-2 infection to inform arrent guide a s.

# МЕТНОГ 3

This c.s. patic revier and meta-analysis was conducted according to PK °MA guidelines. A systematic search of PUBMED ind EMBASE was conducted to identify RCTs evaluating treatment with ivermectin for SARS-CoV-2-infected patients. Clinical trials with no control arm or those evaluating prevention of infection were excluded, alongside nonrandomized trials and case-control studies. Key data extracted included baseline characteristics (age, sex, weight, oxygen saturation, stage of infection), changes in inflammatory markers, viral suppression after treatment, clinical recovery, hospitalization, and survival. Data were extracted and cross-checked by 2 independent reviewers (H.W. and L.E.).

## **Search Strategy and Selection Criteria**

RCTs were eligible for inclusion if they compared an ivermectinbased regimen with a comparator or standard of care (SOC) for the treatment of SARS-CoV-2 infection. The PRISMA checklist, PRISMA flow diagram, the search terms, and inclusion/exclusion criteria used are detailed in Supplementary Figure 1 and Supplementary Tables 1, 2, and 3.

Registry databases were searched through July 20, 2021. ClinicalTrials.gov [23] was searched using the keywords

| Table 1. | Trial Summaries. | Ivermectin 1 | <b>Frials With</b> | Dosing or | n Day 1 | Only |
|----------|------------------|--------------|--------------------|-----------|---------|------|
|----------|------------------|--------------|--------------------|-----------|---------|------|

| Study                                          | Country    | Sample Size | Daily Dose                | Duration   | Patients        | Ivermectin Arm                 | Comparator Arm     |
|------------------------------------------------|------------|-------------|---------------------------|------------|-----------------|--------------------------------|--------------------|
| Mahmud et al. [28] <sup>a</sup>                | Bangladesh | 363         | 12 mg                     | 1 day (DB) | Mild/moderate   | Ivermectin + doxycycline + SOC | Placebo + SOC      |
| Mohan et al. [29] <sup>a</sup>                 | India      | 125         | 0.2–0.4 mg/kg<br>(elixir) | 1 d (DB)   | Mild/moderate   | Ivermectin + SOC               | Placebo            |
| SAINT [ <mark>30</mark> ]ª                     | Spain      | 24          | 0.4 mg/kg                 | 1 d (DB)   | Mild/moderate   | Ivermectin                     | Placebo            |
| Gonzalez [31] <sup>a</sup>                     | Mexico     | 106         | 12 mg                     | 1 d (DB)   | Severe          | Ivermectin                     | Placebo            |
| Rezai et al. [32] <sup>a</sup>                 | Iran       | 69          | 0.2 mg/kg                 | 1 d (DB)   | Moderate/severe | Ivermectin + SOC               | SOC                |
| Podder et al. [ <mark>33</mark> ] <sup>b</sup> | Bangladesh | 62          | 0.2 mg/kg                 | 1 d (OL)   | Mild            | Ivermectin + SOC               | SOC                |
| Asghar et al. [34] <sup>b</sup>                | Pakistan   | 86          | 12 mg                     | 1 d (OL)   | Mild/moderate   | Ivermectin + SOC               | SOC                |
| Chowdhury [35] <sup>b</sup>                    | Bangladesh | 116         | 0.2 mg/kg                 | 1 d (OL)   | PCR positive    | Ivermectin + doxycycline       | HCQ + azithromycin |

Abbreviations: DB, double-blind; HCQ, hydroxychloroquine; OL, open-label; PCR, polymerase chain reaction; SB, single-blind; SOC, standard of care.

<sup>a</sup>Studies were evaluated as having fair or good overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

"COVID," "SARS-CoV-2," and "ivermectin" to identify studies. The WHO International Clinical Trials Registry Platform (ICTRP) was accessed via the COVID-NMA Initiative's mapping tool [24] and Stanford University's Coronavirus Antiviral Research Database (CoV-RDB) [25] to identify additional trials listed on other national and international registries. Literature searches via PubMed, Embase, and the preprint servers medRxiv and ResearchSquare were conducted to identify published studies. Duplicate registrations, nonrandomized studies, and prevention studies were excluded following discussion between the authors.

Additionally, the research teams conducting unpublished clinical trials were contacted and requested to join regular international team meetings from December 2020 to July 2021. All results available from eligible unpublished studies were also included in this systematic review.

All of the clinical trials included in this meta-analysis were approved by local ethics committees, and all patients gave informed consent.

The primary outcome was all-cause mortality from randomization to the end of follow-up. Secondary outcomes included time to viral clearance, polymerase chain reaction (PCR) negativity at day 7, clinical recovery, time to clinical recovery, mechanic ventilation, duration of hospitalization, and number of hospitalizations. Changes in inflammatory markers, viral supportion, clinical recovery, and hospitalization were also supparized for individual trials where end points could not be completed

We did include studies that were preprints (not yet pullished in peer-reviewed journals) after completing a radius of bias assessment and discussions with the investigators. However 2 studies that were initially included were later removed due to concerns about the quality of data.

#### **Data Analysis**

Statistical analyses for all puse form, time to viral clearance, and clinical recovery is re-conducted using published data summaries. For the mortal ty outcome, clinical trials with at least 1 death reported were included in this analysis. Furthermore, any hospitalization within 12 hours of randomization was excluded. Treatment effects were expressed as risk ratios (RRs) for binary outcomes and mean differences (MDs) for continuous outcomes. For each outcome, we pooled the individual trial statistics using the random-effects inverse variance model; a continuity correction of 0.5 was applied to treatment arms with no deaths. Heterogeneity was evaluated by  $I^2$ . The significance threshold was set at 5% (2-sided), and all analyses were conducted using Revman 5.3.

Trial Summaries. Ivermectin Trials With Multiday Dosing

Table 2.

All studies included in this analysis were assessed for risk of bias using the Cochrane Collaboration Risk of Bias standardized assessment tool [26]. The outcome of this assessment is given in Supplementary Table 3. The results from this assessment were compared with the risk of bias evaluation from

|                                         |                             |                      |                             |                                |                | 1                |                                    |       |                                   |
|-----------------------------------------|-----------------------------|----------------------|-----------------------------|--------------------------------|----------------|------------------|------------------------------------|-------|-----------------------------------|
| Study                                   | Country                     | Sample Size          | Daily Dose                  | Duration                       | r tier         |                  | Iv-rmectin Arm                     |       | Comparator Arm                    |
| Zoni et al. (IVERCOR) [36] <sup>a</sup> | Argentina                   | 501                  | 12–24 mg                    | 2 d (DB)                       | Mild/n 4       | erate            | lverr tin                          |       | Placebo                           |
| Lopez-Medina et al. [37] <sup>a</sup>   | Colombia                    | 398                  | 0.3 mg/kg                   | 5 d (DB)                       | Mild           |                  | lv nect.                           |       | Placebo                           |
| Krolewiecki et al. [38] <sup>a</sup>    | Argentina                   | 45                   | 0.6 mg/kg                   | 5 d (OL)                       | Mild to m      | oderate          | ermectin JC                        |       | SOC                               |
| Babalola et al. [39] <sup>a</sup>       | Nigeria                     | 60                   | 0.1–0.2 mg/kg               | 2/wk (DB)                      | Mild           |                  | Ivermect <sup>:</sup> + SOL        |       | Placebo + LPV/r (SOC)             |
| Fonseca et al. [40] <sup>a</sup>        | Brazil                      | 168                  | 14 mg                       | 3 d (DB)                       | Severe         |                  | lverm' un                          |       | Hydroxychloroquine or chloroquine |
| Abd-Elsalam et al. [41] <sup>a</sup>    | Egypt                       | 164                  | 12 mg                       | 3 d (OL)                       | PCR Posit      | ive              | lvei ⇒ctin +Su                     |       | SOC                               |
| Kirti et al. [42] <sup>a</sup>          | India                       | 112                  | 12 mg                       | 2 d (DB)                       | Mild/mod       | erate            | Ivermer > + SOC                    |       | SOC + placebo                     |
| Petkov et al. [43] <sup>a</sup>         | Bulgaria                    | 100                  | 0.4 mg/kg                   | 3 d (DB)                       | Mild/mod       | erate            | lvermectin                         |       | Placebo                           |
| Schwartz et al. [44] <sup>a</sup>       | Israel                      | 94                   | 12-15mg                     | 3 d (DB)                       | Mild/mod       | erate            | lvermectin                         |       | Placebo                           |
| Ahmed et al. [45] <sup>a</sup>          | Bangladesh                  | 72                   | 0.2 mg/kg                   | 5 d (DB)                       | Mild           |                  | lvermectin + SOC                   |       | SOC + placebo                     |
| Okumus et al. [46] <sup>b</sup>         | Turkey                      | 60                   | 0.2 mg/kg                   | 5 d (DB)                       | Severe         |                  | lvermectin + SOC                   |       | FAVI/HQ/AZI (SOC)                 |
| Hashim et al. [47] <sup>b</sup>         | Iraq                        | 140                  | 0.2 mg/kg                   | 2–3 d (SB)                     | Symptom        | atic             | lvermectin + doxycycline +         | SOC   | SOC                               |
| Chachar et al. [48] <sup>b</sup>        | Pakistan                    | 50                   | 0.2 mg/kg                   | 2 d (OL)                       | Mild           |                  | lvermectin + SOC                   |       | SOC                               |
| Niaee et al. [27] <sup>b</sup>          | Iran                        | 180                  | 0.2–0.4 mg/kg               | 1–3 d (DB)                     | Mild/mod       | erate            | lvermectin + SOC                   |       | SOC + placebo                     |
| Chahla et al. [49] <sup>b</sup>         | Argentina                   | 254                  | 24 mg                       | 1/wk for 4 wk (OL)             | Mild           |                  | lvermectin + SOC                   |       | SOC                               |
| Abbreviations: DB, double-blind; FAV    | I/HQ/AZI, favipiravir/hydrc | oxychloroquine/azith | romycin; LPV/r, lopinavir/i | itonavir; OL, open-label; PCR, | , polymerase d | nain reaction; S | SB, single-blind; SOC, standard of | care. |                                   |

Studies were evaluated as having fair or good overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

See Supplementary Table 3 for further details Studies were evaluated as having limited overall guality of evidence using the Cochrane Risk of Bias Tool. other meta-analyses. Each study was assessed for risk of bias for the primary end point, viral load, and survival outcomes. The primary end point in the trials tended to be clinical recovery, which is more subjective and likely to be influenced by knowledge of treatment arms. An assessment was also carried out on more objective end points including survival and viral load, which are less likely to be influenced by this bias. The baseline characteristics of participants were evaluated with chi-square tests to check for imbalances between the treatment arms due to ineffective randomization. Where information was not available in published papers, clinical trial investigators were proactively contacted to inform the risk of bias analysis. The primary meta-analysis was performed by excluding studies at a high risk of bias, consistent with methods used in other similar meta-analyses. Eight high-risk studies were excluded, for example, the Niaee et al. [27] study, which had significant imbalances in baseline characteristics between treatment arms. A supplementary analysis including studies at high risk of bias is provided in the Supplementary Data (Supplementary Figure 2A-H).

