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As a noninvasive blood testing, the detection of cell-free DNA (cfDNA) methylation in plasma has raised an increasing interest due
to diagnostic applications. Although extensively used in cfDNA methylation analysis, bisulfite sequencing is less cost-effective. In
this study, we investigated the cfDNA methylation patterns in lung cancer patients by MeDIP-seq. Compared with the healthy
individuals, 330 differentially methylated regions (DMRs) at gene promoters were identified in lung cancer patients with 33
hypermethylated and 297 hypomethylated regions, respectively. Moreover, these hypermethylated genes were validated with the
publicly available DNA methylation data, yielding a set of ten significant differentially methylated genes in lung cancer,
including B3GAT2, BCAR1, HLF, HOPX, HOXD11, MIR1203, MYL9, SLC9A3R2, SYT5, and VTRNA1-3. Our study
demonstrated MeDIP-seq could be effectively used for cfDNA methylation profiling and identified a set of potential biomarker
genes with clinical application for lung cancer.

1. Introduction

Lung cancer is one of the major cancer types causing cancer
deaths [1]. The unavailability of genetic testing for early can-
cer diagnosis has been regarded as the major cause of high
mortality rate [2, 3]. Since cfDNA with cancer-specific char-
acteristics (such as mutation [4] and epigenetic changes [5])
has been discovered in 1989, it has attracted increasing
attention in cancer biology research [6]. Unlike the tradi-
tional tissue biopsy characterization with the purpose of
prognosis or other clinical assessment, characterizing
cfDNA is noninvasive and real-time, which makes cfDNA
detection a promising clinical tool for disease surveillance,
drug response, and disease recurrence [7–9]. Most of all,
cfDNA released from cancer cells can be detected at an early
stage, making early diagnosis of cancer possible [10].

Hypermethylation at the tumor suppressor gene pro-
moters plays an important role in the formation and
progression of cancer [11]. As a driving force in tumorigen-
esis, methylation occurs at early stage during cancer forma-
tion [12]. Moreover, DNA methylation pattern in plasma
cfDNA is similar with that derived from cancer tissue [5,
13]. These observations suggest that cfDNA methylation
could serve as a useful biomarker for cancer detection [14].

The methods for characterizing cfDNA methylation
could be classified into two categories [15], the qPCR-based
methods for detecting individual regions of interest or the
deep sequencing-based methods for genome-wide DNA
methylation profiling. Although extensively used in cfDNA
methylation profiling analysis, bisulfite sequencing is less
cost-effective [16]. In contrast, methylated DNA immu-
noprecipitation coupled with high-throughput sequencing
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(MeDIP-seq), a genome-wide scale and cost-effective
method, has been extensively used in genomic DNA methy-
lome analysis, whereas it is rarely applied in characterizing
cfDNAmethylation [15]. In this study, we performed cfDNA
methylome analysis with MeDIP-seq in lung cancer patients.
Our results indicate that MeDIP-seq could be effectively used
in cfDNA methylation profiling in cancer patients.

2. Materials and Methods

2.1. Sample Collection and cfDNA Extraction. Lung cancer
patient samples (n = 5) were collected from Shanghai Chest
Hospital. Healthy individual samples (n = 3) were obtained
as control. All lung cancer blood samples were obtained from
patients with adenocarcinoma (sample information shown in
Table 1) and control blood samples were from healthy volun-
teers (the information not provided). The informed consent
was gained from individuals, and the study was approved
by the ethics committees of Shanghai Chest Hospital.

All blood samples from the control group and lung
cancer patients (∼5ml) were collected in tubes containing
EDTA as anticoagulant, centrifuged for 15min at 1500 × g.
The purified plasma was then stored at -80°C.

The cfDNA was extracted from plasma using QIAamp
Circulating Nucleic Acid kit (Qiagen, 55114) according to
manufacturer’s protocol. The quality of plasma cfDNA was
evaluated by Bioanalyzer 2100 (Agilent Technologies).

