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Abstract: Fatigue analysis is of great significance for thin-walled structures in the spacecraft industry
to ensure their service reliability during operation. Due to the complex loadings of thin-walled
structures under thermal–structural–acoustic coupling conditions, the calculation cost of finite ele-
ment (FE) simulations is relatively expensive. To improve the computational efficiency of dynamic
reliability analysis on thin-walled structures to within acceptable accuracy, a novel probabilistic ap-
proach named DC-ILSSVR was developed, in which the rotation matrix optimization (RMO) method
was used to initially search for the model parameters of least squares support vector regression
(LS-SVR). The distributed collaborative (DC) strategy was then introduced to enhance the efficiency
of a component suffering from multiple failure modes. Moreover, a numerical example with respect
to thin-walled structures was used to validate the proposed method. The results showed that RMO
performed on LS-SVR model parameters provided competitive prediction accuracy, and hence the
reliability analysis efficiency of thin-walled pipe was significantly improved.

Keywords: LS-SVR; probabilistic reliability analysis; rotation matrix optimization; thin-walled pipe;
distributed collaborative strategy

1. Introduction

As a common structure in the spacecraft industry, thin-walled piping has been widely
used for applications such as cooling the base station on a communication satellite and
avoiding overheating of charge-coupled devices on a space telescope [1–5]. Therefore,
fatigue damage estimation of thin-walled structures is critical to guarantee operational
reliability. Significantly, previous work presented a FEM model under thermal–structural–
acoustic coupling conditions, which cannot cater to thin-walled open-section structures
without the assumption of Euler–Bernoulli beam theory. More related details on FEM
modelling can be found in [6,7]. Furthermore, the results showed that the structure
experienced thermal stress caused by time-varying mean temperature, which lead to low
cycle fatigue (LCF) due to the relatively large stress, as well as thermal bending moment
that was mainly generated by temperature disturbance of the structure [6]. Although
the small stress amplitude was generated by temperature disturbance, thermal vibration
cannot be ignored as it can enhance crack growth rate and increase the cumulative fatigue
damage due to multiple applied cycles superimposed on LCF [6]. Therefore, in addition
to LCF, thin-walled structures can produce a high cycle fatigue (HCF) failure caused by
thermal vibration. To perform a feasible and rational reliability analysis of thin-walled
structures, it is necessary to take LCF and HCF into account.

Due to the uncertainties of material properties, loads, and geometric parameters, deter-
ministic analysis cannot usually accurately predict the fatigue behavior of a structure [8–12].
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Accordingly, moment methods such as: the first order second moment method; Monte
Carlo method (MCM); surrogate model, etc., are commonly employed to obtain the fatigue
reliability from a probabilistic perspective. The moment method can show the reliability
relationship directly, while its accuracy is significantly affected by the nonlinearity existent
in the model [13–15]. Although the MCM provided a higher accuracy of reliability analysis
by performing many simulations, the required computing cost was extremely high [16,17].
To achieve a better balance between computational efficiency and accuracy prediction, the
surrogate model can be used. This method uses a relatively small amount of computation
and is often an efficient choice instead of large-scale computation.

For reliability analysis of stochastic structures, surrogate models such as: the response
surface method [18–20]; support vector machine (SVM) [21–23]; kriging model [24–26];
artificial neural network (ANN) [16], etc., have all been employed in various industries.
One efficient method with good robustness used for the approximation of nonlinear
functions and small samples is, least squares support vector regression (LS-SVR), which is
a widely used application in structural reliability analysis. To enhance the computational
efficiency and prediction accuracy of LS-SVR it is necessary to optimize model parameters.
To improve optimization, more efficient intelligent algorithms were introduced to find
the parameters with fast convergence speed and high accuracy; for example: the particle
swarm optimization (PSO) algorithm [27], the whale optimization algorithm (WOA) [28],
and the genetic algorithm (GA) [29]. It should be note that, while searching for the model
parameters these algorithms may become trapped into local optimization, which can
seriously affect the LS-SVM modeling accuracy.