## RESULTS

Twenty-three RCTs involving a total of 3349 participants wire included in this meta-analysis. The sample sizes of the children children ranged from 24 to 501 participants. Of the 23 included statistics, 14 were published papers, 8 were available as proprint, and reported results via a clinical trial report.

Overall, 9 trials investigated iverme in as a single dose (Table 1) [28–35], 15 trials investigated multida, dosing up to 7 days (Table 2) [27, 36–49], of whic' 4 trials were acise-ranging [27, 36, 39, 44]. In the included to als, ive mectin was largely investigated in mild/moderate participants. Over all, 16 trials were either single or double-blik acid of 7 ware open-label.

## **Evaluation of Studies**

An evaluation of the quality the studies included in this meta-analysis was conducted according to the Cochrane Collaboration tool to assess the risk of bias across the following outcomes: primary end points, viral load, and survival. For the primary outcome assessment, 8/23 (34.8%) studies were assessed as high risk of bias (Supplementary Table 3A). However, in assessments of more objective outcomes, including viral load and mortality, the number of high-risk studies was lower. In the PCR assessment, 4/14 (28.6%) of the studies were assessed as high risk (Supplementary Table 3B). In the survival assessment, 3/11 (27.3%) of the studies were assessed as high risk of bias (Supplementary Table 3C).

A study in Egypt [50] reported significant improvement in clinical recovery and mortality following treatment with ivermectin and has been cited in multiple meta-analyses. However, on July 15, 2021, the Elgazzar et al. paper was retracted from the preprint server ResearchSquare due to "ethical concerns." There was evidence reported showing that instances of plagiarism and serious data inconsistencies were discovered in their paper. The most significant flaw detected was that the data for ~79 participants were nearly identical to the data of other participants. These concerns resulted in the exclusion of the Elgazzar paper from this meta-analysis. Similarly, a published study conducted in Lebanon by Raad et al [51], which reported significant effects of ivermectin on hospitalisation and orar and is currently being investigated. An analysis cotheir raw cotabase suggested that data for multiple participant, over drolicates. As a result of these inconsistencies, the Raad so the was also excluded from this meta-analys.

# Effects a. Nammatory N. Arkers

Three trials provided results of the effect of ivermectin on inammatory markers including C-reactive protein (CRP), ferritin, and 1-dimer (Table 3). Two of these trials demonstrated significant reductions in CRP compared with control. However, the significant changes in inflammatory markers were mainly been in studies at high risk of bias.

## **Effects on Viral Clearance**

Three different end points were used to analyze viral clearance: the percentage of patients undetectable on a set day (Table 4), the number of days from randomization to negativity (Table 5), and other measures such as cycle time (Ct) values and doseresponse correlations (Table 6). The Kirti [43] and Okumus [47] trials included viral load analysis only in a subset of patients. The effect of ivermectin on viral clearance was most pronounced in the randomized trials evaluating doses of up to 5 days of ivermectin using doses of 0.4 mg/kg. Several studies showed no statistically significant effect of ivermectin on viral clearance [29, 34, 36]. There were inconsistent conclusions on viral clearance.

In a meta-analysis of viral clearance with subgroups of dose duration, there were significant differences in time to viral clearance in favor of ivermectin (mean difference, -1.98 days; 95% CI, -3.41 to -0.55; P = .007) (Figure 1A). In an overall analysis including studies at high risk of bias, similar effects of ivermectin on time to viral clearance were seen (Supplementary Figure 2A). However, in another analysis, ivermectin did not have a statistically significant effect on viral clearance at day 3 (RR, 0.99; 95% CI, 0.84 to 1.15; P = .86) (Figure 1B), day 7 (RR, 1.19; 95% CI, 0.89 to 1.51; P = .16) (Figure 1C), or day 10 (RR, 1.23; 95% CI, 0.89 to 1.70; P = .21) (Figure 1D). On including studies at a high risk of bias, ivermectin had a borderline significant effect on viral clearance at day 7 (RR, 1.33; 95% CI, 1.01 to 1.74; P = .04) (Supplementary Figures 2B and 2D).

## Table 3. Changes in Inflammatory Markers

|                  |                         | CRP, mg/L          |                   |            | Ferritin, µg/L |                   | D-dimer, mg/L |         |                   |
|------------------|-------------------------|--------------------|-------------------|------------|----------------|-------------------|---------------|---------|-------------------|
|                  | lvermectin              | Control            | P Value           | Ivermectin | Control        | P Value           | lvermectin    | Control | P Value           |
| Okumus, Turke    | $y (n = 60)^{a}$        |                    |                   |            |                |                   |               |         |                   |
| Baseline         | 340.3                   | 215.0              |                   | 683        | 747            |                   | 1.3           | 1.3     |                   |
| Day 5            | 51.8                    | 194.3              | <.01              | 875        | 1028           | 0.12              | 5.9           | 3.6     | 0.22              |
| Day 10           | 36.1                    | 92.4               | <.05              | 495        | 1207           | <.01              | 0.7           | 1.5     | <.05              |
| Chaccour, Spai   | n (n = 24) <sup>b</sup> |                    |                   |            |                |                   |               |         |                   |
| Baseline         | 3.5                     | 3.0                |                   | 165        | 156            |                   | 0.3           | 0.3     |                   |
| Day 7            | 1.0                     | 1.1                | n.s. <sup>c</sup> | 125        | 199            | n.s. <sup>c</sup> | 03            | 0.3     | n.s. <sup>c</sup> |
| Day 14           | 0.8                     | 0.6                | n.s. <sup>c</sup> | 152        | 145            | n.s.°             | 0.5           | 0.3     | n.s. <sup>c</sup> |
| Ahmed, Bangla    | adesh (n = 45, ivern    | nectin 5 d)        |                   |            |                |                   |               |         |                   |
| Baseline         | 22.0                    | 29.0               |                   | 269        | 222            |                   | -             | -       |                   |
| Day 7            | 3.0                     | 14.0               | <.05*             | 211        | 218            | *د 0              | -             | -       |                   |
| Ahmed, Bangla    | adesh (n = 46, ivern    | nectin 1 d)        |                   |            |                |                   |               |         |                   |
| Baseline         | 26.0                    | 29.0               |                   | 259        | 222            |                   | -             | -       |                   |
| Day 7            | 11.0                    | 14.0               | 0.07*             | 213        | 218            | 0.17              | -             | -       |                   |
| Normal ranges: C | RP (<10 mg/L), ferritin | (11–336 μg/L), d-α | limer (<0.5 mg/L) |            |                |                   |               |         |                   |

Abbreviation: CRP, C-reactive protein.

\* P value compares within-group changes from baseline to end point of ivermectin group.

\*\* P value shows significance of total changes from baseline. All other P values compare ivermectings control.

\*Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of B Tool. See Sup mentary Table 3 for further details.

<sup>b</sup>Median presented; all other data mean.

c"n.s." was used when no statistically significant difference was found but the actual Pyolue was report individual authors and could not be calculated by the current authors.

## **Effects on Clinical Recovery and Duration of Hospitalization**

Table 4. Effects of Ivermectin on Viral Clearance

Definitions of clinical recovery varied across trials, a show in Table 7, 8 and 9. In Table 7, 3 of the 6 trials showed signific faster time to clinical recovery on ivermectin comp. d with control. In 3 trials, ivermectin showed significantly shorted uration of hospitalization compared with control (c) ble 8).

In a meta-analysis of clinical recentry with subgroups of dose duration, ivermectin had no regnificent effect on time to clinical recovery (mean difference,  $25^{\circ}$  days: 5% CI, -1.31 to 0.17; P = .13) (Figure 1E) are 'ition, 'v, here was no significant difference in bind y clinical recovery in an analysis with subgroups of dose at the network (RR, 1.19; 95% CI, 0.94 to

1.50; P = .15) (Figure 1F). However, in the supplementary analysis including studies at a high risk of bias, ivermectin showed a significant improvement in time to clinical recovery (mean difference, -1.58; 95% CI, -2.80 to -0.35; P = .01) (Supplementary Figure 2E) and binary clinical recovery (RR, 1.14; 95% CI, 1.04 to 1.25; P = .006) (Supplementary Figure 2F).

Ivermectin demonstrated a borderline significant effect on duration of hospitalization, in comparison with control (mean difference, -1.14 days; 95% CI, -2.27 to -0.00; P = .05) (Figure 1G). Ivermectin did not have a statistically significant effect on risk of hospitalization compared to control (RR, 0.63; 95%

| Study                   | Country, No.        | Daily Dose       | Duration | Viral Load End Point  | Result IVM vs Control, % | P Value |
|-------------------------|---------------------|------------------|----------|-----------------------|--------------------------|---------|
| No. detectable or undet | ectable (%)         |                  |          |                       |                          |         |
| Mahmud et al.           | Bangladesh, n = 363 | 12 mg            | 1 d (DB) | Undetectable day 14   | 92 vs 80                 | <.001   |
| Mohan et al.            | India, n = 125      | 0.2 mg/kg Elixir | 1 d      | Undetectable day 5    | 35 vs 31                 | .3      |
| Mohan et al.            | India, n = 125      | 0.4 mg/kg Elixir | 1 d      | Undetectable day 5    | 48 vs 31                 | .3      |
| Kirti et al.            | India, n = 112      | 12 mg            | 2 d      | Undetectable day 6    | 24 vs 32                 | .35     |
| Schwartz et al.         | Israel, n = 100     | 12–15 mg         | 3 d (DB) | Day 10 PCR neg Ct >30 | 85 vs 69                 | .02     |
| Zoni et al. (IVERCOR)   | Argentina, n = 501  | 12–24 mg         | 2 d (DB) | Day 3 (±1) PCR neg    | 47.08 vs 49.79           | .55     |
| Zoni et al. (IVERCOR)   | Argentina, n = 501  | 12–24 mg         | 2 d (DB) | Day 12 (±2) PCR neg   | 89.08 vs 92.47           | .29     |
| Podder et al.ª          | Bangladesh, n = 62  | 0.2 mg/kg        | 1 d (OL) | Day 10 PCR neg        | 90 vs 95                 | >.05    |
| Asghar et al.ª          | Pakistan, n = 86    | 0.2 mg/kg        | 1 d      | Undetectable day 7    | 90 vs 44                 | <.001   |

Abbreviations: Ct, cycle threshold; DB, double-blind; IVM, ivermectin; OL, open-label; PCR, polymerase chain reaction.