2.2. MeDIP-seq Library Construction and Sequencing. The
cfDNA was used for MeDIP-seq library preparation with the
method we described previously [17] with some modifica-
tions. Briefly, ~50ng cfDNAwas ligated with Illumina adapter
using the NEBNext Ultra II DNA Library Prep Kit for
Illumina (NEB, E7645) according to manufacturer’s instruc-
tions. The resulting library was denatured at 95°C for
10min, incubated immediately on ice for 10min, and then
subjected to immunoprecipitation with 5-Methylcytosine
(5-mC) Monoclonal Antibody (Epigentek, A-1014). MeDIP
DNA was amplified using Q5 High-Fidelity DNA Polymerase
(NEB, M0491) and the amplification products were purified
with AMPure XP beads (Beckman). The amplified libraries
were evaluated with Bioanalyzer 2100 (Agilent Technologies)
and subjected to deep sequencing by Illumina Hiseq 2000.

2.3. Data Processing and Analysis.MeDIP-seq raw data reads
filtered low-quality reads were mapped to the reference
genome (Human hg38) using Bowtie (version 1.0.1) [18].
The MEDIPS analysis package (version 1.24.0) was used
for analysis and comparison of DNA methylation datasets
of patients and the control [19].

The mapped results were visualized using the Integrative
Genomics Viewer (IGV) [20]. Gene ontology (GO) analysis
and pathway analysis were performed with clusterProfiler
[21] and ingenuity pathway analysis (IPA) (Qiagen).

The 450K methylation array data (Illumina, San Diego,
CA, USA) from normal solid lung tissue and patient samples
were obtained from TCGA-LUAD project (https://portal.gdc.
cancer.gov/projects/TCGA-LUAD). Paired Student’s t-test
was performed between 32 pairs of normal samples and

patient samples using R statistical programming language
(3.4.3, http://www.R-project.org) on the data processed with
beta (β) values (proportion of the methylated signal over the
total signal), and the hypermethylated target genes with p
value < 0.05 were selected.

The raw data of MeDIP-seq samples in this study are
available in the EMBL database (http://www.ebi.ac.uk/
arrayexpress/) under accession number E-MTAB-7163.

2.4. Real-Time Quantitative PCR. To validate the methylated
regions identified by MeDIP-seq, real-time quantitative PCR
(qPCR) assay was carried out with SYBR Green qPCRMaster
Mix (2X) (Kapa, KK4602) at the StepOnePlus qPCR instru-
ment (Applied Biosystems). The primer sequences are shown
in Table S1.

3. Results

3.1. Whole Genome MeDIP-seq Analysis of cfDNA. The
plasma of lung cancer patients (n = 5) and healthy controls
(n = 3) were used in this study. The clinical information of
patients is shown in Table 1. The cfDNA was extracted from
plasma using the kit (Qiagen).

We observed the size distribution of cfDNA centered on
176 bp with the range of 150–200 bp (Figure S1), which was
consistent with the previous study [22].

The MeDIP-seq libraries were constructed with the
cfDNA derived from patients (n = 5) and the healthy
persons (n = 3) were treated as control. As expected, all
amplified libraries exhibited the main peak of ~298 bp
containing the ~120 bp sequencing adapters. Representative
size distribution profiles for the libraries are shown in

Table 1: Clinical information for lung patients.

Sample name Gender Age Stage Histology

P1 Male 50 IIA Adenocarcinoma

P2 Male 72 IA2 Adenocarcinoma

P3 Female 75 IIB Adenocarcinoma

P4 Male 73 IIIB Adenocarcinoma

P5 Female 33 IVB Adenocarcinoma

Notes: P means cancer patient; number means the patient number.

Table 2: Summary statistics of MeDIP-seq data.

