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Simple Summary: Breast cancer (BC) is the second largest cause of death for cancer in women world-
wide. Different studies have shown that the androgen receptor (AR), a cytoplasmic ligand-dependent
transcription factor, may play a role as a marker of BC biology. We aimed to assess the clinical signifi-
cance of AR gene expression in BC by meta-analysis of large-scale microarray transcriptomic datasets.
Our findings suggest that high mRNA levels of AR have the potential to be a promising non-invasive
prognostic biomarker for the identification of the less aggressive BC subtypes.

Abstract: The androgen receptor (AR) is frequently expressed in breast cancer (BC), but its association
with clinical and biological parameters of BC patients remains unclear. Here, we investigated the
association of AR gene expression according to intrinsic BC subtypes by meta-analysis of large-scale
microarray transcriptomic datasets. Sixty-two datasets including 10315 BC patients were used in
the meta-analyses. Interestingly, AR mRNA level is significantly increased in patients categorized
with less aggressive intrinsic molecular subtypes including, Luminal A compared to Basal-like
(standardized mean difference, SMD: 2.12; 95% confidence interval, CI: 1.88 to 2.35; p < 0.001) or
when comparing Luminal B to Basal-like (SMD: 1.53; CI: 1.33 to 1.72; p < 0.001). The same trend was
observed when analyses were performed using immunohistochemistry-based surrogate subtypes.
Consistently, the AR mRNA expression was higher in patients with low histological grade (p < 0.001).
Furthermore, our data revealed higher levels of AR mRNA in BC patients expressing either estrogen
or progesterone receptors (p < 0.001). Together, our findings indicate that high mRNA levels of AR
are associated with BC subgroups with the less aggressive clinical features.

Keywords: androgen receptor; intrinsic subtypes; breast cancer; meta-analysis

1. Introduction

Although more than 75% of all breast cancers (BC) are hormone receptor (HR) positive
(Estrogen receptor-ER and/or Progesterone receptor-PgR), there is evidence indicating that
estradiol and progesterone are not the unique hormones related to BC [1,2], suggesting the
involvement of additional steroid molecules in BC, such as Androgen Receptor (AR). AR is
expressed in 70–90% of mammary tumors [3] and it has been implicated in all stages of
BC development [4]. However, the significance of its expression is not fully defined, since
AR positivity (AR+) has been associated with different clinical outcomes and, contrary
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biological actions, all of them are apparently dependent on the ER status [5]. Thus, in ER
positive (ER+) tumors, AR positivity is associated with reduced cell proliferation [6] and
favorable clinicopathological features and prognoses [7], while in ER negative (ER-)/AR+
BC cases, it is generally accepted that AR promotes cell proliferation [8], although clinical
studies have also reported contradictory results [9,10]. In this regard, clinical trials using
enobosarm (selective AR modulator—SARM) or antiandrogens (i.e., bicalutamide and
enzalutamide), when administered to ER+ BC patients, did not show clinical benefit rates
(NCT02463032) [11,12]. However, a recent study has showed that in HR positive BCs, a
subset of cases with both high levels of AR mRNA and low levels of ESR1 (ER) mRNA,
may benefit from enzalutamide [13]. This suggests that the utility of AR-targeted therapies
may depend on the relationship between the levels of these HRs. By contrast, most of the
clinical trials performed on ER- BCs have shown that antiandrogen treatment provides
good results with considerable clinical benefit rates [14–16].