<sup>a</sup>Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

#### Table 5. Effects of Ivermectin on Viral Clearance. Effects of Ivermectin on Time to Viral Clearance

| Study                      | Country, No.        | Daily Dose | Duration  | Viral Load End Point | Result IVM vs Control | P Value |
|----------------------------|---------------------|------------|-----------|----------------------|-----------------------|---------|
| Time to viral clearance, d |                     |            |           |                      |                       |         |
| Babaloa et al.ª            | Nigeria, n = 60     | 0.1 mg/kg  | 2/wk (DB) | Time to PCR neg      | 6 vs 9.2 d            | .003    |
| Babaloa et al.ª            | Nigeria, n = 60     | 0.2 mg/kg  | 2/wk (DB) | Time to PCR neg      | 4.7 vs 9.2 d          | .003    |
| Ahmed et al.ª              | Bangladesh, n = 72  | 0.2 mg/kg  | 5 d (DB)  | Time to PCR neg      | 9.7 vs 12.7 d         | .02     |
| Ahmed et al.ª              | Bangladesh, n = 72  | 0.2 mg/kg  | 1 d (DB)  | Time to PCR neg      | 11.5 vs 12.7 d        | .27     |
| Petkov et al.              | Bulgaria, n = 100   | 0.4 mg/kg  | 3 d (DB)  | Time to PCR neg      | 4.52 vs 5.06          | .341    |
| Zoni et al. (IVERCOR)      | Argentina, n = 501  | 12–24 mg   | 2 d (DB)  | Time to PCR neg      | 3 d vs 3 d            | .55     |
| Chowdhury <sup>b</sup>     | Bangladesh, n = 112 | 0.2 mg/kg  | 1 d (OL)  | Time to PCR neg      | 9 vs 9.3 d            | .23     |

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label; PCR, polymerase chain reaction.

<sup>a</sup>Dose-response effect seen.

<sup>b</sup>Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary 3 for further tails

CI, 0.36 to 1.11; P = .11, Figure 1H). However, this analysis involved only 3 trials in 993 participants. On including studies at a high risk of bias, ivermectin did not have a significant effect on hospitalizations (RR, 0.60; 95% CI, 0.34 to 1.05; P = .08, Supplementary Figure 2G). A leave-1-out sensitivity analysis was performed, and no single study had a substantial impact on the overall effect size (Supplementary Table 5). In a sensitivity analysis including any hospitalization within 12 hours of randomization, there were significantly fewer hospitalization in the ivermectin group compared to control (RR, 0.57; 95% I, 0.33 to 0.98; P = .04, Supplementary Figure 3). However, the significant effect was dependent on the inclusion ..1 study at a low risk of bias (Supplementary Table 6).

#### **Effects on Survival**

Eleven randomized trials reported that at leas 1 person had died postrandomization, and 8 of t' ese trials which were not at a high risk of bias were included in the rimary analysis (Table 10). Across these 8 trials in 1848 \_\_\_\_\_\_ ere were 25/894 (2.8%) deaths in the iverp .ctn urms, 3/954 (4.8%) deaths in the control arms. In combined analysis using inverse variance weighting, ivermect. d not show a significant effect on mortality (RR, 0.90; 95% CI, 57 to 1.42; *P* = .66) (Figure 1I). Heterogeneity was absent  $(I^2 = 0\%)$ . There was no significant effect on survival in both subgroups of mild/moderate participants (RR, 0.70; 95% CI, 0.29 to 1.65; P = .41) and severe participants (RR, 0.99; 95% CI, 0.59 to 1.69; P = .98). However, this analysis was small and based on 71 deaths. In the supplementary analysis, including studies at a high risk of bias, a borderline significant effect on survival was observed (RR, 0.62; 95% CI, 0.39 to 0.99; P = .05) (Supplementary Figure 2H). In this analysis, a si dificar improvement in survival was observed for patient with mild/m derate disease (RR, 0.42; 95% CI, 0.21 to 83; P = .0 / upplementary Figure 2H) in comparison with the second disease (RR, 0.90; 95% CI, 0.57 to 1.42; P = .64) (hyplementary Figure 2H). However, this was dependent on the inclusion of 1 study (Niaee et al. [27]) at a high risk (bias.

Additional subgroup analysis of the mortality outcome with trials separated by dose duration, blinding, and control group since ed consistent absence of survival benefit, and no significant subgroup differences were found (Supplementary Figures 4, 5, and 6). A leave-1-out sensitivity analysis was performed, including studies at high risk of bias. By excluding the Niaee et al. [27] study, which is at a high risk of bias, the effect of ivermectin on survival becomes nonsignificant (Supplementary Table 4).

Ivermectin was not associated with lower risk of mechanical ventilation (RR, 1.04; 95% CI, 0.63 to 1.71; P = .87) (Figure 1J). However, this estimate was based on 6 studies in 1059 participants including only 59 events.

## DISCUSSION

This systematic review and meta-analysis evaluated ivermectin for the treatment of SARS-CoV-2 infection in 23 RCTs (n = 3349). The primary analysis was carried out by excluding studies at a high risk of bias, consistent with other similar meta-analyses. Ivermectin did not show a statistically significant effect on survival (RR, 0.90; 95% CI, 0.57 to 1.42; P = .66) (Figure 11) or hospitalizations (RR, 0.63; 95% CI, 0.36 to 1.11; P = .11) (Figure 1H). Ivermectin displayed a borderline significant effect on the duration of hospitalization in comparison with SOC (mean difference,

## Table 6. Effects of Ivermectin on Viral Clearance. Effect of Ivermectin on Other Measures of Viral Clearance

| Study                | Country, No.      | Daily Dose | Duration | Viral Load End Point | Result IVM vs Control | P Value |
|----------------------|-------------------|------------|----------|----------------------|-----------------------|---------|
| Other measures of vi | ral clearance     |            |          |                      |                       |         |
| Krolewiecki et al.ª  | Argentina, n = 45 | 0.6 mg/kg  | 5 d      | PK/PD                | Dose-related          | .02     |