Based on investigations of the deficiencies of some algorithms, we attempted to de-
velop an algorithm to find the model parameters for LS-SVM with a simpler optimization
process, easier programming, and stronger ability to avoid entrapment into local optimiza-
tion than the other approaches. The rotation matrix is a powerful tool that can randomly
rotate a vector with a specified angle, which can be used to change the search direction of a
vector. In addition, the search step length can be varied by introducing a random number
and attenuation coefficient so that a new search agent can be found with better performance
in both the explore and exploit stages. To satisfy the optimization requirements of LS-SVR
model parameters, a novel optimization algorithm called, rotation matrix optimization
(RMO) was developed with suitability for two-dimensional search space. The LS-SVR
model optimized by RMO is called improved LS-SVR (ILSSVR).

To address complex and nonlinear computational puzzles with multiple failure modes
or multiple variables, a distributed collaborative (DC) strategy can be utilized to achieve
a higher efficiency for probabilistic fatigue assessment [30,31]. By combining these two
approaches, an efficient and feasible probabilistic analysis method, named DC-ILSSVR,
is presented in this paper to perform the reliability estimation of thin-walled structures,
in which ILSSVR is firstly established by using RMO to find the parameters for the LS-
SVR model, and then DC strategy is introduced into ILSSVR to achieve higher predicted
accuracy and computational efficiency.

2. The Improved LS-SVR (ILSSVR) Method

Both support vector regression (SVR) and LS-SVR are efficient machine learning ap-
proaches to nonlinear function approximation with small samples and excellent robustness.
However, when compared to SVR, LS-SVR can transform inequality constraints into equal-
ity constraints, which greatly facilitates the solution of Lagrange multipliers. In addition,
it can be found that prediction results can be easily obtained by LS-SVM with a smaller
error by tuning fewer parameters [32]. To improve computational efficiency and predicted
accuracy, the RMO method is proposed to optimize the model parameters of LS-SVR.
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2.1. LS-SVR Method

Assuming that there are n points of x = [x1, x2, · · · , xn] for the input variables, the
corresponding outputs y can be written according to the LS-SVR theory [33]:

y(x) =
l

∑
i=1

αiψ(x, xi) + b (1)

where αi are the Lagrange multipliers, ψ(x, xi) is the kernel function, and b is the bias term.
α and b are obtained by the following equations [34]:(

0 vT

v K + I
γ

)(
b
α

)
=

(
0
y

)
(2)

where K is the kernel matrix, v is a n × 1 vector in which the value of each element is equal
to 1, and γ is the regularization parameter affecting the balance between the minimization
of training error and the smoothness of the regression curve.

Radical basis function in LS-SVM model can be written as:

ψ(x, xi) = exp

(
−‖x− xi‖2

2σ2

)
(3)

where σ2 is the square width of the kernel function. For the LS-SVM model, two parameters
σ2 in Equation (3) and γ in Equation (2) need to be optimized to obtain the optimal model
parameters.

2.2. Rotation Matrix Optimization Algorithm

In recent years, with the widespread application of intelligent algorithms in practical
engineering, more swarm intelligence algorithms have been developed by scholars. These
are based on the observations of various animals to provide heuristic ideas for optimization
problems. The representative algorithms are shown in Table 1.

Table 1. Swarm intelligence algorithms.

Algorithms Year

Sparrow search algorithm (SSA) [35] 2020
Butterfly optimization algorithm (BOA) [36] 2019
Coyote optimization algorithm (COA) [37] 2018
Seagull optimization algorithm (SOA) [38] 2018
Whale optimization algorithm (WOA) [39] 2016

Sine cosine algorithm (SCA) [40] 2016
Elephant herding optimization (EHA) [41] 2016

Bat-inspired algorithm (BA) [42] 2010

Through investigations on the performance of the algorithms in Table 1, it can be
found that all of them were required to update the position of search agent i in the search
space with the help of vector Mt

i , in which Mt
i was the vector from the present position

of search agent Xt
i toward the best position of all search agents Xt

∗ at current iteration t.
For the algorithms listed in Table 1, random variables are always introduced to update the
current position Xt

i of search agent with vector Mt
i , while the direction of vector Mt

i cannot
be changed, which would reduce improvement of the local search ability. Inspired by the
idea of a rotation matrix, vector Mt

i can be rotated and scaled as required by introducing
an expansion coefficient r1 and rotation angle r2. In view of this, the rotation matrix
optimization algorithm is proposed in this section to deal with the issue. Figure 1 shows
the evolution process of rotation matrix optimization.
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Figure 1. The evolution process of RMO.