Since BC is considered a highly heterogeneous disease, it is usually classified in
five intrinsic molecular subtypes (Luminal A, Luminal B, HER2-enriched, Basal-like, and
Normal-like), determined by profiling mRNA expression of at least 50 genes (PAM50).
Each one of these categories has different clinical and biological characteristics influencing
patient prognoses [17]. However, in a clinical routine, subtype stratification is usually
determined by immunohistochemical (IHC) expression of HR, human epidermal growth
factor receptor 2 (HER2), and the proliferation marker Ki-67. This evaluation has allowed a
surrogate-subtype classification to be established where cases are divided in Luminal A
(HR+/HER2-/Ki-67 low), Luminal B/HER2-negative (HR+/HER2-/Ki-67 High), Luminal
B/HER2-positive (HR+/HER2+/Ki-67 High), HER2-enriched (HR-/HER2+), and triple-
negative BC—TNBC (HR-/HER-) [18]. The clinical classification has allowed researchers to
group the great biological diversity that occurs in BC, in addition to determining prognoses
and establishing more appropriate treatments for specific subtypes [19]. Despite, this
it has been frequently reported that the BC subtype definition by both gene expression
profiling as well as IHC shows discrepant results and they do not always identify the same
lesions [20–23].

Although several works have evaluated the prognostic value of AR associated with
HR status, few studies have directly evaluated the relationship between AR expression
and BC subtypes. It has been shown that ER+/HER2- (Luminal A) tumors express AR
(by IHC) more frequently than other IHC-surrogate subtypes and, in this BC subset, AR
was considered an independent biomarker of positive outcome [3,24,25]. In contrast, AR
prognostic value is less clear in TNBC, since its expression levels vary considerably in
accordance with the high heterogeneity observed in this BC subtype [14,26]. On the other
hand, preliminary gene expression analysis has revealed that AR mRNA levels are similar
in all intrinsic molecular subtypes, except for the Basal-like subtype, where its levels are
lower [27]. Moreover, it has been found that the prognostic value of AR expression seems
to be dependent on the ER expression levels, and not only on the ER positivity and BC
subtype determined, either by IHC or by molecular subtyping [28–30].

Considering the controversial data about the prognostic value of AR on BC subtypes,
the present study aimed to investigate the association of AR gene expression with BC
subtypes by conducting a meta-analysis of large-scale microarray transcriptomic datasets.
In addition, to evaluate the associations of AR mRNA expression levels with different
clinical and pathological characteristics, we established an agreement between AR gene
expression levels with IHC-surrogate subtypes and with intrinsic molecular subtypes.

2. Materials and Methods
2.1. Microarray Databases Search Strategy in the Gene Expression Omnibus (GEO) Repository

Available microarray datasets related to BC were downloaded from the GEO reposi-
tory in the National Center for Biotechnology Information (NCBI) website https://www.
ncbi.nlm.nih.gov/geo/ (accessed on 20 May 2020). The final date for dataset inclusion was
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August 2020. The search strategy included the terms (“Breast Neoplasms” [Mesh]) AND
“Expression Profiling” AND (“Homo sapiens” [porgn:_txid9606]).

The inclusion criteria were the following: (I) Enrolled data were obtained from humans;
(II) Microarray datasets with information of AR gene expression; (III) The sample type
is not cell lines; (IV) Enough information to calculate the standardized mean difference
(SMD); (V) For clinical and pathological analyses, patients with primary invasive BC with
clinical information available; (VI) BC patients without any treatment before the sample
was taken.

2.2. Data Extraction

Based on the inclusion criteria, the following detailed clinical parameters were ex-
tracted: GEO accession number, PubMed identifier (PMID), BC histological type (invasive
ductal carcinoma, invasive lobular carcinoma and mixed), tumor grade, nodal involve-
ment, metastasis, ER status, PgR status, HER2 status, tumor size, and age. By following
the model proposed by Carey et al. [31], IHC-surrogate subtypes were classified as Lu-
minal A (HR+/HER2-), Luminal B (HR+/HER2+ and/or Ki-67 high), HER2-enriched
(HR-/HER2+), or TNBC (HR-/HER2-). AR gene expression values were collected by
using the tool GEO2R from NCBI. Microarray datasets using PAM50 [17], Hu et al. [32],
or Sorlie et al. [33] algorithms, were included to establish the association among AR gene
expression and intrinsic molecular subtypes (Luminal A, Luminal B HER2-enriched, Basal-
like, and Normal-like).