6 • OFID • Hill et al

| A<br>Study or subgroup                                                   | Ivern<br>Mean                     | nectin<br>SD Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Co<br>1 Mean             | ntrol<br>SD To   | tal Weigh             | Mean difference<br>t IV, Random, 95% C     | Mean difference<br>IV. Random, 95% CI |
|--------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|-----------------------|--------------------------------------------|---------------------------------------|
| 8.2.1 Single-day dosing                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| Ahmed et al. IVM+Doxy                                                    | 11.5 4                            | 4.2 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.7                     | 3.6              | 24 21.6%              | -1.20 $[-3.41, 1.01]$                      |                                       |
| Subtotal (95% Cl)                                                        |                                   | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 2                | 24 21.6%              | -1.20 $[-3.41, 1.01]$                      |                                       |
| Heterogeneity: Not applicable                                            | $C \left( D - 00 \right)$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| 1 est for overall effect: $Z = 1.06$                                     | 6 (P = .29)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| 8.2.2 Multiday dosing                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| Ahmed et al. IVM 5 day                                                   | 9.7                               | 5 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.7                     | 3.6              | 24 19.2%              | -3.00 [-5.46, -0.54]                       |                                       |
| Babalola et al. 12 mg                                                    | 4.7 3                             | 5.2 21<br>9 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.2                      | 7.4 2            | 20 12.0%              | -4.50 [-8.02, -0.98]                       |                                       |
| Bulgaria Petkov et al                                                    | 4.5                               | 5 21<br>28 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1                      | 7.4 .<br>9.9 i   | 20 12.2 %<br>50 35.0% | -5.20 [-6.69, 0.29]<br>-0.60 [-1.72, 0.52] |                                       |
| Subtotal (95% CI)                                                        | 4.5 2                             | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.1                      | 1                | 14 <b>78.4</b> %      | -2.39 [-4.34, -0.44]                       |                                       |
| Heterogeneity: $Tau^2 = 2.28$ ; C<br>Test for overall effect: $Z = 2.46$ | $Chi^2 = 7.59$<br>0 ( $P = .02$ ) | P, df = 3 (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = .06); I <sup>2</sup> = | 60%              |                       |                                            |                                       |
| Total (95% CI)                                                           |                                   | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 19               | 38 100.0%             | _1 98 [_3 41 _0 55]                        |                                       |
| Heterogeneity: $T_{2}u^2 = 1.10$ : C                                     | $^{2}$ bi <sup>2</sup> = 7.69     | df = 4 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 11). I <sup>2</sup> -  | · 4.9%           | 0 100.070             | -1.50 [-5.41, -0.55]                       |                                       |
| Test for overall effect: $Z = 2.71$                                      | 1 (P = .007)                      | 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11), 1 -                 | 10 /0            |                       |                                            | 4 -2 0 4                              |
| Test for subgroup differences:                                           | $Chi^2 = 0.6$                     | 63, df = 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P = .43$ , $I^2$        | = 0%             |                       |                                            | Tavors N Pectin 7 vors control        |
| D I I                                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,,                       |                  |                       |                                            |                                       |
| В                                                                        | Iv                                | vermectin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı C                      | ontrol           |                       | Risk ratio                                 | R1. ratio                             |
| Study or subgroup                                                        | Ev                                | ents To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tal Even                 | ts Tota          | l Weight              | IV, Random, 95% CI                         | I IV, Random, 95% CI                  |
| Ahmed et al. IVM+Doxy                                                    |                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                       | 2 24             | 0.7%                  | 1.00 [0.15, 6.53]                          |                                       |
| Ahmed et al. IVM 5 day                                                   |                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                       | 2 24             | 0.9%                  | 2.00 [0.40, 9.91]                          |                                       |
| Argentina Zoni et al.                                                    |                                   | 113 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 13                    | 20 251           | 67.9%                 | 0.95 [0.78, 1                              |                                       |
| Bulgaria Petkov et al.                                                   |                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 .                     | 30 50            | 26.4%                 | 1.10 [0.81 .49]                            |                                       |
| India Mohan et al. 0.2 mg/kg                                             |                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                       | 7 45             | 2.6%                  | 1.13 [0.43, 2.93]                          |                                       |
| India Mohan et al. 0.4 mg/kg                                             |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40                       | 7 45             | 1.5%                  | 0.48 [0.13] 1.74]                          |                                       |
| Total (95% CI)                                                           |                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28                       | 430              | 100.0%                | 9 [0.84, 1, 15]                            | ·                                     |
| Total events                                                             |                                   | 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                       | 38               | 1001070               | 5 [0101, 1110]                             | Ĭ                                     |
| Heterogeneity: $Tau^2 = 0.00$ ; Cl                                       | $hi^2 = 2.71$                     | df = 5 (P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = .74; I <sup>2</sup> =  | 0%               |                       |                                            |                                       |
| Test for overall effect: $Z = 0.18$                                      | B(P = .86)                        | )(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                  |                       |                                            | 0.01 0.1 1 10 10                      |
|                                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            | Favors ivermectin Favors control      |
| С                                                                        | Т                                 | ormostir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Co                       | ntrol            |                       | 1. ratio                                   | Risk ratio                            |
| Study or subgroup                                                        | Ev                                | ents To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tal Even                 | ntroi<br>ts Tota | 1 Weig                | E Banon n. 95% Cl                          | I IV Bandom 95% CI                    |
| 9.2.1 Single day desing                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 13 1014          | i weigi               |                                            |                                       |
| Abmed et al. WM+Dovy                                                     |                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                       | 3                | 3.5%                  | 2 33 [0 68 7 97]                           |                                       |
| India Mohan et al. 0.2 mg/kg                                             |                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24<br>36 1               | 6 49             | 12.3%                 | 0.95 [0.53, 1.69]                          |                                       |
| India Mohan et al. 0.4 mg/kg                                             |                                   | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                       | 49               | 12.370                | 1.17 [0.69, 1.98]                          |                                       |
| Subtotal (95% CI)                                                        |                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 96                       | 10               | 29.7%                 | 1.14 [0.79, 1.66]                          |                                       |
| Total events                                                             |                                   | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                        | 5                |                       |                                            | -                                     |
| Heterogeneity: $Tau^2 = 0.00$ ; C                                        | $2hi^2 = 1.7$                     | 0, df = 2 (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P = (3); I^2 =$         | = 0%             |                       |                                            |                                       |
| Test for overall effect: $Z = 0.69$                                      | 9 (P = .49)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| 8.3.2 Multiday dosing                                                    |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| Ahmed et al. IVM 5 day                                                   |                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                       | 3 24             | 4.0%                  | 3.67 [1.17, 11.52]                         | ————————————————————————————————————  |
| Bulgaria Petkov et al.                                                   |                                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                        | 50 50            | 32.2%                 | 1.08 [0.87, 1.34]                          |                                       |
| India Kirti et al.                                                       |                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55 1                     | 8 57             | 11.4%                 | 0.75 [0.41, 1.38]                          |                                       |
| Israel Schwartz et al.                                                   |                                   | M .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47 2                     | 1 42             | 22.6%                 | 1.45 [1.02, 2.05]                          |                                       |
| Subtotal (95% CI)                                                        |                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76                       | 173              | 70.3%                 | 1.22 [0.85, 1.75]                          |                                       |
| Total events                                                             |                                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                        | 9                |                       |                                            |                                       |
| Heterogeneity: $Tau^2 = 0$ ; C                                           | $2hi^2 = 31$                      | 1, df = 3 (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05); I <sup>2</sup> =    | 62%              |                       |                                            |                                       |
| I est for overall effect: 1.0                                            | 8 (P                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            |                                       |
| Total (95% Cl)                                                           | K                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72                       | 281              | 100.0%                | 1.19 [0.93, 1.51]                          |                                       |
| Total events                                                             |                                   | 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11                       | 4                |                       |                                            | ÷                                     |
| Heterogeneity: $Tau^2 = 0.03$ ; C                                        | 2hi <sup>2</sup> = 5.52           | 2, $df = 6 (P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = .15; I <sup>2</sup> =  | 37%              |                       |                                            |                                       |
| Test for overall effect: $Z = 1.40$                                      | 0 (P = .16)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            | 0.2 0.5 1 2 5                         |
| Test for subgroup differences:                                           | $Chi^2 = 0.0$                     | 06, df = 1 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $P = .80), I^2$          | = 0%             |                       |                                            | Favors control Favors ivermectin      |
| D                                                                        | Iver                              | mectin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cont                     | rol              |                       | Risk ratio                                 | Risk ratio                            |
| Study or subgroup                                                        | Events                            | s Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Events                   | Total            | Weight                | IV, Random, 95% CI                         | IV, Random, 95% CI                    |
| Ahmed et al. IVM+Doxy                                                    | 7                                 | 7 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                        | 24               | 6.2%                  | 2.33 [0.68, 7.97]                          |                                       |
| Ahmed et al. IVM 5 day                                                   | , 11                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                        | 24               | 7.0%                  | 3.67 [1.17, 11.59]                         |                                       |
| Argentina Zoni et al.                                                    | 919                               | 2 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 991                      | 251              | 47.8%                 | 0.96 [0.90 1 03]                           | <b>_</b>                              |
| Israel Schwartz et al.                                                   | 40                                | ) 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                       | 42               | 39.0%                 | 1.23 [0.97, 1.56]                          | 1 <b>-</b> -                          |
|                                                                          |                                   | , in the second s |                          |                  |                       | E 2 11                                     |                                       |
| Total (95% Cl)                                                           |                                   | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | 341              | 100.0%                | 1.23 [0.89, 1.70]                          | ◆                                     |
| Total events                                                             | 270                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 256                      |                  |                       |                                            |                                       |
| Heterogeneity: $Tau^2 = 0.06$ ; C                                        | $2hi^2 = 10.8$                    | 34, df = 3 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P = .01; I <sup>2</sup>  | = 72%            |                       |                                            |                                       |
| Test for overall effect: $Z = 1.24$                                      | 4 (P = .21)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |                       |                                            | 0.1 0.2 0.5 1 2 5 10                  |

**Figure 1.** A, Forest plot of time to viral clearance by dose duration, excluding high risk of bias studies. B, Forest plot of PCR negativity at day 3, excluding high risk of bias studies. C, Forest plot of PCR negativity at day 7 (Kirti et al. and Schwartz et al. measured at day 6, excluding high risk of bias studies). D, Forest plot of PCR negativity at day 7 (Kirti et al. and Schwartz et al. measured at day 6, excluding high risk of bias studies). D, Forest plot of PCR negativity at day 10, excluding high risk of bias studies. E, Forest plot of time to clinical recovery by dose duration, excluding high risk of bias studies. F, Forest plot of clinical recovery (binary) by dose duration, excluding high risk of bias studies. G, Forest plot of duration of hospitalization by dose, excluding high risk of bias studies. H, Forest plot of new hospitalizations in trials on outpatients, excluding high risk of bias studies. I, Forest plot of survival by severity, excluding high risk of bias studies. J, Forest plot of mechanical ventilation, excluding high risk of bias studies. Abbreviation: PCR, polymerase chain reaction.