Sample
Number
of total
reads

Number of
mapped
reads

Mapped
read rate

Number of
unique
reads

Unique
read
rate

P1 40,691,158 23,618,444 58.0% 7,588,396 32.1%

P2 31,467,734 8,557,316 27.2% 1,389,114 16.2%

P3 35,149,374 25,305,368 72.0% 2,643,030 10.4%

P4 20,488,252 12,351,458 60.3% 2,733,588 22.1%

P5 23,546,814 12,268,278 52.1% 818,628 6.7%

C1 46,505,740 16,686,432 35.9% 2,089,072 12.5%

C2 18,918,360 11,095,194 58.7% 5,085,484 45.8%

C3 91,305,808 58,482,718 64.1% 8,453,424 14.5%

Notes: C means healthy control; P means cancer patient; number means the
individual number.
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Figure S1. All constructed libraries were subjected to
next-generation sequencing.

The cfDNA MeDIP-seq libraries were sequenced with
Illumina Hiseq 2000. On average, 30 million and 52 million
raw sequenced reads were obtained for patients and con-
trols, respectively (Table 1), of which 53.9% and 52.9% were
mapped to the reference genome (Human hg38). After the
repetitive reads were filtered out, there are an average 3 mil-
lion unique reads in the patients and an average 5.2 million
unique reads in the controls (Table 2). Figure S2A shows the
distribution of MeDIP signal located in each chromosome.

To validate MeDIP data quality, we performed real-time
quantitative PCR analysis for randomly selected methylated
genes, including RARB2, ZFP42, and PAX9. The qPCR
results indicated that the selected region of each gene was
fairly enriched, suggesting that our cfDNAMeDIP-seq result
was reliable (Figure S2B).

3.2. Distinct cfDNA Methylation Patterns between Patients
and Control. To examine the overall cfDNAmethylation pat-
tern in the patients and the normal, we applied principal
component analysis (PCA) to their methylation profiles.
Comparing with the control group, we observed the distinct
methylation patterns in patients (Figure 1(a)). And the clus-
tering analysis result also indicated that the patients and the
control differ in cfDNA methylation patterns (Figure 1(b)).

3.3. Differentially Methylated Regions (DMRs) in Lung
Cancer Patients. Using the MEDIPS analysis package, 3013
differentially methylated regions (DMRs) were identified in
the patients (p value < 0.05 and fold change> 2). Moreover,
2568 (85.2%) were hypomethylated and 445 (14.8%) were
hypermethylated (Table S2). We examined the genomic
distribution of both hypomethylated and hypermethylated

DMRs. We found a considerable fraction of DMRs located
in intergenic regions (Figure 2(a)). The visual DMR signals
of hypomethylation and hypermethylation mapped to
whole genome are presented in Figure 2(b). Consistent to
what we observed in the overall DNA methylation pattern,
these 3013 DMRs also exhibited distinct patterns between
patient and the normal (Figure 2(c)).

It is recognized that promoter hypermethylation is asso-
ciated with cancer development [23]. We next focused on
the analysis of DMRs in promoter regions. We found 330
DMRs located in promoter regions (Figure 2(d)), including
33 hypermethylated regions and 297 hypomethylated
regions (Table S3). Some genes with hypermethylated
promoters have been reported in lung cancer, such as
GAS7 [24], AQP10 [25], HLF [26], and HOPX [27].

To understand the biological significance of the genes
with hypermethylated promoter in lung cancer patients, we
performed gene ontology (GO) analysis. We found that 32
genes derived from 33 hypermethylated DMRs are enriched
in tumorigenesis-related GO items, such as oncostatin-M-
mediated signaling pathway, negative regulation of gene
silencing by miRNA, negative regulation of posttranscrip-
tional gene silencing, cell adhesion, and DNA replication-
dependent nucleosome assembly (Table S4). To illustrate
the biological processes that these 32 genes were
associated with, ingenuity pathway analysis (IPA) software
was used and the results are shown in Figure 2(e). The
top disease was cancer that involved 15 genes. The top
molecular and cellular function was cellular development
that involved 12 genes.