2.3. Statistical Analysis

For each GEO dataset, the association between AR gene expression and BC was as-
sessed by Student’s t-test or Mann–Whitney unpaired test based on normality distribution.
The analyses were performed using the Statistical Package for Social Sciences (SPSS Version
25, Chicago, IL, USA).

For the meta-analysis, SMD with 95% confidence interval (95% CI) was used as a
summary statistic because all studies measured the same outcome but at different scales.
We conducted sensitivity analyses excluding outliers and, respectively, excluding studies
with a small number (N) of participants. Outliers were defined as studies in which the
pooled effect sizes 95% CI was outside the 95% CI of the pooled effect size (on both sides).
We used an arbitrary cut-off of at least 20 randomized participants per arm for the analysis,
excluding small N studies. Tough power calculations might differ from trial to trial, larger
N trials are at least more precise in estimating the intervention effect [34].

Heterogeneity was calculated using Cochran’s (Q) and Higgins’ (I2) tests. The I2 test
was expressed as a ratio ranging from 0% to 100%. The random-effects model was selected
when I2 > 30% and p-value < 0.05. Otherwise, the fixed-effects model was selected. The
presence of publication bias was graphically examined using funnel plots and Egger’s
regression asymmetry tests. The Comprehensive Meta-Analysis version 3 program (Biostat,
Englewood, NJ, USA 2004) was used for data analyses.

The degree of agreement between intrinsic molecular subtypes and IHC-surrogate
subtypes was measured by Cohen’s kappa (κ). We considered the following levels of
agreement: poor (κ < 0.0), slight (κ = 0.0–0.20), fair (κ = 0.21–0.40), moderate (κ = 0.41–0.60),
substantial (κ = 0.61–0.80), and almost perfect (κ > 0.81) [35]. Statistical analyses were
performed using SPSS v19 (IBM Corporation, Armonk, NY, USA).

3. Results
3.1. Association between AR mRNA Levels and Clinical-Pathological Characteristics of BC Patients

The initial search strategy identified 116,597 microarray datasets. After screening
and eligibility assessment, a total of 62 datasets reporting AR mRNA expression levels
in tumor specimens resected from BC patients (Figure 1) were included. The clinical and
pathological characteristics evaluated are described in Table 1. Moreover, the description
of the selected GEO studies is detailed in Supplementary Table S1.
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Table 1. Clinical characteristics of BC patients.

Characteristics n (%)

Grading
1 801 (13.5)

2 2399 (40.5)

3 2719 (45.9)

Regional lymph nodes (N) N0 1899 (55.2)

N1 1537 (44.7)

Distant metastasis (M)
M0 971 (80.1)

M1 241 (19.8)

Estrogen receptor (ER) Positive 5171 (65.9)

Negative 2670 (34.1)

Progesterone receptor (PgR)
Positive 2463 (52.5)

Negative 2221 (47.4)

HER2
Positive 1028 (22.9)

Negative 3451 (77.1)

IHC—Surrogate Subtype

Luminal A 1232 (57.8)

Luminal B 170 (7.9)

HER2-enriched 199 (9.3)

TNBC 530 (24.8)

Intrinsic Molecular Subtype

Luminal A 1168 (39.1)

Luminal B 643 (21.5)

HER2-enriched 359 (12.0)

Basal-like 589 (19.7)

Normal-like 223 (7.5)
Abbreviations: Human epidermal growth factor receptor 2 (HER2), Immunohistochemistry (IHC), Triple Negative
Breast Cancer (TNBC).