| Study or subgroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lifference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SE W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eight I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                   | IV, Random, 95% Cl                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.4.1 Single-day dosing<br>India Mohan et al. 0.2 mg/kg<br>India Mohan et al. 0.4 mg/kg<br>Iran Rezai et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.2 \\ -0.3 \\ -1.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58 2<br>0.61 2<br>0.44 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.3%<br>6.5%<br>9.4% -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20 [-0.94, 1.34]<br>-0.30 [-1.50, 0.90]<br>-1.10 [-1.96, -0.24]                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       |
| Heterogeneity: $Tau^2 = 0.20$ ; Ch<br>Test for overall effect: $Z = 1.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $hi^2 = 3.40, df = 2 (I + 2.24)$<br>(P = .24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $P = .18$ ; $I^2 = 41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.48 [-1.27, 0.32]                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                       |
| <b>8.4.2 Multiday dosing</b><br>Colombia Lopez-Medina et al.<br><b>Subtotal (95% CI)</b><br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (P = .19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.7%<br>5.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.00 [-5.00, 1.00]<br>-2.00 [-5.00, 1.00]                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                     |
| <b>Total (95% CI)</b><br>Heterogeneity: $Tau^2 = 0.17$ ; Ch<br>Test for overall effect: $Z = 1.51$<br>Test for subgroup differences: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $hi^2 = 4.27, df = 3 (I)$<br>(P = .13)<br>$Chi^2 = 0.92, df = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $P = .23$ ; $I^2 = 30$<br>( $P = .34$ ), $I^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10<br>)%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.57 [-1.31, 0.17] —                                                                                                                                                                                                                                                                                                                               | -10 -5 0 5 10<br>Favo Permectin Pavors control                                                                                                                                        |
| Studu or submoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ivermect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | trol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Risk ratio                                                                                                                                                                                                                                                                                                                                          | .sk ratio                                                                                                                                                                             |
| 8.5.1 Multiday dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | total Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IV, Kandom, 95%                                                                                                                                                                                                                                                                                                                                     | 1V, Kandom, 95% Ci                                                                                                                                                                    |
| Bulgaria Petkov et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.43 [0.59 +5]                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |
| Colombia Lopez-Medina et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.04 [0 1.15]                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 59.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.04 / 5, 5]                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                       |
| Heterogeneity: $Tau^2 = 0.00$ ; Ch<br>Test for overall effect: $Z = 0.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $hi^2 = 0.49, df = 1$ (<br>(P = .37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P = .48$ ; $I^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| 8.5.2 Single-day dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Bangladesh Mahmud et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.36 [1.12, 7]                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.36 [1.12, 57]                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                     |
| TT - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| I otal events<br>Heterogeneity: Not applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P = .002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (P = .002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.19 [0.94, 1.50]                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                     |
| Total (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( <i>P</i> = .002)<br>285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>433</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19 [0.94, 1.50]                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                     |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (P = .002)<br>285<br>$ni^2 = 6.02, df = 2 (R_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>433</b><br>P = .05); J <sup>2</sup> 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.19 [0.94, 1.50]                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                       |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: $Z = 1.42$<br>Test for subgroup differences: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(P = .002)$ $285$ $hi^2 = 6.02, df = 2 (i$ $(P = .15)$ $2hi^2 = 5.53, df = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>433</b><br>$P = .05); T^{2} = 67$<br>$(P = .0-, -2^{2} = 67)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>428</b><br>7%<br>3, 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19 [0.94, 1.50]                                                                                                                                                                                                                                                                                                                                   | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin                                                                                                                                   |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: $Z = 1.42$<br>Test for subgroup differences: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(P = .002)$ $285$ $ii^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ Ivermectin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>433</b><br>$P = .05); F^{-2} = 67$<br>(P = .02, -22) = 67<br><b>Cont</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>428</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19 [0.94, 1.50]                                                                                                                                                                                                                                                                                                                                   | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference                                                                                                                |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: $Z = 1.42$<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(P = .002)$ $285$ $ai^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ Ivermectin Mean SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>433</b><br>P = .05; $P = .05$ ; $P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 428<br>'%<br>D a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C                                                                                                                                                                                                                                                                                           | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>I IV, Random, 95% Cl                                                                                        |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: $Z = 3.04$<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: $Z = 1.42$<br>Test for subgroup differences: C<br><b>Study or subgroup</b><br><b>8.6.1 Single-day dosing</b><br>Ahmed et al. IVM+Doxy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 433<br>P = .05; $P = .05$ ; $P = .67(P = .02, P = .02)Mean S24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>428</b><br>%<br><b>D a</b><br>4 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]                                                                                                                                                                                                                                                                     | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $(P = .10, 1)$ $10.1 + 4 = 2$ $6.5 + 3.1 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>433</b><br>P = .05); T = 67<br>(P = .0., -72 = 1)<br><b>Mean S</b><br>24<br>34 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>428</b><br>%<br><b>D a</b><br>4 24<br>3 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Veight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]                                                                                                                                                                                                                                              | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; CI<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; CI<br>Test for overall effect: Z = 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $hi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $0,$ $10.1 4 2$ $6.9 3.1 2$ $10.1 4 2$ $6.9 3.1 2$ $10.1 4 4$ $10.1 4$ $10.1 4$ $10.1 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 433<br>$P = .05$ ; $\Gamma = 67$<br>$(P = .01, T^2 = 4)$<br>Cont<br>Mean S<br>24<br>34<br>8.4<br>.58<br>$P = .17$ ; $\Gamma^2 = 4$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>428</b><br>%<br><b>D</b> a<br>4 24<br>3 35<br>59<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Weight<br>1 93.2%<br>52.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]                                                                                                                                                                                                                       | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (I$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $C$ $10.1 4 2$ $6.5 3.1 3$ $C = 1.87, d^{6} - 1 (I$ $(y, 42)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>433</b><br>$P = .05$ ; $\Gamma $ | <b>428</b><br>37 70<br><b>D a</b><br>4 24<br>3 35<br>59<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]                                                                                                                                                                                                                       | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 y<br>Fewret Abd-Elsabar (al)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (I (P = .15))$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin</b> Mean SD C. $10.1 4 2$ $6.5 3.1 3$ $c = 1.87, d^{c} - 1 (I (P + 1))$ $9.6 5 2 2$ $8.8 4 9 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>433</b><br>$P = .05$ ; $\Gamma = .67$<br>$(P = .02, \neg 2 = 0$<br><b>Cont</b><br><b>Mean S</b><br>24<br>34<br>8.4<br>38<br>$P = .17$ ; $\Gamma^2 = 4$ ;<br>24<br>24<br>9.7<br>22<br>24<br>9.7<br>25<br>11<br>5<br>24<br>9.7<br>25<br>11<br>5<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>428</b><br><b>3</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>b</b><br><b>a</b><br><b>b</b><br><b>b</b><br><b>b</b><br><b>b</b><br><b>c</b><br><b>b</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b><br><b>c</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76 -0.64]                                                                                                                                                                         | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 y<br>Egypt Abd-Elsalar et al.<br>Subtotal (95% C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (I$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ $Ivermectin$ $Mean SD = 2$ $10.1 4 2$ $6.5 3.1 3$ $5 = 1.87, d^{6} - 1 (I$ $(x, 42)$ $9.6 5 4$ $8.8 4.9 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>433</b><br>P = .05); T = 67<br>(P = .0, T = 4)<br><b>Mean S</b><br><b>24</b><br>34 8.4 5<br><b>38</b><br>$P = .17); T^2 = 4;$<br><b>24</b><br>24 9.7 32 11 5.<br><b>36</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 428<br>%<br>3<br>0<br>a<br>4<br>24<br>3<br>59<br>7%<br>4<br>24<br>3<br>82<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Weight<br>19.1%<br>33.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]                                                                                                                                                 | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 y<br>Egypt Abd-Elsalart et al.<br>Subtotal (95% C.<br>Heterogeneity: Tau <sup>2</sup> = 0.64; Cl<br>Test for overall effect: Z = 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(P = .002)$ $285$ $ni^{2} = 6.02, df = 2 (I (P = .15))$ $Chi^{2} = 5.53, df = 1$ $Ivermectin$ $Mean SD = 0$ $10.1 4 2$ $6.5 3.1 5$ $c = 1.87, d^{c} = 1 (I (P = .17))$ $0.6 5 4$ $R = 4.9 8$ $ni (P = .17)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>433</b><br>P = .05; T = .067<br>$(P = .0., T^2 = 1)$<br><b>Mean S</b><br>24<br>34 8.4<br>38<br>$P = .17; T^2 = 4;$<br>24 9.7<br>32 11 5.<br>66<br>$P = .17; T^2 = 4;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 428<br>%<br>D a<br>4 24<br>3 35<br>59<br>7%<br>4 24<br>3 82<br>106<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Weight<br>19.1%<br>33.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.36, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]                                                                                                                                                 | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 / y<br>Egypt Abd-Elsalart et al.<br>Subtotal (95% C.<br>Heterogeneity: Tau <sup>2</sup> = 0.60<br>C.<br>Heterogeneity: Tau <sup>2</sup> = 0.60<br>C.<br>Heterogeneity: Tau <sup>2</sup> = 0.60<br>Test for overall effect: Z = 0.80<br>Subtotal (95% C.)                                                                                                                                                                                                                                                                                                                                                                  | $(P = .002)$ $285$ $ni^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $(P = .16)$ $10.1 4 2$ $6.5 3.1 3$ $(P = .187, d^{p} - 1 (i)$ $9.6 5 2$ $8.8 4.9 8$ $ni^{2} = 1.88, df = 1 (i)$ $(P = .17)$ $16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>433</b><br>$P = .05; \Gamma = .67$<br>(P = .0., -2 = 1)<br><b>Cont</b><br><b>Mean S</b><br>24<br>34 8.4<br>38<br>$P = .17; \Gamma^2 = 4;$<br>24<br>24 9.7<br>32 11 5.<br>36<br>$P = .17; \Gamma^2 = 4;$<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 428<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Weight<br>1 9.1%<br>33.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%<br>100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]                                                                                                                         | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 y<br>Egypt Abd-Elsalan et al.<br>Subtotal (95% C.<br>Heterogeneity: Tau <sup>2</sup> = 0.4; Cl<br>Test for overall effect: Z = .23<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 1.97<br>Test for overall effect: Z = 1.97<br>Test for overall effect: Z = 1.97<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 1.97<br>Test for subgroup differences: C                                                                                                                                                                                  | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin</b> Mean SD 10.1 4 2 6.5 3.1 2 10.1 4 2 6.5 3.1 2 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4 2.5 10.1 4       | 433<br>$P = .05; r^{2} = .67$<br>$(P = .0., r^{2} = .67)$<br>( $P = .0., r^{2} = .67$<br>( $P = .0., r^{2} = .67$<br>( $P = .0., r^{2} = .67$<br>( $P = .17; r^{2} = 4;$<br>$P = .17; r^{2} = 4;$<br>$P = .23; r^{2} = .63$<br>$(P = .63), r^{2} = .63$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 428<br>%<br>3<br>7<br>4<br>4<br>3<br>59<br>7%<br>4<br>24<br>3<br>59<br>7%<br>4<br>24<br>3<br>82<br>7%<br>106<br>7%<br>106<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 veight<br>1 Weight<br>19.1%<br>33.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%<br>100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]                                                                                                                         | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 / y<br>Egypt Abd-Elsalan et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 1.97<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for subgroup differences: C<br>Study or subgroup                                                                                                                                                                                                                                                                                                                                                          | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i (P = .15))$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $(P = .167, d^{6} - 1, i)$ $10.1  4  2  6.5  3.1  2  5  5  5  6  1  2  5  5  5  5  5  5  5  5  5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 433<br>P = .05; F = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 428<br>%<br>3<br>7%<br>4 24<br>3 35<br>9<br>7%<br>4 24<br>3 35<br>9<br>7%<br>4 24<br>3 65<br>7%<br>106<br>7%<br>106<br>7%<br>107<br>107<br>107<br>107<br>107<br>107<br>107<br>107<br>107<br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 veight<br>1 veight<br>1 veight<br>1 veight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]<br>Risk ratio<br>IV, Random, 95% CI                                                                                     | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Heterogeneity: Not applicable<br>Test for overall effect: Z = 3.04<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 / y<br>Egypt Abd-Elsalapter tal.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 0.20<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 / y<br>Egypt Abd-Elsalapter tal.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 1.97<br>Test for subgroup differences: C<br>Study or subgroup<br>Argentina Zoni et al.                                                                                                                                                                                                                                                  | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin Mean SD</b> $(P = .16)$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1$   | 433<br>P = .05; F = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 428<br>%<br>3<br>7%<br>4 24<br>3 35<br>7%<br>4 24<br>3 35<br>7%<br>4 24<br>3 82<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 veight<br>1 veight<br>1 veight<br>1 veight<br>1 veight<br>1 veight<br>1 veight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]<br>Risk ratio<br>IV, Random, 95% CI<br>0.67 [0.35, 1.29]                                                                | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events         Heterogeneity: Not applicable         Test for overall effect: Z = 3.04         Total (95% CI)         Total events         Heterogeneity: Tau <sup>2</sup> = 0.02; CI         Test for overall effect: Z = 1.42         Test for subgroup differences: C         Study or subgroup         8.6.1 Single-day dosing         Ahmed et al. IVM+Doxy         Iran Rezai et al.         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.84; Cl         Test for overall effect: Z = 0.80         8.6.2 Multiday dosing         Ahmed et al. IVM 5 /         Egypt Abd-Elsalapt et al.         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.41; CI         Test for overall effect: Z = 1.97         Test for overall effect: Z = 1.97         Test for overall effect: Z = 1.97         Test for subgroup differences: C         Subtotal (95% CI)         Heterogeneity: Tau <sup>2</sup> = 0.41; CI         Test for subgroup differences: C         Study or subgroup         Argentina Zoni et al.         Colombia Lopez-Medina et al.         Israel Schwartz et al. | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin</b> Mean SD C $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.$ | 433<br>P = .05; F = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 428<br>%<br>3<br>7%<br>4<br>4<br>3<br>59<br>7%<br>4<br>4<br>4<br>3<br>59<br>7%<br>4<br>251<br>198<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 veight<br>1 9.1%<br>3.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%<br>100.0%<br>Weight<br>75.6%<br>20.7%<br>3.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]<br>Risk ratio<br>IV, Random, 95% CI<br>0.67 [0.35, 1.29]<br>0.66 [0.19, 2.30]<br>0.13 [0.01, 2.48]                      | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl<br>-10 -5 0 5 10<br>Favors ivermectin Favors control<br>Risk ratio<br>IV, Random, 95% Cl |
| Total events<br>Total events<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 //<br>Egypt Abd-Elsalaent al.<br>Subtotal (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 0.20<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for subgroup differences: C<br>Study or subgroup<br>Argentina Zoni et al.<br>Colombia Lopez-Medina et al.<br>Israel Schwartz et al.<br>Total (95% CI)                                                                                                                                                                                                                                                                                                             | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin</b> Mean SD C $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $6.5 3.1 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1 4$ $10.1$ | 433<br>P = .05; F = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 428<br>%<br>3<br>4<br>4<br>4<br>3<br>59<br>7%<br>4<br>4<br>4<br>3<br>59<br>7%<br>4<br>4<br>4<br>4<br>3<br>82<br>59<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>106<br>7%<br>100<br>100<br>100<br>100<br>100<br>1000000000000000 | 1 veight<br>1 9.1%<br>3.2%<br>52.3%<br>15.8%<br>31.9%<br>47.7%<br>100.0%<br>Weight<br>75.6%<br>20.7%<br>3.7%<br>100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]<br>Risk ratio<br>IV, Random, 95% CI<br>0.67 [0.35, 1.29]<br>0.66 [0.19, 2.30]<br>0.13 [0.01, 2.48]<br>0.63 [0.36, 1.11] | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |
| Total events<br>Total events<br>Total events<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.02; Cl<br>Test for overall effect: Z = 1.42<br>Test for subgroup differences: C<br>Study or subgroup<br>8.6.1 Single-day dosing<br>Ahmed et al. IVM+Doxy<br>Iran Rezai et al.<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.84; Cl<br>Test for overall effect: Z = 0.80<br>8.6.2 Multiday dosing<br>Ahmed et al. IVM 5 of<br>Egypt Abd-Elsalart et al.<br>Subtotal (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for overall effect: Z = 0.20<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> = 0.41; Cl<br>Test for subgroup differences: C<br>Study or subgroup<br>Argentina Zoni et al.<br>Colombia Lopez-Medina et al.<br>Israel Schwartz et al.<br>Total (95% Cl)<br>Total (95% Cl)<br>Total events                                                                                                                                                                                                                                                                           | $(P = .002)$ $285$ $hi^{2} = 6.02, df = 2 (i$ $(P = .15)$ $Chi^{2} = 5.53, df = 1$ <b>Ivermectin</b> Mean SD C $10.1 4 2$ $6.5 3.1 5$ $c = 1.87, d^{p} - 1 (i$ $(p = .17)$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1 4 2$ $10.1$ | 433<br>P = .05; F = .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 428<br>%<br>3<br>4<br>4<br>4<br>3<br>59<br>7%<br>4<br>4<br>4<br>3<br>59<br>7%<br>4<br>4<br>4<br>3<br>82<br>59<br>7%<br>106<br>106<br>106<br>106<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 veight<br>1 veig | 1.19 [0.94, 1.50]<br>Mean difference<br>IV, Random, 95% C<br>0.40 [-1.86, 2.66]<br>-1.50 [-3.01, 0.01]<br>-0.74 [-2.57, 1.08]<br>-0.10 [-2.66, 2.46]<br>-2.20 [-3.76, -0.64]<br>-1.41 [-3.40, 0.59]<br>-1.14 [-2.27, -0.00]<br>Risk ratio<br>IV, Random, 95% CI<br>0.67 [0.35, 1.29]<br>0.66 [0.19, 2.30]<br>0.13 [0.01, 2.48]<br>0.63 [0.36, 1.11] | 0.5 0.7 1 1.5 2<br>Favors control Favors ivermectin<br>Mean difference<br>IV, Random, 95% Cl                                                                                          |

