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1. Introduction 

The capacity of oil and gas producers to produce from low-permeability shale formations has been greatly expanded due to the 
rapid development of horizontal drilling and hydraulic fracturing technology [1]. Thus, estimating the reserves and predicting the 
production trends of these unconventional reservoirs is of paramount importance. To do so, decline curve analysis is the easiest method 
from a practical point of view. It is as simple as extrapolating past production trends to estimate the reserves and forecast the pro-
duction [2]. However, the DCA models in the literature are purely deterministic and don’t provide any quantification to the un-
certainties associated with the reserves estimates. The uncertainties in reserves estimates arise from many reasons [3] including but 
not limited to the absence of long-term production data, high noise in production data, complexity of depletion because of the 
interaction of both natural and hydraulically induced fractures, and mostly transient-time flow regime (low permeability hinders 
reservoirs from reaching boundary-dominated flow regime). 

Two approaches exist to estimate production forecasts and reserves [3–5]: the deterministic approach and the probabilistic one. 
For the deterministic approach, there is a single value for each parameter in the mathematical model used to fit the production 

trend – a DCA model. Usually, the values of these parameters are the ones that minimize the error function between the actual and 
fitted data. The deterministic approach doesn’t quantify any uncertainty in its estimates of production rates or reserves. 

Unlike the deterministic approach, a probabilistic approach includes uncertainty evaluation as an integral part. By assigning 
probability distributions to the model parameters, probabilistic decline curves can be generated using one of the statistical techniques. 
Several authors have applied a probabilistic approach to DCA. Cheng et al. [6] utilized bootstrapping and modified bootstrapping to 
produce probabilistic decline forecasts and reserve estimates. Also, Gonzalez et al. [3], Gong et al. [5], and Adaveni [7] used Bayesian 
methodology which relies on Markov Chain Monte Carlo (MCMC) sampling algorithm to generate posterior distributions for the 
parameters of interest. 

The Bayesian methodology came to the mainstream of statistics with the introduction of the Markov Chain Monte Carlo (MCMC) 
sampling algorithm. MCMC was applied to DCA in unconventional reservoirs by Gong [4]. The Bayesian methodology has been chosen 
over other stochastic methods like bootstrapping to produce PDCA because it is faster and yields narrower uncertainty ranges as Gong 
[4] noticed. 

Bayesian methodology has been used in various applications to tackle reservoir engineering problems such as data assimilation [8], 
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well testing [9], and reservoir characterization [10]. 
In this study, individual-well DCA will be conducted on 50 oil wells and 54 gas wells from publicly available data. The Bayesian 

probabilistic methodology will be applied to four DCA methods (Arps, Power Law Exponential (PLE), Duong, and Stretched Expo-
nential Decline (SEPD)), which are widely used in the literature for tight shales. This, in turn, will allow for the estimation of the 
reserves and their associated uncertainties. Typically, this is presented in terms of three confidence levels (P10, P50, and P90) and a 
corresponding 80% confidence interval (C.I.) [6]. 

A question about the reliability (or calibration) of these confidence intervals is then natural. This research will utilize data from oil 
and gas wells to verify the calibration of these C.I.s or in other words to check if the true value of reserves is bracketed by this C.I. 80% 
of the time [4,5,11]. 

We will investigate the effect of the flow regime on calibration and the coverage rate of the C.I.s generated by PDCA. The novel 
thing about this study is that the findings that we will present later indicate that the calibration of a C.I. is highly dependent on the 
selection of an appropriate DCA model. This coincides with findings from other researchers including Wahba et al. [12]. 

JAGS package in R®, an open-source statistics software, has been used to implement the MCMC algorithm and incorporate it with 
DCA models (e.g., Arps, PLE, SEPD, and Duong) to generate probabilistic production forecasts and reserves estimates. 

2. DCA models 

Four DCA models that are widely accepted in the industry to model the decline of oil and gas wells are used together with the 
Bayesian methodology to produce probabilistic estimates of the production forecasts and subsequently the reserve estimates. The four 
models are as follows. 