Thirty-nine microarray datasets with clinical information of BC patients regarding
their histological grade were included in the meta-analysis. Interestingly, in the primary
analysis, the expression of AR was significantly increased in both tissues from patients with
histological grade 1 (SMD: 0.427; 95% CI: 0.223–0.630; p < 0.001) and grade 2 (SMD: 0.408;
95% CI: 0.309–0.507; p < 0.001) compared to grade 3 tissues, with considerable heterogene-
ity (Supplementary Figure S1A,B). After exclusion of potential outliers, the trend of the
pooled effect did not change and the expression of AR was still higher in both patients
with histological grade 1 and grade 2 compared to patients with grade 3 (Figure 2A,B).
Herein, the heterogeneity was moderate for both analyses. In these cases, there was no
evidence of publication bias, based on the funnel plots and Egger’s test (Supplementary
Figures S6A,B and S7A,B). There was no statistical evidence that tumor size, regional
lymph node involvement, or the presence of distant metastasis had an association with AR
gene expression levels.
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Figure 2. AR mRNA expression is significantly increased in BC patients with low histological grade.
Results after sensitivity analyses. Forest plots of SMD comparing AR mRNA levels in BC patients
with histological grade 3 vs. BC patients with histological grade 1 (A), and grade 2 (B). The squares
represent the SMD for each dataset. The horizontal line crossing the square represents the 95% CI.
The red diamonds represent the estimated overall effect.

From fifty microarray datasets, information about status of ER (7841 patients), PgR
(4684 patients) and HER2 (4479 patients) was included in the primary analysis. The AR
mRNA levels were significantly increased in women with ER+ BC (SMD: 0.634; 95% CI:
0.488–0.780; p < 0.001) (Supplementary Figure S2A) and in PgR+ BC patients (SMD: 0.576;
95% CI: 0.433–0.718; p < 0.001) (Supplementary Figure S2B). A similar increase was observed
in ER+/PgR+ cases compared to ER+/PgR− cases (SMD: 0.187; 95% CI: 0.065–0.309;
p = 0.003) (Supplementary Figure S2C). The heterogeneity was substantial for ER and PgR,
and moderate for ER/PgR. After sensitivity analyses were conducted, we still observed
a trend of the pooled effect towards a higher AR mRNA levels in BC patients expressing
either ER (Figure 3A), PgR (Figure 3B) or being ER+/PgR+ (SMD: 0.210; 95% CI: 0.096–
0.323; p < 0.001) (Supplementary Figure S3). Here, the heterogeneity was moderate for ER
and PgR, but low for ER/PgR.
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Moreover, our results showed that AR mRNA levels were also increased in tissues from
HER2+ BC patients regardless of their ER or PgR status (SMD: 0.174; 95% CI: 0.002–0.079;
p < 0.001), with moderate heterogeneity (Supplementary Figure S2D). After exclusion of
potential outliers, the trend of the pooled effect did not change and the expression of AR
was still higher in HER2+ BC patients (Figure 3C).

Again, in none of these cases, evidence of publication bias based on the funnel plots
and Egger’s test was observed neither for primary analyses (Supplementary Figure S6C–F)
nor after sensitivity analyses (Supplementary Figure S7C–F).
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Figure 3. AR mRNA expression is higher in BC patients expressing either ER, PgR and HER2. Results
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3.2. Expression of AR Gene Is Increased in Luminal Subtypes