# Figure 1. Continued.



#### Figure 1. Continued.

-1.14 days; 95% CI, -2.27 to -0.00; = .05 (Figure 1G). There was no significant effect on time to conic directory (mean difference, -0.57 days; 95% CI, -i to 0.1 P = .13) (Figure 1E). Ivermectin showed a significant effect in achieving viral clearance more quickly compared with CO'. However, no significant effect was observed on PCR negativity of days 3, 7, and 10. Ivermectin did not have a significant effect on the risk of mechanical ventilation. A supplementary analysis was performed by including

studies at a high risk of bias. Ivermectin displayed a borderline significant effect on survival. Time to clinical recovery and binary clinical recovery showed significant improvement with ivermectin in comparison with SOC. Furthermore, ivermectin had a borderline significant effect on viral clearance at day 7, but not days 3 and 10. Ivermectin had a significant effect on reducing inflammatory markers, mainly seen in studies at a high risk of bias. However, these results need to be treated with caution.

| Country             | Daily Dose                                                                                                                                     | Duration                                                                                                                                                                                                                                                                                                                                                       | End Point                                                                                                                                                                                                                                                                                                                                                                                                                               | Results IVM vs Control                                                                                                                                                                                                                                                                                                                                                                                                                                              | P Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| India, n = 125      | 0.2 mg/kg elixir                                                                                                                               | 1 d (SB)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 4.8 vs 4.6 d                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| India, n = 125      | 0.4 mg/kg elixir                                                                                                                               | 1 d (SB)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 4.3 vs 4.6 d                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iran, n = 69        | 0.2 mg/kg                                                                                                                                      | 1 d (OL)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 4.1 vs 5.2 d                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Colombia, n = 398   | 0.3 mg/kg                                                                                                                                      | 5 d (DB)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 10 vs 12 d                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iraq, n = 140       | 0.2 mg/kg                                                                                                                                      | 2–3 d (SB)                                                                                                                                                                                                                                                                                                                                                     | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 10.6 vs 17.9 d                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bangladesh, n = 62  | 0.2 mg/kg                                                                                                                                      | 1 d (OL)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 5.3 vs 6.3 d                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bangladesh, n = 116 | 0.2 mg/kg                                                                                                                                      | 1 d (OL)                                                                                                                                                                                                                                                                                                                                                       | Time to clinical recovery                                                                                                                                                                                                                                                                                                                                                                                                               | 5.9 vs 6.9 d                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     | Country<br>India, n = 125<br>India, n = 125<br>Iran, n = 69<br>Colombia, n = 398<br>Iraq, n = 140<br>Bangladesh, n = 62<br>Bangladesh, n = 116 | Country         Daily Dose           India, n = 125         0.2 mg/kg elixir           India, n = 125         0.4 mg/kg elixir           Iran, n = 69         0.2 mg/kg           Colombia, n = 398         0.3 mg/kg           Iraq, n = 140         0.2 mg/kg           Bangladesh, n = 62         0.2 mg/kg           Bangladesh, n = 116         0.2 mg/kg | Country         Daily Dose         Duration           India, n = 125         0.2 mg/kg elixir         1 d (SB)           India, n = 125         0.4 mg/kg elixir         1 d (SB)           Iran, n = 69         0.2 mg/kg         1 d (OL)           Colombia, n = 398         0.3 mg/kg         5 d (DB)           Iraq, n = 140         0.2 mg/kg         2–3 d (SB)           Bangladesh, n = 62         0.2 mg/kg         1 d (OL) | CountryDaily DoseDurationEnd PointIndia, n = 1250.2 mg/kg elixir1 d (SB)Time to clinical recoveryIndia, n = 1250.4 mg/kg elixir1 d (SB)Time to clinical recoveryIran, n = 690.2 mg/kg1 d (OL)Time to clinical recoveryColombia, n = 3980.3 mg/kg5 d (DB)Time to clinical recoveryIraq, n = 1400.2 mg/kg2–3 d (SB)Time to clinical recoveryBangladesh, n = 620.2 mg/kg1 d (OL)Time to clinical recoveryBangladesh, n = 1160.2 mg/kg1 d (OL)Time to clinical recovery | CountryDaily DoseDurationEnd PointResults IVM vs ControlIndia, n = 1250.2 mg/kg elixir1 d (SB)Time to clinical recovery4.8 vs 4.6 dIndia, n = 1250.4 mg/kg elixir1 d (SB)Time to clinical recovery4.3 vs 4.6 dIran, n = 690.2 mg/kg1 d (OL)Time to clinical recovery4.1 vs 5.2 dColombia, n = 3980.3 mg/kg5 d (DB)Time to clinical recovery10 vs 12 dIraq, n = 1400.2 mg/kg2–3 d (SB)Time to clinical recovery10.6 vs 17.9 dBangladesh, n = 620.2 mg/kg1 d (OL)Time to clinical recovery5.3 vs 6.3 dBangladesh, n = 1160.2 mg/kg1 d (OL)Time to clinical recovery5.9 vs 6.9 d |

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label; SB, single-blind.