2.1. Arps’ model 

Arps [13] proposed a set of empirical mathematical formulas to capture the behavior of production rate versus time. The general 
form of Arps’ model (if b > 0) is: 

q(t)=
qi

(1 + b Dit)

(

1
b

) (1)  

where. 

q(t): the production rate, volume units/time; 
qi: initial production rate, volume units/time; 
Di: initial decline rate, 1/time; 

b: exponent. 
When applied to wells from unconventional reservoirs, Arps’ model yields a b-exponent greater than 1. Practically, the hyperbolic 

model can still fit the data, yet the equation when integrated (from zero to infinity) to calculate the cumulative production will result in 
unbounded reserve estimates [14] – for sure the practical upper limit for the integration is not infinity. Table 1 summarizes the cases 
corresponding to different b values in Arps equation. 

2.2. Power law exponential (PLE) model 

Ilk et al. [15] developed this model which incorporates both transient and boundary-dominated flow by introducing a formula for 
the loss ratio (decline rate). 

The formula representing the PLE model is: 

q(t)= q̂і exp ( − D∞t − D̂і tn) (2)  

where: 

Table 1 
Arps’ model three forms.  

Case b Rate-time Relationship 

Exponential b = 0 q(t) = qi exp ( − Dit)
Hyperbolic 0 < b < 1 q(t) =

qi

(1 + b Dit)

(
1
b

)

Harmonic b = 1 q(t) =
qi

1 + Dit   
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q(t): the flow rate at t; 
q̂і : the initial flow rate; 
D∞: loss ratio at t →∞; 
D̂і : is a constant. 
n: time exponent.From equation (2), at early times the term D̂і tn dominates making the decline a sort of hyperbolic decline but at 

late times, when t →∞, the term D∞t dominates resulting in an exponential decline similar to that of Arps. 

2.3. Stretched exponential production decline (SEPD) 

Valkó [16] postulated a DCA model based on his analysis of all publicly available data on gas wells from the Barnett Shale play. The 
SEPD model is basically the integral (sum) of a large number of contributing volumes individually decaying exponentially. 

The SEPD rate-time formula is as follows: 

q(t)= qi exp
[
−
(t

τ

)n]
(3)  

where: 
q(t): production rate at t; 
qi: initial production rate at t = 0; 
τ: median characteristic time constant; 
n: exponent parameter. 

2.4. Duong model 

To account for fracture-dominated flow in tight shale formations, Duong [17] developed an empirical model. 
The Duong rate-time formula is as follows: 

q(t)= q1 t− m exp
[ a
1 − m

(
t1− m − 1

)]
+ q∞ (4)  

where: 
q(t): the flow rate at t; 
q1: the flow rate at t = 1; 
q∞: the flow rate at t = ∞, it can be zero, positive, or negative. The abandonment rate should be decided on solely economic factors; 
a: the intercept of the straight line obtained from a log-log plot of q/Gp or q/Np vs time; 
m: the slope of the straight line obtained from a log-log plot of q/Gp or q/Np vs time, dimensionless. 

3. Bayesian Methodology 

A Bayesian model is a statistical model which is basically a mathematical model that is used to imitate and approximate data- 
generating process [18]. A statistical model would help identify structures in the noisy data. Suppose some historical production 
data vs time is fitted using Arps’ model. The output of this fitting would result in estimates for qi,Di and b. Say qi = 10 MMSCF/ d, Di =

0.3668 year− 1 and b = 0.51, based on the data. It is natural to ask questions like how am I confident in these figures? How these figures 
would change if I took another segment of the available data? Using Bayesian theory, we can account for the uncertainty surrounding 
these estimates. The basics of the Bayesian methodology are outlined as follows: 

3.1. Bayes’ theory 

The mathematical formula for the continuous Bayes’ theorem is as follows [18]: 

p
(
θj
⃒
⃒y
)
=

p
(
y|θj

)
p
(
θj
)

p(y)
=

p
(
y|θj

)
p
(
θj
)

∫
p
(
y|θj

)
p
(
θj
)
dθ

(5)  

where: 
p(θj

⃒
⃒y): the posterior probability distribution of the parameter θj given the data, y. 