Since gene-expression profiling has had a considerable impact on the classification
of BC, we next investigated whether the expression of AR is associated with the intrinsic
molecular subtypes. In the primary analysis, fifteen microarray datasets with clinical
information of BC patients classified as Luminal A (1168 cases), Luminal B (643 cases),
HER2-enriched (359 cases), Basal-like (589 cases), and Normal-like (223 cases) were in-
cluded in the meta-analysis. Our results showed that AR mRNA levels were higher in
tumor tissues from patients classified as Luminal A, Luminal B, HER2-enriched, and
Normal-like subtypes, when each one of them was compared to tissues from Basal-like
cases (p < 0.001). Interestingly, after performing sensitivity analyses (Figure 4A–C), the find-
ings were consistent with those from the primary analyses (Supplementary Figure S4A–C)
and led to similar conclusions. Furthermore, the same association was found when compar-
ing Luminal A, Luminal B, and HER2-enriched subtypes to Normal-like subtype (p < 0.001)
(Table 2). In addition, AR gene expression was higher in Luminal A than in Luminal B
(p < 0.001). However, there were no significant differences in AR mRNA levels when com-
paring Luminal A and Luminal B subtypes to HER2-enriched subtype (Table 2). Analyses
of heterogeneity, as well as publication bias based on the funnel plots and Egger’s test, are
presented in Supplementary Table S2, Supplementary Figures S8A–D and S9A–D.
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Figure 4. AR mRNA level is significantly increased in patients categorized within the less aggressive
intrinsic molecular subtypes. Results after sensitivity analyses. Forest plots of SMD comparing AR
mRNA levels in BC patients classified as Basal-like subtype vs. Luminal A (A), Luminal B (B), and
HER2-enriched subtypes (C). The squares represent the SMD for each dataset. The horizontal line
crossing the square represents the 95% CI. The red diamonds represent the estimated overall effect.
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Table 2. Analysis of the association between AR mRNA expression and BC classification based on molecular subtypes and
IHC-surrogate subtypes after sensitivity analyses.

Std Diff in Means Lower Limit Upper Limit p-Value

Molecular
subtypes

Basal-like vs. Luminal A 1.940 1.399 2.482 <0.001
Basal-like vs. Luminal B 1.405 1.040 1.771 <0.001

Basal-like vs. HER2-enriched 1.487 1.007 1.966 <0.001
Basal-like vs. Normal-like 1.144 0.720 1.568 <0.001

Normal-like vs. Luminal A 0.776 0.599 0.954 <0.001
Normal-like vs. Luminal B 0.463 0.218 0.708 <0.001

Normal-like vs. HER2-enriched 0.676 0.415 0.937 <0.001
HER2-enriched vs. Luminal A 0.016 −0.116 0.148 0.812
HER2-enriched vs. Luminal B −0.143 −0.357 0.071 0.190

Luminal B vs. Luminal A 0.435 0.296 0.575 <0.001

IHC-surrogate
subtypes

TNBC vs. Luminal A 1.356 1.135 1.576 <0.001
TNBC vs. Luminal B 1.436 0.748 2.124 <0.001

TNBC vs. HER2-enriched 1.084 0.772 1.395 <0.001
HER2-enriched vs. Luminal A 0.193 0.022 0.365 0.027
HER2-enriched vs. Luminal B 0.083 −0.145 0.310 0.477

Luminal B vs. Luminal A 0.081 −0.111 0.274 0.409

Abbreviations: Human epidermal growth factor receptor 2 (HER2), Immunohistochemistry (IHC), Triple Negative Breast Cancer (TNBC).

Furthermore, given the clinical relevance of BC subtype classification, we also evalu-
ated the association of AR expression with the IHC-surrogate subtypes. In the primary anal-
ysis, thirteen microarray datasets, including luminal A (1232 cases), luminal B (170 cases),
HER2-enriched (199 cases), and TNBC (530 cases) patients were included in this meta-
analysis. Herein, AR mRNA expression was significantly higher in tumor tissues from
patients classified as Luminal A, Luminal B, and HER2-enriched compared to tissues
from TNBC cases (p < 0.001). When the pooled effect was evaluated in sensitivity anal-
yses (Figure 5A–C), the conclusions were consistent with those of the primary analyses
(Supplementary Figure S5A–C). Furthermore, AR mRNA levels were higher in Luminal
A than in HER2-enriched tumors (p = 0.02), but, in contrast, there were no significant
differences in AR mRNA levels when comparing Luminal B to HER2-enriched subtypes
(Table 2). Analyses of heterogeneity are detailed in Supplementary Table S2. Moreover,
results concerning publication bias based on the funnel plot and Egger’s test are presented
in Supplementary Figure S8E–G, as well as in Supplementary Figure S9E–G.