3.4. Validation of Differentially Methylated Genes with
Publicly Available DNA Methylation Data. To ask whether
the differentially methylated genes identified in our cfDNA
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Figure 1: The methylation patterns derived fromMeDIP-seq datasets in lung cancer patients and controls. (a) Principal component analysis
(PCA) of the methylation profiles of different populations examined. (b) The clustering analysis of the genome-wide methylation profiles in
patients and controls.
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study are able to separate the cancer patient from the healthy
individuals, we compared the methylation levels of the afore-
said 32 genes in both lung cancer patients (n = 36) and
healthy individuals (n = 36) with publicly available DNA
methylation data. We found that there is significant differ-
ence (p < 0 05) in methylation levels of B3GAT2, BCAR1,
HLF, HOPX, HOXD11, MIR1203, MYL9, SLC9A3R2, SYT5,
and VTRNA1-3 between lung cancer patients and healthy
individuals (Figure 3). This result suggests that these ten
genes possibly serve as diagnostic biomarkers for lung cancer.

4. Discussion

The cfDNA methylation is promising for noninvasive cancer
screening and diagnosis [28]. Although extensively used in
cfDNA methylation analysis, bisulfite sequencing is less
cost-effective. MeDIP-seq, a more cost-effective DNA meth-
ylation profiling approach, has not been applied to the study
of cfDNA methylation [15, 16]. In the present study [29, 30],
we applied MeDIP-seq to characterize the cfDNA methyla-
tion pattern in lung cancer patients.

Through MeDIP-seq analysis, we identified 3013 DMRs
in cfDNA derived from lung cancer patients, with 2569
(85.3%) hypomethylated and 445 (14.7%) hypermethylated
(Figure 2(b)). Such observation was consistent with the
well-known phenomenon that cancer genome is featured
by the genome-wide demethylation [31]. Methylation at
tumor suppressor promoter loci is a driving force in tumor-
igenesis [32]; we found that only a minority of hypermethy-
lated DMRs was located in promoter regions and a
considerable fraction was located in intergenic regions,

suggesting that DNA methylation may regulate gene expres-
sion in a more complex manner through distant regulatory
elements in cancer [33].

To evaluate the clinical potential of 32 hypermethylated
genes at promoters identified in cfDNA of patient plasma,
we examined the methylation status of this set of genes with
DNAmethylation data in public database. We found that ten
genes exhibited statistically significant difference between
lung cancer patients and the normal population, including
B3GAT2, BCAR1, HLF, HOPX, HOXD11, MIR1203, MYL9,
SLC9A3R2, SYT5, and VTRNA1-3 (Figure 3). HLF has
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Figure 2: Differentially methylated regions in patients and controls. (a) The distribution of hypermethylated and hypomethylated loci located
in exon, intron, promoter, and other genomic features. (b) Representation of the distribution of hypomethylated (green) and hypermethylated
(red) regions across patient genomes. (c) Heat map of total 3013 DMRs, including 445 hypermethylated and 2568 hypomethylated. (d) Heat
map of DMRs located in promoter regions in both patients and controls. (e) Top diseases and bio functions by IPA analysis for genes with the
hypermethylated promoters.
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previously been reported to be methylated in lung cancer
[26]. Tumor suppressor HOPX inhibits cell proliferation,
migration, and invasion in lung cancer [27]. Methylation of
B3GAT2, a member of the panel as biomarker, has been used
for diagnosis in colorectal cancer [34]. These observations
suggest that the methylated genes identified in lung cancer
plasma could be of potential value in clinical application.

5. Conclusions

In brief, our study demonstrated MeDIP-seq could serve as an
alternative approach for cfDNA methylation analysis and
identified a set of 10 differentially methylated genes as poten-
tial biomarkers for clinical application in a lung cancer patient.
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