p(θj): the prior probability distribution of the parameters θj. 
p(y): the marginalized probability distribution of the data, y, over the range of θj. 
Gong et al. [5] assigned θj to DCA parameters (for example, he used qi,Di, b from Arps’ model as θ1, θ2, θ3 in the Bayes’ theorem – 

the same applies to the other DCA models stated here-above). y is the recorded production data. In the context of Bayes’ theorem: 
historical production data, y, are already determined while the decline curve parameters, θj, have a degree of uncertainty to be 
quantified using Bayes’ theorem which in turn incorporates the historical data. A Bayesian model consists of three components 1) the 
prior distribution which captures the initial uncertainty believed to describe the parameters θj without any consideration to the data at 
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hand 2) the likelihood, p(y|θj) which is the probability of the data given the unknown parameter(s) 3) the posterior distribution of the 
parameters which incorporates both the prior and the likelihood. The prior distribution, p(θj), is the probability distribution of the 
parameters θj. This distribution encapsulates our belief about the parameter based on previous studies or our own knowledge. The 
likelihood function, p(y|θj), represents the probability distribution of our production data, y, given the model parameters θ1, θ2,…, θk 

where k is the total number of DCA model parameters. In this study, the calculated production data is assumed to be normally 
distributed around the true production data (the historical data, represents the mean of the normal distribution) with a variance σ2, 
representing the randomness of error between the historical production data and the calculated one. Namely, the calculated pro-
duction data follows a normal distribution of a mean μ, this mean is the ACTUAL production rate(s), and a variance σ2 representing the 
fitting error. The likelihood function is distributed normally as follows: 

p(y|θ1, θ2,…, θk) ∼ N
(
μ, σ2) (6) 

The posterior distribution of the DCA parameters is calculated using equation (5) which combines our prior knowledge with the 
actual data collected. 

3.2. MCMC algorithms 

MCMC algorithms have been developed to allow sampling from posterior probability distributions (i.e., p(θ1,θ2,…,θk|y)). In this 
study, Gibb’s sampler is used to execute MCMC. Gibbs sampler which adapts Metropolis–Hastings algorithm to perform MCMC over 
more than just one parameter [19]. 

Example: basic Gibbs sampler algorithm for three parameters: 
The three parameters could be thought of as Arps’ model parameters and the data, y, is always conditioned on 
The Gibbs sampler steps are: 
For iteration i in 1 to m, repeat:  

a) Set initial starting conditions (θ1
(0),θ2

(0),θ3
(0))

b) Draw θ1
∗ from a proposal distribution q1 (proposal distribution can be any distribution – for example, normal distribution-that has 

the same domain as the target distribution of θ1)  
c) Calculate the acceptance ratio, α, as per equation (7) by plugging in the previous iteration’s values for θ2

(i− 1) and θ3
(i− 1)

α=

[
p(θ1

∗|θ2
(i− 1) ,θ3

(i− 1) ,y)
q(θ1

∗|θ1
(i− 1))

]

[
p(θ1

(i− 1)|θ2
(i− 1) ,θ3

(i− 1) ,y)
q(θ1

(i− 1)|θ1
∗)

] (7)    

d) Accept the candidate with a probability min {1, α} and set θ1
(i) accordingly  

e) Draw θ2
∗ from a proposal distribution q2  

f) Calculate the acceptance ratio, α, as it has previously done by plugging in the values for θ1 = θ1
(i) and θ2 = θ2

(i− 1)

α=

[
p(θ2

∗|θ1
(i) ,θ2

(i− 1) ,y)
q(θ2

∗|θ2
(i− 1))

]

[
p(θ2

(i− 1)|θi ,θ3
(i− 1) ,y)

q(θ2
(i− 1)|θ2

∗)

] (8)    

g) Accept the candidate with a probability min {1, α} and set θ2
(i) accordingly  

h) Draw θ3
∗ from a proposal distribution q3  

i) Calculate the acceptance ratio, α, as it has previously done by plugging in the values for θ1 = θ1
(i) and θ2 = θ2

(i)

α=

[
p(θ3

∗|θ1
(i) ,θ2

(i) ,y)
q(θ3

∗|θ3
(i− 1))

]

[
p(θ3

(i− 1)|θ1
(i) ,θ2

(i) ,y)
q(θ3

(i− 1)|θ3
∗)

] (9)    

j) Accept the candidate with a probability min {1, α} and set θ3
(i) accordingly 

One iteration of the above algorithm is (θ1
(i), θ2

(i), θ3
(i))) constituting one row in the MCMC sampler matrix. Every Gibbs cycle 

includes an update for each parameter. 
The details of the Gibbs sampler can be easily handled by a number of commercially available software packages. 
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In this research, a software package called JAGS (Just Another Gibbs Sampler) by Martyn Plummer is utilized. The program is free 
software that can run on all machines and operating systems. Here, a statistical programming language R is used as a platform to run 
the program using rjags package. 