<sup>a</sup>Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

| זמטופ ס. – בוופכנא טו טו ועפוווופכנווו טוו טווווכמו הפכטעפוץ מווע הטאוומוזצמנוטוו. בוופכנ טו ועפוווופכנווו טוו טעומנוטוו טו הטאוומוזצמ | Table 8. | Effects on of Ivermectin on Clinica | I Recovery and Hospitalizatio | n. Effect of Ivermectin on Du | ration of Hospitalization |
|----------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|-------------------------------|-------------------------------|---------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|-------------------------------|-------------------------------|---------------------------|

| Study                      | Country            | Daily Dose    | Duration   | End Point        | Results IVM vs Control | trol P Value |  |
|----------------------------|--------------------|---------------|------------|------------------|------------------------|--------------|--|
| Duration of hospitalizatio | n                  |               |            |                  |                        |              |  |
| Rezai et al.               | lran, n = 69       | 0.2 mg/kg     | 1 d (OL)   | Days in hospital | 6.9 vs 8.4 d           | .01          |  |
| Ahmed et al.               | Bangladesh, n = 72 | 0.2 mg/kg     | 5 d (DB)   | Days in hospital | 9.6 vs 9.7 d           | .93          |  |
| Ahmed et al.               | Bangladesh, n = 72 | 0.2 mg/kg     | 1 d (DB)   | Days in hospital | 10.1 vs 9.7 d          | .93          |  |
| Abd El-Salam et al.        | Egypt, n = 164     | 12 mg         | 3 d        | Days in hospital | 8.82 vs 10.97 d        | .09          |  |
| Gonzalez et al.            | Mexico, n = 106    | 12 mg         | 1 d        | Days in hospital | 6 vs 5 d               | .45          |  |
| Niaee et al.ª              | Iran, n = 165      | 0.2–0.4 mg/kg | 1–3 d (DB) | Days in hospital | 6.5 vs 7.5 d           | .006         |  |

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label.

<sup>a</sup>Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table \_\_\_\_\_

The results from this meta-analysis had to be revised after 2 of the original trials (Elgazzar, Egypt [50] and Raad, Lebanon [51]) were found to be unreliable, based on analysis of the raw database. Other trials at high risk of bias have also been removed from the primary analysis. There have also been suggestions that several clinical trials of other repurposed trials are unreliable and cannot be included in the evidence base. A previous study of hydroxychloroquine for COVID-19 was retracted from The Lancet [52], leading to changes in procedures for publication in The Lancet [53]. Furthermore, there have been concerns that a recent randomized trial of the anti-androgen cugproxalutamide, reporting a 77% survival benefit, cannot verified [54]. In addition, results from nonrandom .eu tudies can be overinterpreted. For example, a case-cr\_trol st dv of remdesivir in hospitalized patients suggested a 20' survival benefit, which was widely reported [55]. 7 as appare. benefit was not confirmed when the large ran Jmi. 1 SOLIDARITY trial results were reported. This serie of example underscores the need for large prospective ran \_\_\_\_\_mized trials to confirm any preliminary benefits claimed for new reatments for COVID-19. Review of the data by stringent regulator authorities will be needed to determine whener conical transmission results are valid and could support approval r roy ....

The results from this palysis have emerged from the International Ivermectin Pro, et Team meetings between December 2020 and July 2021. Independent research teams were conducting the trials across 16 countries and agreed to share their data, which were often unpublished, to accelerate the speed of reporting of to insure their fragmented research, widespinal across the oorld, could contribute to global learning. Vin include and omized by PCR assays in all the studie. We have only included randomized clinical trials in this at 'a-analysis. The 23 RCTs included were designed and conducted in 'ependently, with results combined in September 2.2.1. However, euch individual trial was small, and a wide range of population types were included. Clinical recovery definitions differed by ween trials, and there were no significant differences in the provide the survival.

r details

## Mechanism of Action

At the time of writing, knowledge gaps prevent a robust conclusion about the potential mechanisms of action of ivermectin. Ivermectin's broad-spectrum antiviral effects have been proposed to be related to its impact on the NF-kB pathway and via binding to the host cell importin  $\alpha/\beta 1$  heterodimer, nuclear transport proteins responsible for nuclear entry of cargoes, and these effects in turn may prevent viral replication. The current in-vitro EC<sub>50</sub> estimates (2.2  $\mu$ , 2.4  $\mu$ M, and 2.8  $\mu$ M depending on gene assay analyzed by reverse transcription quantitative PCR) are still 35× higher than plasma concentrations following normal oral dosing. Even doses 8.5× the FDA-recommended 200 µg/kg of 1.7 mg/kg only reach plasma concentrations of 0.28 µM [56]. The increased bioavailability in the fed state and higher concentrations seen in lung tissue compared with plasma are still below the current published EC<sub>50</sub> results.

| Tahle 9  | Effects on of Ivermectin on Clinical Recovery | v and Hosnitalization Number of Pa | rticinants With Clinical Recover       | v hv  | Days 7 to 10 P | ostrandomization |
|----------|-----------------------------------------------|------------------------------------|----------------------------------------|-------|----------------|------------------|
| Table J. | Lifects on of iverniegtin on grandar negover  | y anu mospitanzation. Number of r  | 1 11 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | V U V |                | 030 010011120001 |

| Study               | Country             | Daily Dose | Duration           | End Point                   | Results IVM vs Control, % | P Value |
|---------------------|---------------------|------------|--------------------|-----------------------------|---------------------------|---------|
| No. of participants | recovered (%)       |            |                    |                             |                           |         |
| Petkov et al.       | Bulgaria, n = 100   | 0.4 mg/kg  | 3 d (DB)           | Day 7 clinical recovery     | 20 vs 14                  | n/a     |
| Mahmud et al.       | Bangladesh, n = 363 | 12 mg      | 1 d (DB)           | Day 7 clinical recovery     | 61 vs 44                  | <.03    |
| Okumus et al.ª      | Turkey, n = 60      | 0.2 mg/kg  | 5 d (DB)           | Day 10 clinical improvement | 73 vs 53                  | .10     |
| Chahla et al.ª      | Argentina, n = 254  | 24 mg      | 1/wk for 4 wk (OL) | Clinical improvement        | 98 vs 87                  | .0007   |
| Chachar et al.ª     | Pakistan, n = 50    | 0.2 mg/kg  | 2 d (OL)           | Day 7 clinical recovery     | 64 vs 60                  | .5      |

Abbreviations: DB, double-blind; IVM, ivermectin; OL, open-label.

<sup>a</sup>Studies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplementary Table 3 for further details.

## Table 10. Effects of Ivermectin on Survival

| Trial          | Country    | Dosing              | lvermectin  | Control        |
|----------------|------------|---------------------|-------------|----------------|
| Mahmud et al.  | Bangladesh | 0.2 mg/kg, 1 d      | 0/183       | 3/180          |
| Lopez-Medina   | Colombia   | 0.3 mg/kg 5 d       | 0/200       | 1/198          |
| Zoni et al.    | Argentina  | 12–24 mg, 2 d       | 4/250       | 3/251          |
| Fonseca        | Brazil     | 14 mg 3 d           | 12/53       | 25/115         |
| Kirti et al.   | India      | 12 mg, 5 d          | 0/55        | 4/57           |
| Rezai et al.   | Iran       | 0.2 mg/kg, 1 d      | 1/35        | 0/34           |
| Abd-Elsalam    | Egypt      | 0.2 mg/kg, 3 d      | 3/82        | 4/82           |
| Gonzalez       | Mexico     | 0.2 mg/kg, 1 d      | 5/36        | 6/37           |
| Niaee et al.ª  | Iran       | 0.2 mg/kg 1–3 d     |             | 11/60          |
| Hashim et al.ª | Iraq       | 0.2–0.4 mg/kg 2–3 d | 2/70        | 6/70           |
| Okumus et al.ª | Turkey     | 0.2 mg/kg, 5 d      | 6/30        | 9/30           |
| Total          |            |                     | (1114 (3 %) | 72/1114 (6.5%) |

aStudies were evaluated as having limited overall quality of evidence using the Cochrane Risk of Bias Tool. See Supplemedary Table for furthe aetails.

## Limitations

A key limitation to this meta-analysis is the comparability of the data, with studies differing in dosage, treatment duration, and inclusion criteria. Furthermore, the standard of care used in the control arm differed between trials. In this meta-analysis, trials that used active controls such as hydroxychloroquine or lopinavir/ritonavir were combined with those that us a placebo or standard care. However, lopinavir/ritonavir and hydroxychloroquine have shown no overall benefit or harm in large randomized trials and meta-analyses [7, 57-9]. Furthermore, additional analyses in this paper separation trials by subgroups of standard care/placebo ar a active control showed no significant difference between graves.

Another limitation is that ivermectin was given 'n combination with doxycycline in 3 trials. Individual trials may not have power to detect treatment effects or care ere points such as survival. Outcome measures were not such a direct direct or al clearance was measured in most trials out to direct time points and with different PCR cycle the shold of the reliability of PCR tests for quantification purposes as ocen the subject of substantive debate. Most studies were conducted in populations with only mild/moderate infection, and some trials excluded patients with multiple comorbidities.

These RCTs have been conducted in a wide range of countries, often in low-resource conditions and overburdened health care systems. Larger RCTs are currently underway in Spain, South America, Africa, and North America, with results from an additional 5000 participants expected in Summer 2021 (Supplementary Table 7).

Several other repurposed medications have shown promise in early smaller trials, for example, sofosbuvir/daclatasvir, colchicine, and remdesivir, but the benefit was not seen later in larger trials. This meta-analysis of 23 RCTs in 3349 patients showed that ivermectin had a significant effect on faster viral clearance and a borderline significant effect on duration of hospitalization. In the primary analysis, excluding studies at a high risk of bias, there was no signific at effect of  $r_{\rm eff}$  ectin on survival or hospitalisations. Recentle, the polyminary results from the TOGETHER trial were presented. In this andomised, placebo-controlled study of ivernectin in over 1200 outpatients, there was no significant effect of i prmectin o hospitalisation or survival [60]. These results need to available d in larger confirmatory trials.

## 🗧 👝 'rmentary Data

Supplementary materials are available at *Open Forum Infectious Diseases* online. Consisting of data provided by the authors to benefit the reader, he posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

#### Acknowledgments

We would like to thank all the clinical staff, the research teams, and the patients who participated in these studies. We would also like to thank Manya Mirchandani for help with the analysis.

*Financial support.* This work was supported by the Rainwater Charitable Foundation.

**Potential conflicts of interest.** All authors: no reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

**Patient consent.** All of the clinical trials included in this meta-analysis were approved by local ethics committees, and all patients signed informed consent.

#### References

- WHO. WHO coronavirus disease (COVID-19) dashboard. 2021. Available at: https://covid19.who.int/. Accessed 25 August 2021.
- Stolberg SG, LaFraniere S. Warning of shortages, researchers look to stretch vaccine supply. 2021. https://www.nytimes.com/2021/01/05/us/politics/coronavirusvaccine-supply.html. Accessed 25 August 2021.
- RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med 2021; 384:693-704.
- The REMAP-CAP Investigators. Interleukin-6 receptor antagonists in critically Ill patients with Covid-19—preliminary report. N Engl J Med 2021; 384:1491–502.
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2021; 397:1637–45.
- WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19 interim WHO solidarity trial results. N Engl J Med 2021; 384:497–511.
- Mahase E. Covid-19: budesonide shortens recovery time in patients not admitted to hospital, study finds. BMJ 2021; 373:n957.