Finally, as we observed some differences between the results from intrinsic molecular
subtypes and IHC-surrogate subtypes and their association with AR gene expression, we
have provided an overview of the agreement between them. We included 11 studies in this
analysis and, based on Cohen’s kappa (k), the agreement between Basal-like (molecular)
and TNBC (IHC-surrogate) subtypes was predominantly substantial. Furthermore, the
agreement of both classification systems was fair to moderate when analyzing Luminal
A and HER2-enriched subtypes, but a slight concordance was observed when analyzing
Luminal B tumors between molecular and IHC-surrogate subtype classification (Figure 6).
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4. Discussion

In this study, we analyzed sixty-two published microarray gene transcriptomic datasets
and found that, in BC patients, an increase in AR mRNA levels is associated with a low
histological grade as well as the Luminal A subtype, defined by molecular or IHC-surrogate
subtyping. These findings suggest that higher levels of AR mRNA may be related to BC
tumors having less aggressive clinical features and good biological behavior.

The AR has gained increasing attention as a potential biomarker of BC [36]. Our
analyses revealed higher AR mRNA levels in BC patients with a lower histological grade,
which has been reported in previous gene expression analyses [37]. Since lower tumor
grades are associated with cells that are slower-growing and look well-differentiated, such
as the normal breast tissue, it is logical to assume that high AR gene expression levels
may also be indicative of less aggressive BCs. Regarding other clinical characteristics, we
observed no statistically significant correlation between tumor size, Ki-67 levels, nodal
involvement, or distant metastasis with AR gene expression. However, previous studies
have reported associations between AR protein expression by IHC with smaller tumor size
and lower proliferative index (Ki-67 level) [38–40].

Nevertheless, AR significance in BC is still unclear, since AR positivity has been
associated with different clinical outcomes in BC patients, according to the ER status. In
ER+ BC, AR positivity is considered an independent prognostic factor of a good outcome,
but in the subset of ER- BCs, there have been contradictory reports [5,9,10,41]. Here, the
analyses performed in more than seven thousand BC patients showed that AR mRNA levels
were significantly higher in women with ER+ tumors. This is consistent with previous
reports studying AR gene expression levels [37,42]. The better outcomes observed in ER+
BCs having high AR expression may be attributed to the ability of AR signaling to consistently
inhibit the basal and estrogen-induced proliferation and survival of ER+ BC cell lines [43–45].
AR has been suggested to antagonize ER signaling by competing with ER for binding to
estrogen response elements (EREs) [46]. Furthermore, high AR mRNA levels were also
maintained in PgR+ patients and even in a subgroup of ER+/PgR+ BC cases compared to the
ER+/PgR− subgroup. These results are in agreement with those reported by Tagliaferri et al.,
who have indicated that low AR levels in cases with ER+/PgR− BCs may contribute to the
identification of subgroups of high-risk patients [47]. In general, our results suggest that a
global increase in AR gene expression seems to be a hallmark of HR+ BC.

The AR clinical significance was also studied according to intrinsic BC molecular sub-
types. In agreement with what was observed in HR+, AR gene expression was significantly
increased in Luminal A compared with other molecular subtypes. It is well established that
BC molecular subtypes have unique prognoses and differ in their responsiveness to chemo-
prevention and chemotherapy [48]. Regarding prognosis, the Luminal A subtype has been
shown to have a better outcome than the other subtypes across many datasets of patients
with BC [19,49]. Thus, our data suggest that higher levels of AR mRNA may be associated
with BC subtypes reported to be less aggressive and for having better prognosis, which is
consistent with recent findings providing evidence that AR has a tumor suppressor role in
ER+ BC [50]. These findings were confirmed with analyses performed using IHC-surrogate
subtyping, except that, in this type of classification, differences among Luminal A and B
subtypes were not significant, as it was observed with intrinsic BC molecular subtyping.
Although Luminal B tumors have poorer outcomes and some of them can be identified by
their expression of HER2, its major biological distinction is proliferation, which is higher
in Luminal B than in Luminal A tumors [51]. Accordingly, some of the datasets used to
determine IHC-surrogate subtyping did not include information about the proliferation
marker Ki-67, so Luminal B tumors were defined as HR+/HER2+, following the model
proposed by Carey et al. [31].