In JAGS, just a few lines of code can be used to run very powerful MCMC samplers. The main concern shifts towards the statistical 
modeling concept rather than writing and implementing the code. A wide range of statical models is fit easily using rjags. For each 
model of the four DCA addressed in this study, two codes are written one for the oil case and one for the gas case. Each code defines the 
non-informative (non-biased) priors for the parameters based on previous studies’ findings (section 5.1) and also defines the likelihood 
function as discussed in equation (6). MCMC of 3 chains and 5000 iterations are used to produce a posterior distribution of the DCA 
parameters. The software outputs the posteriori for the parameters and from which the production rates are calculated as we will 
discuss in section 5.6. 

4. Flow regimes in unconventional reservoirs 

Unconventional horizontal wells completed with multistage hydraulic fracturing experience multiple flow regimes throughout 
their lifetime [20]. Formation transient linear flow regime may be the dominant flow regime during most of the lifetimes of the wells 
[21]. For other cases that have close natural fracture spacing, a liner flow precedes Boundary Dominated Flow (BDF). Moreover, a 
bilinear flow regime may develop before the liner flow. In a typical bilinear flow, the fluid flow starts from the rock matrix towards the 
natural fractures then to the hydraulic fractures, and finally to the well [21,22]. Fig. 1 shows a typical well with the three flow regimes 
over its producing lifetime. 

Therefore, four possible decline scenarios may develop [21].  

a) Linear  
b) Linear-BDF  
c) Bilinear-Linear-BDF  
d) Bilinear-Linear. 

5. Application and results of Bayesian Methodology using MCMC sampling technique on field-wide data 

The purpose of this research is to assess the performance of Bayesian Methodology in a sample of 50 oil wells and 54 gas wells. 
Moreover, the research investigates how the 80% credible interval is calibrated. 

The parameters of four decline curve analysis models (Arps, PLE, Duong, and SEPD) and their associated uncertainties are esti-
mated using the Bayesian methodology. Actual publicly available production data of 50 oil wells from in the Permian basin and 54 gas 
wells in the Marcellus Shale play are utilized. 

The data of every individual well is split into two equal sets: one set is for training (the early half of the data) and the other (the late 
half of the data) is for forecasting (to test the predictivity of the model while evaluating uncertainty at the same time). The 50% 
training set was used by other authors like Adaveni [7]. 

Fig. 2 shows “Start of Hindcast” which marks the split of the production data into 2 sets. The vertical line indicates the end of the 
training set and the start of the prediction set. 

For the oil wells, 50 wells with production history starting as early as January 2014 and continuing 22–88 months later (11–44 data 
points have been used to fit the models) were used. For the gas wells, 54 wells that had been produced to September 2022 have been 
selected. These wells had been producing for 18–72 months before September 2022 (9–36 data points have been used to fit the 
models). 

The following process explains the steps on which the Bayesian modeling is built. 

Fig. 1. a log-log plot of production rate vs time shows how to identify the flow regime based on the slope of the line [22].  
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5.1. Prior selection for the models 

In Bayesian analysis, the choice of prior distributions is crucial. In this research, noninformative priors for the parameters, also 
known as vague priors, are used. The usage of noninformative priors implies that all potential biases in the priors (i.e. priors have 
information related to researcher beliefs and previous experiences) are excluded and that, in return, makes models primarily data- 
driven. The knowledge about the range of the parameters obtained from previous studies will be incorporated but values within 
that range will be equally likely to be chosen. Table 2 summarizes the range for the DCA parameters. 

5.2. Refining of the data 

For data refining, techniques from Duong [17] and Alqattan [24] have been adopted. Early-production data is most of the time 
noisy due to cleaning of the well, choking, or other operational reasons. All four models used in this research are very sensitive to 
early-production data. Throughout this research, this data is removed manually from the production history to get reliable DCA results. 
It should be laid out that noisy data during other stages of production is left without any smoothing even if they show high noise as long 
as they follow the general trend of decline as shown in Fig. 3. 