As was described above, there are two model parameters of LS-SVM (σ2 and γ) which
need to be optimized. The RMO for two dimensions of the search space can be expressed as:

Xt+1
i = Xt

i + r1 × c×
(

cos(r2) sin(r2)
− sin(r2) cos(r2)

)
×Mt

i (4)

where the vector Mt
i is expressed as:

Mt
i = Xt

∗ −Xt
i (5)

r1 and r2 respectively the expansion coefficient and rotation angle of Mt
i ; c is the

attenuation coefficient that declines linearly from a user defined constant scale to 0 during
the iterative process, which can be written by:

c = scale− (t · (scale/Maxiteration)) (6)

In this study, we let c be equal to 2; r1 is a random variable with uniform distribution
between [0, 2]; r2 obeys the normal distribution with mean value of 0 and standard
deviation of π

3

3. DC-ILSSVR Approach—Thin-Walled Tube Reliability Analysis

In this section, the DC-ILSSVR method is proposed based on the integration of ILSSVR
and DC to reduce the complexity and enhance the computational efficiency of fatigue
reliability estimation of thin-walled circular tube structures.

3.1. DC-ILSSVR Method

The DC strategy divides the complex and nonlinear problem into several simple ones,
which can be solved with higher computational efficiency, and then subsequently through
cooperation among the subproblems [43]. Firstly, the input variables and output responses
(distributed response) of each subproblem need to be defined. Then, the distributed
response should be analyzed level by level. The output response of the first level is
regarded as the input variable to the second level. In this way, all distributed responses
can be obtained. The output response of the last level is termed the global output response
(also named collaborative response), and Figure 2 shows the basic framework of DC.



Materials 2021, 14, 3967 5 of 15

Materials 2021, 14, x FOR PEER REVIEW 5 of 17 
 

 

3. DC-ILSSVR Approach—Thin-Walled Tube Reliability Analysis 
In this section, the DC-ILSSVR method is proposed based on the integration of 

ILSSVR and DC to reduce the complexity and enhance the computational efficiency of 
fatigue reliability estimation of thin-walled circular tube structures. 

3.1. DC-ILSSVR Method 
The DC strategy divides the complex and nonlinear problem into several simple 

ones, which can be solved with higher computational efficiency, and then subsequently 
through cooperation among the subproblems [43]. Firstly, the input variables and output 
responses (distributed response) of each subproblem need to be defined. Then, the dis-
tributed response should be analyzed level by level. The output response of the first level 
is regarded as the input variable to the second level. In this way, all distributed responses 
can be obtained. The output response of the last level is termed the global output response 
(also named collaborative response), and Figure 2 shows the basic framework of DC. 

 
Figure 2. The basic framework of DC. 

Extreme response surface method (ERSM) was developed to improve the perfor-
mance of RSM with high efficiency and accuracy [19,20]. Moreover, systems in practical 
engineering usually contain multiple components and multiple failure modes. Suppose 
there are m  components and n  failure modes, and the random input vector of the ith  

component in the jth  failure mode is ijX  and the corresponding response ijY . Ac-

cording to ERSM, the new response y can be obtained by the maximum value ijY  

{ }max ,ijy Y j Z+= ∈  (7)

Furthermore, the relationship between response y  and random input vector ijX  
is expressed as follows: 

( ) ( ){ }max , 1, 2, , , 1, 2, ,ij ijy f Y i m j n= = = =X X    (8)

Rewrite Equation (8) by the response surface function: 
T

0y A= + +BX X CX  (9)

Then DC-ERSM method for complex mechanical systems with multiple components 
and multiple failure modes can be established as follows: 

Figure 2. The basic framework of DC.

Extreme response surface method (ERSM) was developed to improve the performance
of RSM with high efficiency and accuracy [19,20]. Moreover, systems in practical engineer-
ing usually contain multiple components and multiple failure modes. Suppose there are m
components and n failure modes, and the random input vector of the ith component in the
jth failure mode is Xij and the corresponding response Yij. According to ERSM, the new
response y can be obtained by the maximum value Yij

y =
{

Yij
max, j ∈ Z+

}
(7)

Furthermore, the relationship between response y and random input vector Xij is
expressed as follows:

y = f (X) =
{

Yij
max

(
Xij
)

, i = 1, 2, · · · , m, j = 1, 2, · · · , n
}

(8)

Rewrite Equation (8) by the response surface function:

y = A0 + BX + XTCX (9)