- Romark. Romark announces initial results of phase 3 clinical trial of nt-300 tablets for the treatment of covid-19. 2021. Available at: https://www.romark.com/ romark-announces-initial-results-of-phase-3-clinical-trial-of-nt-300-tablets-forthe-treatment-of-covid-19/. Accessed 25 August 2021.
- Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178:104787.
- Arshad U, Pertinez H, Box H, et al. Prioritization of anti-SARS-Cov-2 drug repurposing opportunities based on plasma and target site concentrations derived from their established human pharmacokinetics. Clin Pharmacol Ther 2020; 108:775–90.
- Schmith V, Lohmer ZJ. The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID-19. Clin Pharmacol Ther. 2020; 108:762–5.
- Jermain B, Hanafin PO, Cao Y, et al. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for COVID-19 drug repurposing. J Pharm Sci 2020; 109:3574–8.
- González Canga A, Sahagún Prieto AM, Diez Liébana MJ, et al. The pharmacokinetics and interactions of ivermectin in humans—a mini-review. AAPS J 2008; 10:42–6.
- Zhang X, Song Y, Xiong H, et al. Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol 2009; 9:354–9.
- Ci X, Li H, Yu Q, et al. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen-activated protein kinase activation pathway. Fundam Clin Pharmacol 2009; 23:449–55.
- Zhang X, Song Y, Ci X, et al. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res 2008; 57:524–9.
- Ventre E, Rozières A, Lenief V, et al. Topical ivermectin improves allergic skin inflammation. Allergy 2017; 72:1212–21.
- Yan S, Ci X, Chen N, et al. Anti-inflammatory effects of ivermectin in mouse model of allergic asthma. Inflamm Res 2011; 60:589–96.
- de Melo GD, Lazarini F, Larrous F, et al. Anti-COVID-19 efficacy of ivermectin in the golden hamster. EMBO Mol Med 2021. doi:10.1101/2020.11.21.392639
- Zaidi AK, Dehgani-Mobaraki P. The mechanisms of action of ivern curagainst SARS-CoV-2: an evidence-based clinical review article. J Antibot 2: 1. doi:10.1038/s41429-021-00430-5
- Navarro M, Camprubí D, Requena-Méndez A, et al. Safety of high oser mectin. a systematic review and meta-analysis. J Antimicrob Chemother 2020; 75 27–34.
- 22. WHO. Therapeutics and COVID-19: living guideline. **2021** vailable www.who.int/publications/i/item/WHO-2019-nCo<sup>3</sup> therapeutics-2021.2. Accessed 25 August 2021.
- National Institutes of Health. ClinicalTrials.gov 1. Available a https:// clinicaltrials.gov/. Accessed 25 August 2021.
- Nguyen TV, Ferrand G, Cohen-Boulakia S, e al; for the CO D-NMA consortium. RCT studies on preventive measure and treatments for O/VID-19 [data set]. 2021. Available at: https://zenc.o.org/re..d/4266529#.YRBS7IhKhPY. Accessed 25 August 2021.
- 25. Tzou PL, Tao K, Nouhin J, et al. Coronav. antiviral search database (CoV-RDB): an online database design facilitat opperisons between candidate anti-coronavirus compounds viruses )20; 12:10.
- Higgins JPT, Thomas J, Chudler J, Chudrer J, Chudrer
- Shakhsi Niaee M, Namdar P, Allami et al. Invermectin as an adjunct treatment for hospitalized adult COVID-19 patients: a randomized, multi-center clinical trial. Asian Pac J Trop Med 2021; 14:266–73.
- Mahmud R, Rahman MM, Alam I, et al. Ivermectin in combination with doxycycline for treating COVID-19 symptoms: a randomized trial. J Int Med Res, 2021; 49:3000605211013550.
- Mohan A, Tiwari P, Suri T, et al. Ivermectin in mild and moderate COVID-19 (RIVET-COV): a randomized, placebo-controlled trial. 2021. doi:10.21203/ rs.3.rs-191648/v1
- 30. Chaccour C, Casellas A, Blanco-Di Matteo A, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine 2021; 32:100720.
- Gonzalez J, González Gámez M, Enciso E, et al. Efficacy and safety of Ivermectin and Hydroxychloroquine in patients with severe COVID-19. A randomized controlled trial. 2021. doi:10.1101/2021.02.18.21252037
- Shahbaznejad L, Davoudi A, Eslami G, et al. Effects of ivermectin in patients With COVID-19: a multicenter, double-blind, randomized, controlled clinical trial. Clin Ther 2021. doi:10.1016/j.clinthera.2021.04.007
- Podder S, Chowdhury N, Sina M, Ul Haque W. Outcome of ivermectin treated mild to moderate COVID-19 cases: a single-centre, open-label, randomized controlled study. IMC J Med Sci 2021; 14:11–18.
- Shah Bukhari K, Asghar A, Perveen N, et al. Efficacy of ivermectin in COVID-19 patients with mild to moderate disease. 2021. doi:10.1101/2021.02.02.21250840

- Chowdhury ATMM, Shahbaz M, Karim MR, et al. A randomised trial of ivermectindoxycycline and hydroxychloroquine-azithromycin therapy on COVID19 patients. 2020. doi:10.21203/rs.3.rs-38896/v1
- Vallejos J, Zoni R, Bangher M, et al. Ivermectin to prevent hospitalizations in patients with COVID-19 (IVERCOR-COVID19): a structured summary of a study protocol for a randomized controlled trial. BMC Infect Dis 2021; 21:635.
- López-Medina E, López P, Hurtado IC, et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA 2021; 325:1426.
- Krolewiecki A, Lifschitz A, Moragas M, et al. Antiviral effect of high-dose ivermectin in adults with COVID-19: a pilot randomised, controlled, open label, multicentre trial. Eclinicalmedicine 2021; 37:100959.
- Babalola OE, Bode CO, Ajayi AA, et al. Ivermectin shows clinical benefits in mild to moderate COVID19: a randomised controlled double-blind, dose-response study in Lagos. QIM-Int J Mechanism doi:10.1093/qjmed/hcab035
- Galan LEB, Santos NMD sato MS, al. Phase 2 randomized study on chloroquine, hydroxychloro ane or ivermed n in hospitalized patients with severe manifestations of SARS-C 2 infection. athog Glob Health 2021; 115:235–42.
- Abd-Elsalam S, N., r R, Bada R, et al. Clinical study evaluating the efficacy of ivermectin in C VID-19 treatment andomized controlled study. J Med Virol 2021; 93:583 8.
- Kirti R, Roy K, http://ur C, et al. avermeetin as a potential treatment for mild to moder: COVID hadou' blind randomized placebo-controlled trial. 2021. doi:1 101/2021.01.0. 1 .9310.
- 43. Pr. ov. c. ical Trials Register. 2021. Available at: https://www.clinicaltrialsregister. eu/ctr-searci.ial/2020-002091-12/BG. Accessed 25 August 2021.
- ber A, Mande, im M, Harmelin G, et al. Favorable outcome on viral load and culture viability using Ivermectin in early treatment of non-hospitalized patients with m. COVID-19 A double-blind, randomized placebo-controlled trial. 2021. do 0.1101/2021.05.31.21258081
- Ahmed , Karim M, Ross A, et al. A five day course of ivermectin for the treatof COVID-19 may reduce the duration of illness. Int J Infect Dis **2021**; 103:214–6.
- 40. Jkumuş N, Demirtürk N, Çetinkaya RA, et al. Evaluation of the effectiveness and safety of adding ivermectin to treatment in severe COVID-19 patients. BMC Infect Dis 2021; 21:411.
- Hashim H, Maulood M, Rasheed A, et al. Controlled randomized clinical trial on using Ivermectin with doxycycline for treating COVID-19 patients in Baghdad, Iraq. 2020. doi:10.1101/2020.10.26.20219345
- Zeeshan Khan Chachar A, Ahmad Khan K, Asif M, et al. Effectiveness of ivermectin in SARS-CoV-2/COVID-19 patients. Int J Sci 2020; 09:31–35.
- Chahla R, Ruiz L, Mena T, et al. Cluster randomised trials ivermectin repurposing For COVID-19 treatment of outpatients with mild disease in primary health care centers. 2021. doi:10.21203/rs.3.rs-495945/v1
- Elgazzar A, Hany B, Youssef S, et al. Efficacy and safety of ivermectin for treatment and prophylaxis of COVID-19 pandemic. 2020. doi:10.21203/rs.3.rs-100956/v3
- Samaha A, Mouawia H, Fawaz M, et al. Effects of a Single Dose of Ivermectin on Viral and Clinical Outcomes in Asymptomatic SARS-CoV-2 Infected Subjects: A Pilot Clinical Trial in Lebanon. Viruses 2021; 13:989.
- Mehra MR, Ruschitzka F, Patel AN. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet 2020; 395:1820.
- The Editors of the Lancet Group. Learning from a retraction. Lancet 2020; 396:1056.
- 54. Service R. 'Too good to be true': Doubts swirl around trial that saw 77% reduction in COVID-19 mortality. 2021. Available at: https://www.sciencemag.org/ news/2021/07/too-good-be-true-doubts-swirl-around-trial-saw-77-reductioncovid-19-mortality. Accessed 25 August 2021.
- Day M. Covid-19: experts criticise claim that remdesivir cuts death rates. BMJ 2020; 370:m2839.
- 56. Wang K, Gao W, Dou Q, et al. Ivermectin induces PAK1-mediated cytostatic autophagy in breast cancer. Autophagy **2016**; 12:2498–9.
- Ghazy RM, Almaghraby A, Shaaban R, et al. A systematic review and metaanalysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Sci Rep 2020; 10:22139.
- Alhumaid S, Mutair AA, Alawi ZA, et al. Efficacy and safety of lopinavir/ritonavir for treatment of COVID-19: a systematic review and meta-analysis. Trop Med Infect Dis 2020; 5:180.
- RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020; 396:1345–52.
- 60. Mills E. Early Treatment of COVID-19 with Repurposed Therapies: The TOGETHER Adaptive Platform Trial. 2021. Available from: https:// rethinkingclinicaltrials.org/news/august-6-2021-early-treatment-of-covid-19with-repurposed-therapies-the-together-adaptive-platform-trial-edward-millsphd-frcp/. Accessed 25 August 2021.