5.3. Identifying flow regimes 

For the oil and gas wells tackled in this study, the flow regimes are identified using the slope rule outlined by authors like [20–22]. 
Fig. 1 shows an example of a well undergoing three flow regimes throughout its producing life: bilinear followed by linear and finally 
BDF. These flow regimes can be identified by the slope of the line when plotting production rates vs time on a log-log scale. Bilinear 
flow is characterized by ¼ slope, linear flow exhibits ½ slope while BDF shows a progressive curve. The four scenarios, in terms of flow 
regimes, that an unconventional well can undergo are linear, linear-BDF, bilinear-linear-BDF, and bilinear-liner as outlined in the flow 
regime in the unconventional reservoir section. 

5.4. Error analysis 

Error analysis is done on the data using four DCA models. The data is fitted using the mean parameters of the Bayesian Analysis 
coupled with the MCMC algorithm. Then, the error is analyzed. If the error is not randomly distributed around zero when plotted 
against the fitted values, and has a systematic trend, the model is deemed inconvenient. All wells analyzed here are of acceptable error 
analysis. 

5.5. MCMC parameters convergence 

In this research, MCMC of 3 chains and 5000 iterations are used to produce a posterior distribution of the DCA parameters. Three 
metrics have been used to assess convergence on every well/model combination separately.  

a) Gelman Diagnosis: Gelman–Rubin [25] developed a technique to assess the convergence between multiple MCMC chains. This 
metric should be one to indicate convergence.  

b) Auto-correlation metric: this metric helps assess convergence because as autocorrelation nears zero MCMC is more reliable.  
c) Effective sample size: the higher this number the better. Its maximum is 15,000 because we use 3 chains and 5000 iterations for 

each. 

It should be pointed out that all wells tackled here show good convergence across all four models. 

Fig. 2. Actual production data and P10, P50, and P90 estimates for production rates using Arps’ model (an oil well example).  
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5.6. Posterior analysis and reserves confidence intervals 

The culmination of this study is to produce confidence/credible intervals that quantify our uncertainty about the reserves. Bayesian 
methodology along with the MCMC algorithm has been implemented to estimate the parameters of Arps, PLE, Duong, and SEPD for oil 
and gas wells. 

As laid out previously, 50% of the production data is used as a training set for all of the 4 models. For each parameter (i.e., Arps: qi,b,
Di; PLE: q̂i , D∞ , D̂i , n; Duong: q1, m, a, q∞, SEPD: qi, τ, n), there are 15,000 estimates (3 chains and 5000 iterations for each). Each 
decline curve model would produce 15,000 estimates for production rate at each time point. P10, P50, and P90 can be constructed out 
of this distribution.1 The actual cumulative production of the second half of the data (prediction data set) is treated as “actual reserve” 
while Bayesian P90–P50–P10 reserves are the 10th, 50th, and 90th percentile of the cumulative production. The essence of this search 
is to evaluate how well these percentiles can encapsulate the “true reserves” throughout the 4 DCA methods. 

The following example (see Fig. 4) shows how posterior analyses are done on a gas well modeled by the PLE model. The same 
principle applies to the other three models. 

“Start of Hindcast” indicates the end of the training set and the start of the prediction set. 
The probability distribution of the cumulative production in the second half of the data using the PLE model is (see Fig. 5) 
Table 3 shows the actual cumulative production “true reserve” is successfully bracketed by the 80% credible interval as shown 

above.where: 
Nt: the number of data points in the training set. 
R2

t : the R-squared of the training set. 

Table 2 
Summarizes the range for the DCA parameters of the four models.  

Bounds for Decline Curve Model Equations 

DCA Parameter Lower bound Upper bound References 

Arps’ Model 
qi,volume/ time 0.001 100,000 [3,23] 
Di,1/ time 0.01 2 
b 0 6 
Power Law Exponential 
q̂i 0.001 100,000 [3,15] 
D∞,1/ time 10− 8 10− 2 

D̂i ,1/ time 0.001 10 
n 0.001 2 
Stretched Exponential Production Decline 
qi,volume/ time 0.001 100,000 [3,16] 
τ 0 60 
n 0 6 
Duong Model 
q1 0.001 100,000 [3,17] 
m 0.001 2 
a 0.01 5 
q∞ − 1 1  

Fig. 3. An oil well undergoing a natural decline.  