Then DC-ERSM method for complex mechanical systems with multiple components
and multiple failure modes can be established as follows:

y11
max = A11

0 + B11X11 +
(
X11)TC11X11

y12
max = A12

0 + B12X12 +
(
X12)TC12X12

...

yij
max = Aij

0 + BijXij +
(

Xij
)T

CijXij

(10)

where Aij
0 is the constant term under the ith component in jth failure mode, Bij is the linear

term, and Cij is the quadratic term. Bij and Cij can be expressed as follows:

Bij =
[
bij

1 bij
2 · · · bij

q

]
(11)

Cij =


cij

11 cij
12 · · · cij

1q

cij
21 cij

22 · · · cij
2q

...
...

. . .
...

cij
q1 cij

q2 · · · cij
qq

 (12)

Similarly, the proposed DC-ILSSVR method is developed by combining DC strategy
with ILSSVR based on the idea of extremum response. Assuming that the random input
variables and corresponding responses of the jth component in kth failure mode are xjk and
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yjk, and then a new response set Y =
{

yij
max, i, j ∈ Z+

}
composed of the maximum values

of responses is derived as follows:

y11
max = f

(
x11) =

m
∑

i=1
αiψ
(
x11, xi

)
+ b

y12
max = f

(
x12) =

m
∑

i=1
αiψ
(
x12, xi

)
+ b

...

yjk
max = f

(
xjk
)

=
m
∑

i=1
αiψ
(

xjk, xi

)
+ b

(13)

3.2. Limit State Function with Strength Degradation

As mentioned above, LCF is mainly caused by time-varying mean temperature due
to the relatively large stress amplitude at the fixed end. Therefore, the SWT model is
chosen to express the relationship between low cycle stress and its corresponding fatigue
life. This model has improved performance compared to classical strain-life methods like
Coffin–Manson formula [44]:

σmaxεL = σmax
∆ε

2
=

(
σ′ f
)2

E
(2NL)

2b + ε′ f σ′ f (2NL)
b+c (14)

where σmax is the maximum value of low cycle stress, εL is the corresponding strain, E is
elastic modulus, σ′ f and ε′ f are fatigue strength coefficient and fatigue ductility coefficient,
NL is the number of cycles to failure under low cycle fatigue loading, and b and c are
fatigue strength exponent and fatigue ductility exponent.

The damage caused by one cycle of low cycle loading is expressed by [45]:

D(L1) =
1

NL
(15)

On the other hand, small stress generated by disturbance temperature of thin-walled
structures leads to HCF failure. In other words, the structure experienced a complex
loading with numerous HCF cycles superposed on per LCF loading. Generally, an S-N
curve can be used to calculate the HCF life corresponding to the stress amplitude. As one of
the most used approaches, Miner’s rule was employed to calculate the cumulative damage
of thin-walled structure caused by high cycle loadings [6,46]. However, the nonlinearity
and coupled effect between HCF and LCF during fatigue process were ignored. In view
of this, the HCF damage in one LCF cycle of the structure is presented to address the
HCF-LCF interaction based on previous work [47]:

D(H1) =
m

∑
i=1

nHi

NHi log(NHi)
−αeq

(16)

where NHi is the number of cycles to failure of high cycle stress σHi; nHi is the number of
applied cycles in a low cycle loading; αeq is the ratio of high and low stress range.

Combined with Equations (15) and (16), the total fatigue damage of one cycle caused
by low and high cycle loading can be obtained as follows:

D(1) = D(L1) + D(H1) =
1

NL
+

m

∑
1=1

nHi

NHi log(NHi)
−αeq

(17)

Thus, the cumulative fatigue damage of n cycles can be calculated by:

D(n) = nD(1) = n[D(H1) + D(L1)] (18)
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According to the residual strength theory, the residual strength of the structure can be
written as follows:

R(n) = R(0)[1− D(n)]a = R(0)[1− nD(1)]a (19)

where R(0) is the initial static strength of the structure and a is the strength degradation
coefficient of the material.

Then, the limit state function can be expressed by the difference between remaining
strength and the working load:

g(x) = R(n) − σ0 = R(0)[1− nD(1)]a − σ0 (20)

where σ0 is the external load. If g(x) > 0, the structure is safe; otherwise, the structure is
a failure.