Additionally, our results showed a significant increase in AR gene expression in HER2+
BC patients. These patients are frequently associated with a poorer prognosis compared to
HER2− BC cases [52]. Functional crosstalk between AR and HER2 have been described,
which indicates that AR may cause a rapid initiation of cytoplasmic signaling cascades
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through the activation of the ErbB (HER family) and MAPK signaling in BC cells (non-
genomic mechanism) [53,54]. Accordingly, high AR mRNA levels observed in the datasets
studied here give support to the insight that, in HER2+ tumors, the cooperation between AR
and HER2 promotes ERK activation that regulates both HER2 and AR gene expression. As
a consequence, there is a positive feedback loop [55,56] that may stimulate cell proliferation
and the worse clinical outcomes usually observed in HER2+ BCs. AR mRNA expression
in these cases is consistent with analyses performed using both BC molecular subtypes
and IHC-surrogate subtypes, showing that AR mRNA levels are higher in HER2-enriched
tumors compared to basal-like and TNBC tumors, respectively. Remarkably, molecular
and surrogate subtype stratifications did not show significant differences concerning AR
mRNA expression levels between Luminal B and HER2-enriched tumors. This indicates
the need to evaluate AR expression levels in combination with ER and HER2 to better
characterize these BC subtypes. It has been well established that, in contrast to what has
been observed in ER-/HER2+/AR+ tumors, HER2+ BC cases expressing high ER and AR
levels have smaller tumor sizes, lower Ki-67 percentages, less aggressive phenotypes, and
better outcomes [28,29,57,58].

Finally, kappa statistic was used to analyze the agreement between intrinsic molecular
and IHC-surrogate subtype classification. Most of the studies included in the analyses
showed a substantial agreement between basal-like (molecular) and TNBC (IHC-surrogate)
subtypes; however, the agreement was fair for Luminal A and slight for Luminal B subtypes
in many of them. This low agreement may further explain the differences observed in
the association between AR gene expression levels and BC Luminal subtype classification
systems. In addition, to assess several genes related to different biological processes,
algorithms used to establish intrinsic molecular subtypes have a strong component based
on the expression of genes associated with cell proliferation [17,32,33], that, as mentioned
before, might not be included when IHC-surrogate subtyping is performed. Some studies
have shown that the compatibility between the molecular and IHC-surrogate subtyping is
still modest, with ranges of discordance between 15 and 19% for Luminal subtypes, while
many of the tumors categorized as HER2-enriched by the molecular tests are not HER2+
by IHC, nor do they have ERBB2 gene amplification [59–61]. This data indicates that BC
subtypes defined by IHC must be carefully used to determine the potential of new BC
biomarkers, since the information provided by this methodology might not be enough to
replace molecular subtype classification [21,22], especially when several factors associated
with IHC assessment can modify the detection and levels of the markers studied [62,63].

Our study had some limitations. First, it was not possible to determine the discrim-
inative yield of AR expression for both disease-free survival and overall survival of BC
patients. Consequently, survival analyses using the Kaplan–Meier estimator could not be
conducted and does not allow us to be conclusive regarding BC prognosis. Moreover, for
some analyses, there was substantial heterogeneity (I2 > 75%). However, after performing
sensitivity analyses, and after potential outliers were excluded, residual heterogeneity
decreased to between low and moderate. Limitations could be attributed to the differences
in the number of participants between studies and because the measurement of gene
expression levels may vary depending on sample processing or the type of microarray.
It is very important to emphasize that the trend of the pooled effect observed before the
application of sensitivity analyses did not change even after outliers were excluded. To
address these limitations, future studies need to include larger cohorts of patients, and
analyses may be performed with data from more standardized methodologies such as high
throughput sequencing.