1 P90, P50 and P10 are 10th, 50th and 90th percentile of production distribution at a point of time respectively. 
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RMSEt: the root mean squared of the training set Q at P50, Q at P90, and Q at P10: the 50th, 10th, and 90th percentiles of the 
cumulative production respectively. 

R2
f : the R-squared of the forecast set. 

RMSEf: the root mean squared of the forecast set. 
Flow regime: indicates the flow regime through which the well passes over its entire production period. 

5.7. Large-scale results 

Probabilistic decline curve analysis using Bayesian methodology coupled with MCMC sampling algorithm has been applied to four 
decline curve analysis methods to generate probabilistic production forecasts and quantify single-well reserves uncertainty. As 
mentioned before, 50% of the production data is used as a training dataset to produce the posterior distribution for the DCA models. 
Then, the rest of the data is used as a prediction dataset. The actual cumulative production of the second half of the data is dubbed as 
“actual reserve” while Bayesian P90–P50–P10 reserves are the 10th, 50th, and 90th percentile of the cumulative production. In this 
section, the coverage rate, average relative error, average absolute error, and average (P10 − P90)/Actual for 50 oil wells in the 
Permian Basin are presented for each decline curve method. 

Some definitions are presented below: 
Coverage rate, CR: represents the fraction of the wells that fall in the P90–P10 range resulting from the Bayesian methodology. In 

theory, if the Bayesian methodology is well calibrated, 80% of well reserves should be within P90–P10 estimates. If this is not the case, 
then either the DCA model is inconvenient for that case or the Bayesian methodology is deficient. 

Relative error: The smaller this number the better. It will be used to compare different DCA models on a scale of many wells. 

P50 − Actual
P50

× 100% (10)  

where, 
P50: is the 50th percentile estimate of the reserve, 
Actual: is the actual value of the reserve obtained from the production data of a well. 

Fig. 4. Actual production data and P10, P50, and P90 estimates for production rates using the PLE model.  

Fig. 5. The probability distribution for cumulative production P90, P50, and P10 estimates using the PLE model. The true reserve is indicated in 
green color. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Table 3 
The summary of the posterior analysis for a gas well using the PLE model.  

Well Name Nt Dinf Dihat N qihat R2t RMSEt Q at P50 Q at P90 Actual Q Q at P10 R2
f RMSEf Flow Regime 

Mean Mean Mean Mean 

37-115-21640 23 1.01E-05 6.73E-02 7.96E-01 2.17E+05 0.94 8677.7 1,695,698 1,519,376 1,753,875 1,865,079 0.8 11785.8 Bilinear-linear-BDF  

A
. A
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Relative absolute error: The smaller this number the better. It is the same as relative error but the numerator is always positive. It 
will be used to compare different DCA models on a scale of many wells. 

|P50 − Actual|
P50

× 100% (11)  

Average P10–P90/Actual: is the average value of the confidence interval width relative to the actual production. The smaller this 
number the better as long as the coverage rate is high. 

5.7.1. Oil wells 

5.7.1.1. Arps. Table 4 shows a summary of the 50 oil wells and the coverage rate percentage. The overall coverage rate, CR, is 58%. 
This indicates a poorly-calibrated Bayesian P10–P90 range. Theoretically, CR should be 80% (i.e. for the Bayesian methodology to be 
well-calibrated the CR should be at least 80%). The poor calibration can be attributed to the fact that Arps’ model itself doesn’t 
adequately fit the production data, a small number of training data points (the range of the number of training points is between 11 and 
44 months), or poor quality of data that Arps cannot tackle. It can be observed that the model did fairly well with bilinear-linear-BDF 
and bilinear-linear flow regimes (75% and 73.9% CR respectively). It could have reached 80% CR if there were more wells to analyze. 
However, for both linear-BDF and linear flow regimes it did very poorly (23.1% and 50% CR respectively). Also, the model over-
estimates the reserves for the cases where it fails to capture their true reserves. 