3.3. Reliability Analysis Procedure Based on DC-ILSSVR

In this section, based on DC-ILSSVR, a probabilistic fatigue analysis procedure is
proposed to carry out the reliability estimation of random thin-walled tube. The steps are
as follows:

(1) Based on 3σ principle, 100 groups of samples of random input variables were firstly
generated with Latin hypercube sampling (LHS). According to the previous work, the
finite element model of thin-walled tube structure under thermal–structural–acoustic
coupling can be expressed by Equation (21). More details can be found in reference [6].
Then, 100 groups of dynamic response samples can be obtained by substituting the
100 groups of input samples into the finite element model:


MS

..
U + CS

.
U + KSU = FT + F f + FS

CT
.
T0 + KT0T0 = Q0 + CTS −RT0

CT
.
T1 + (KT1 + RT1)T1 = 2

π (Q0 + CTS)

M f
..
P + C f

.
P + K f P + RS f

..
U = 0

(21)

(2) The 100 groups of samples in step (1) are randomly divided into a training set of 70
samples and a testing set of 30 samples. Then, the ILSSVR surrogate model is trained
and verified by the training. The testing sets go through the same process;

(3) A total of 10,000 groups of input samples are generated by MCM, and then the
corresponding 10,000 groups of output responses are obtained by using the ILSSVR
surrogate model built in step (2);

(4) The output responses in step (3) are regarded as the input samples of second level to
obtain the corresponding NL by Equation (14);

(5) Similarly, the samples of NH under 10,000 simulations are predicted with same in-
put variables;

(6) The output responses of NL and NH are taken as the input samples of the third level,
and cumulative fatigue damage D(n) can be obtained by Equations (15)–(18);

(7) Take D(n) as the input samples of the fourth level to get R(n) by using Equation (19), and
R(n) as the input of the fifth level to gain the limit state function g(xi) by Equation (20);

(8) The reliability of the structure Rr can be approximately obtained by recording the
number of samples m when g(xi) > 0.

Rr = m/10000 (22)

4. Case Study

In this paper, the thin-walled tube structure under thermal–structural–acoustic cou-
pling condition is selected as the research subject, as shown in Figure 3. From Figure 3, θ is
the rotation angle of cross section; θz is the angle between y axis and the external normal of
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the structural exterior surface after tube deforming; S0 is the heat flux of solar radiation;
S is the net radiation heat flux exerted on the structural surface; β and φ are, respectively,
the incident angle of sunlight, and circumferential angle of cross section. More details and
model parameters can be referred to in [6].
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For deterministic structure of given model parameters, the maximum stress and strain
of the structure occur at the fixed end of the tube. Based on the established finite element
model of thin-walled tube structures under thermal–structural–acoustic coupling, the
dynamic response of maximum stress and strain at fixed end is shown in Figure 4.
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Figure 4. The dynamic response of of maximum stress (a) and strain (b) of deterministic structure.

The deterministic method cannot model the dynamic response of the structure well
due to the randomness of material parameters, geometry sizes, and working loads. In view
of this, to investigate the influence of the uncertainties on the dynamic reliability of the
structure, the size parameters, such as the length of tube l, the inner radius r, and the wall
thickness t, as well as material parameters, such as elastic modulus E and density ρ are
selected as random variables to extract the input samples by LHS. In this section, 100 sets
of input vectors [l, r, t, E, ρ] are generated, and the corresponding output responses can be
obtained to build the DC-ILSSVR model based on the constructed FE model in previous
work [6], in which the stress and strain at the fixed end are the maximum value of dynamic
responses that occur at the thin-walled tube structure.

To validate the proposed optimization approach, six kinds of intelligent algorithm
including: genetic algorithm (GA); seagull optimization algorithm (SOA); particle swarm
optimization (PSO); gray wolf optimization (GWO); whale optimization algorithm (WOA);
and RMO are compared to search for the optimal parameters to be used in LS-SVR modeling.
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Root Mean Square Error (RMSE) is used as the fitness function of the six optimization
algorithms, and the convergence curves with respect to maximum stress and maximum
strain are shown in Figures 5 and 6, respectively.

Materials 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

model in previous work [6], in which the stress and strain at the fixed end are the maxi-
mum value of dynamic responses that occur at the thin-walled tube structure. 