5. Conclusions

Here, we tested the association of AR mRNA levels in BC patients with intrinsic BC
subtypes by conducting a meta-analysis of large-scale microarray transcriptomic datasets.
Our analyses revealed higher levels of AR mRNA in BC cases expressing either ER and
PgR, having a lower histological grade, and, in most cases, being categorized as Luminal
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A, the intrinsic molecular subtype characterized by good prognosis. The same trend was
observed when the BC patients were classified using IHC-based surrogate subtypes. Our
findings suggest that the analysis of mRNA levels of AR has the potential to be a promising
non-invasive biomarker for the identification of the less aggressive BC subtypes. In line
with these results, it will be interesting to identify luminal tumors in a clinical routine,
having higher AR levels with respect to ER levels. This could be considered as an important
medicinal target, since some clinical trials using antiandrogen therapies have reported
significant clinical benefits for ER+ BC patients with high AR levels.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10090834/s1, Figure S1: AR mRNA expression is significantly increased in BC patients
with low histological grade. Results from the primary analysis. Forest plots of SMD comparing
AR mRNA levels in BC patients with histological grade 3 vs. BC patients with histological grade
1 (A), and grade 2 (B). Figure S2: AR mRNA expression is higher in BC patients expressing either
ER, PgR, and HER2. Results from the primary analysis. Forest plots of SMD showing AR mRNA
levels associated with ER+ (A), PgR+ (B), ER+/PgR+ (C), and HER2+ status (D). Figure S3: Forest
plot showing that AR mRNA expression is higher in BC patients expressing ER+/PgR+. Figure S4:
AR mRNA level is significantly increased in patients categorized within the less aggressive intrinsic
molecular subtypes. Results from the primary analysis. Forest plots of SMD comparing AR mRNA
levels in BC patients classified as Basal-like subtype vs. Luminal A (A), Luminal B (B), and HER2-
enriched subtypes (C). Figure S5: AR mRNA level is significantly increased in patients categorized
with less aggressive IHC-surrogate subtypes. Results from the primary analysis. Forest plots of SMD
comparing AR mRNA levels in BC patients classified as TNBC subtype vs. Luminal A (A), Luminal B
(B) and HER2-enriched subtypes (C). Figure S6: Funnel plots for main meta-analyses in the primary
analysis. (A) Association between AR mRNA level in BC patients with histological grade 3 vs. BC
patients with histological grade 1, and (B) histological grade 2 (C). AR mRNA levels associated with
ER (D), PgR (E), ER/PgR (F), and HER2 status (G). Figure S7: Funnel plots for main meta-analyses
after sensitivity analysis. (A) Association between AR mRNA level in BC patients with histological
grade 3 vs. BC patients with histological grade 1, and (B) histological grade 2 (C). AR mRNA levels
associated with ER (D), PgR (E), ER/PgR (F), and HER2 status (G). Figure S8: Funnel plots for main
meta-analyses in the primary analysis. Association between AR mRNA level in BC patients classified
with the intrinsic molecular subtypes Basal-like vs. Luminal A (A), Luminal B (B), HER2-enriched
(C), and Normal-like (D). Association between AR mRNA level in BC patients classified with the
IHC-surrogate subtypes TNBC vs. Luminal A (E), Luminal B (F), and HER2-enriched (G). Figure S9:
Funnel plots for main meta-analyses after sensitivity analysis. Association between AR mRNA
level in BC patients classified with the intrinsic molecular subtypes Basal-like vs. Luminal A (A),
Luminal B (B), HER2-enriched (C), and Normal-like (D). Association between AR mRNA level in BC
patients classified with the IHC-surrogate subtypes TNBC vs. Luminal A (E), Luminal B (F), and
HER2-enriched (G). Table S1. Overview of the datasets selected from GEO for clinicopathological
analyses. Table S2. Heterogeneity analysis and publication bias based on Egger’s test.
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