To validate the proposed optimization approach, six kinds of intelligent algorithm 
including: genetic algorithm (GA); seagull optimization algorithm (SOA); particle swarm 
optimization (PSO); gray wolf optimization (GWO); whale optimization algorithm 
(WOA); and RMO are compared to search for the optimal parameters to be used in LS-
SVR modeling. Root Mean Square Error (RMSE) is used as the fitness function of the six 
optimization algorithms, and the convergence curves with respect to maximum stress and 
maximum strain are shown in Figures 5 and 6, respectively. 

 
Figure 5. The convergence curves of maximum stress. 

 
Figure 6. The convergence curves of maximum strain. 

These six algorithms mentioned above are used to perform 100 times of optimization 
on LS-SVR (the prediction of maximum stress) to calculate the mean and standard devia-
tion. The optimal fitness, mean value, and standard deviation of fitness, as well as running 
time, are compared to verify the proposed method, and the results are shown in Table 2. 

Table 2. The optimized performance of the 6 methods in 100 simulations. 

Method Best Fitness ( 510− ) Mean Value ( 510− ) Standard Deviation ( 510− ) Computing Time (s) 
GA 4.125 4.477 0.232 4238 

SOA 3.569 4.129 0.201 4332 
PSO 3.471 4.022 0.167 4021 

GWO 3.393 3.875 0.118 4450 

Figure 5. The convergence curves of maximum stress.

Materials 2021, 14, x FOR PEER REVIEW 10 of 17 
 

 

model in previous work [6], in which the stress and strain at the fixed end are the maxi-
mum value of dynamic responses that occur at the thin-walled tube structure. 

To validate the proposed optimization approach, six kinds of intelligent algorithm 
including: genetic algorithm (GA); seagull optimization algorithm (SOA); particle swarm 
optimization (PSO); gray wolf optimization (GWO); whale optimization algorithm 
(WOA); and RMO are compared to search for the optimal parameters to be used in LS-
SVR modeling. Root Mean Square Error (RMSE) is used as the fitness function of the six 
optimization algorithms, and the convergence curves with respect to maximum stress and 
maximum strain are shown in Figures 5 and 6, respectively. 

 
Figure 5. The convergence curves of maximum stress. 

 
Figure 6. The convergence curves of maximum strain. 

These six algorithms mentioned above are used to perform 100 times of optimization 
on LS-SVR (the prediction of maximum stress) to calculate the mean and standard devia-
tion. The optimal fitness, mean value, and standard deviation of fitness, as well as running 
time, are compared to verify the proposed method, and the results are shown in Table 2. 

Table 2. The optimized performance of the 6 methods in 100 simulations. 

Method Best Fitness ( 510− ) Mean Value ( 510− ) Standard Deviation ( 510− ) Computing Time (s) 
GA 4.125 4.477 0.232 4238 

SOA 3.569 4.129 0.201 4332 
PSO 3.471 4.022 0.167 4021 

GWO 3.393 3.875 0.118 4450 
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These six algorithms mentioned above are used to perform 100 times of optimization
on LS-SVR (the prediction of maximum stress) to calculate the mean and standard deviation.
The optimal fitness, mean value, and standard deviation of fitness, as well as running time,
are compared to verify the proposed method, and the results are shown in Table 2.

Table 2. The optimized performance of the 6 methods in 100 simulations.

Method Best Fitness (10−5) Mean Value (10−5) Standard Deviation (10−5) Computing Time (s)

GA 4.125 4.477 0.232 4238
SOA 3.569 4.129 0.201 4332
PSO 3.471 4.022 0.167 4021

GWO 3.393 3.875 0.118 4450
WOA 3.447 3.926 0.120 4234
RMO 3.379 3.776 0.113 3970

Optimization configuration: number of search agent: 40, the maximum iteration: 50 Computer configuration: 16GB RAM, intel i5-11300H
CPU. Algorithm parameter is as follows: 1. GA: The gene length of single trait was 10, the variation rate was 0.05, and the crossover rate
was 0.8; 2. SOA: fc = 2, u = 1, v = 1; 3. PSO: The learning factors 1 and 2 are both equal to 1.5, and the maximum and minimum inertia
weights are 0.8, and 0.4, respectively.
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Compared with other algorithms, RMO has a better performance in finding the
optimal solutions of LS-SVR model and convergence speed. Accordingly, the LS-SVR
model optimized by RMO is used to predict the maximum stress and strain based on the
extracted samples, in which 30 groups of inputs samples are selected randomly as test sets.
The prediction results by the proposed method are shown in Figures 7 and 8.
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Figures 9 and 10 show the maximum stress and strain by using ILSSVR surrogate
under 10,000 groups of input samples, respectively. Figures 11 and 12 are the distribution
histogram of maximum stress, and strain, and the maximum stress. Strain obeys the normal
distribution of N

(
3.5123× 102,

(
1.0981× 101)2

)
and N

(
0.0073,

(
9.7325× 10−5)2
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Figure 12. Distribution histogram of strain.

According to the simulated maximum stress and strain, the low cycle fatigue life can be
calculated by SWT model. The parameters of SWT model are as follows: σ′ f = 1755.94 MPa,
ε′ f = 1.6115, b = −0.0859, c = −0.7712. Figure 13 presents the predicted results of
NL under 10,000 sets of samples, and Figure 14 presents the corresponding distribution
histogram. Note from Figure 14 that NL follows lognormal distribution, in which the red
line is the probabilistic density function.
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The fatigue test data of thin-walled tube material relating to stress, and its fatigue life
is shown in Table 3. According to the six groups of data in Table 3, the S-N curve of the
material can be fitted, as shown in Figure 15.

Table 3. Fatigue test data of materials.

Load (MPa) 111.011 157.071 169.824 193.543 211.600 211.189
Life (×105) 9.62 4.44 2.56 1.99 1.53 1.19
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On the other hand, the high cycle loadings caused by disturbance temperature can be
approximately obtained by the dynamic response as follows: σa1 = 23 MPa, σa2 = 24 MPa,
σa3 = 25 MPa. Because the high cycle stress is not symmetrically cyclic, the equivalent fully
reversed stress can be achieved by using mean stress correction, and then the corresponding
high cycle life is accordingly obtained by using the S-N curve.

In this work, the number of cycles corresponding to high cycle stress determined by
the rain-flow counting method is 200, and the Goodman mean stress correlation is used
to convert the high cycle stress into the corresponding equivalent stress under zero mean
stress conditions.

The tensile strength of the given material is 480 MPa, and the corresponding equiv-
alent stress under symmetrical cycle fatigue loadings is, respectively, σ−1

a1 = 78.86 MPa,
σ−1

a2 = 82.89 MPa, σ−1
a3 = 85.71 MPa. The high cycle fatigue life corresponding to high

cycle stresses can be obtained by using the S-N curve in Figure 15.
Based on the simulations with respect to fatigue life under low cycle loading and

high cycle loading, the dynamic reliability of random thin-walled tube structure can be
obtained by the strength degradation formula. Figure 16 shows the variation of reliability
with different degradation coefficient a.
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From Figure 16 and Table 4, it can be found that the reliability with various a is in
line with that presented in the previous work [6]. Moreover, the results indicate that the
DC-ILSSVR method offers an effective and feasible probabilistic fatigue analysis approach,
with a significant improvement in computational efficiency and predicted accuracy.

Table 4. Reliability, and calculation time of different methods.

MCM RFM [6] DC-ERSM DC-ILSSVR

Reliability 96.26% 97.96% 97.81% 97.06%
Calculation time (s) 91491 1532 1681 553

Note: RFM denotes random factor method.

5. Conclusions

In this study, a new probabilistic reliability analysis approach for thin-wall structures
under thermal–structural–acoustic coupling was established based on the integration of
LS-SVR, RMO, and DC strategies. The main achievements are as follows:

(1) A new optimization algorithm named RMO was developed to provide a linear com-
bination of the position of current search agent and best fit search agent, which can
avoid the local optimization with simple calculation;

(2) The LS-SVR model with the optimal parameters developed by employing RMO
was named as ILSSVR, and the results indicated that the method provided fast
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convergence speed, and better prediction accuracy than other methods used in LS-
SVR modeling;

(3) The DC-ILSSVR proved an effective and feasible fatigue analysis approach by em-
bedding DC strategy into the ILSSVR surrogate model to establish a probabilistic
reliability assessment procedure of thin-wall structures.
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draft, W.D.; Writing—review & editing, P.Y. and W.D.; methodology, W.D., P.Y. and C.D.; Conceptual-
ization, J.W.Z. and W.D. All authors have read and agreed to the published version of the manuscript.
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