5.7.1.2. PLE. A summary of 50 oil wells and their associated coverage rate percentage is presented in Table 5. CR of the Bayesian 
P10–P90 interval is 70% which is a big improvement over the CR of the Arps model. It can be noted that the Bayesian confidence 
interval (CI) is very well calibrated in the case of bilinear-linear-BDF and bilinear-linear flow regimes (87.5% and 82.6% CR 
respectively). The revealing performance of PLE in bilinear-linear-BDF and bilinear-linear flow regimes coincides with results from 
other researchers like Wahba [12]. This might be attributed to the fact that the model was originally developed to tackle the flow 
regimes starting with the bilinear flow regime. It did fairly well with up to 69% CR for the linear-BDF flow regime. Nonetheless, it had 
performed very badly at 0% CR for the linear flow regime indicating that the PLE method must not be used to evaluate wells un-
dergoing linear flow throughout their lifetime. For investment analysis applying the PLE model and obtaining estimates of reserves 
with Bayesian analysis, caution should be exercised if the well has started with a linear flow regime (½ slope for rate vs time on a 
log-log scale). 

5.7.1.3. Duong. Table 6 summarizes the results obtained from applying Bayesian methodology on 50 oil wells and the coverage rate 
percentage. CR of the Bayesian P10–P90 interval is merely 32% which is very poor (the Bayesian methodology coupled with Duong 
only captures 32% of the actual reserves). It is worth noting that Bayesian CI is only well calibrated in the case of linear flow regime (½ 
slope for rate vs time on a log-log scale). This is primarily because the model itself was developed specifically for linear flow regimes 
[12,17]. For the other flow regimes: bilinear-linear-BDF, bilinear-linear, and linear-BDF, the Duong model performs very poorly 
(37.5%, 21.7 and 23.1 % CR respectively). For any business planner applying the Duong model and obtaining estimates of reserves 
with Bayesian analysis, only the case of a linear flow regime throughout the life of the well should be considered. This of course is very 
challenging to know because if a well starts with a linear flow regime it is not guaranteed that it will continue with this behavior for the 
rest of its lifetime. 

5.7.1.4. SEPD. The breakdown of 50 oil wells and the coverage rate percentage associated with each flow regime are presented in 
Table 7. CR of the Bayesian P10–P90 interval for all wells tackled in the study is 76% which is the highest among the four DCA 
methods. Significantly, it can be observed that the Bayesian CI is very well calibrated in the case of bilinear-linear-BDF, bilinear-linear, 
and linear-BDF flow regimes (87.5%, 82.6%, and 84.6% CR respectively). Nonetheless, it performed very badly at 16% CR for the 
linear flow regime despite this deficiency, the model successfully underestimated all the reserve estimates. Underestimation of reserves 
is considered safe in the case of high-risk projects. For an analysis, applying the SEPD model and obtaining the estimates of oil reserves 
with Bayesian analysis is the best option based on this study. This is because SEPD coupled with Bayesian methodology has been able to 
capture true reserves correctly and even when it fails, it underestimates the reserves making the economic decision less risk-prone. 

Table 4 
The coverage rate resulting from Bayesian analysis for 50 oil wells utilizing the Arps DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

29 21 58.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 6 2 0 2 75.0 
bilinear-linear 23 17 6 4 2 73.9 
linear-BDF 13 3 10 10 0 23.1 
linear 6 3 3 2 1 50.0  
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5.7.1.5. The distribution of (true-P50)/(P10-90) and the error analysis. The quantity (True − P50)/(P10 − P90) is calculated each well. 
The density plot of this quantity for the 50 oil wells should be normally distributed around 0.5 if the probabilistic reserves are unbiased 
[4]. 

Fig. 6 illustrates how each model performs on the field-wide data when coupled with the Bayesian methodology. A summary of the 
conclusions drawn from Fig. 6 is as follows: 

Arps: the distribution is skewed to the left (the distribution is centered around ¼) indicating a general overestimation of the model. 
PLE: the distribution is centered at ½ indicating the Bayesian method coupled with PLE is generally unbiased. Also, the distribution 

is right-skewed indicating a general underestimation of the model. 
Duong: the distribution is almost uniform (not showing a clear peak) indicating that the model is not reliable at all in predicting the 

CI of the reserves of the wells at hand. 
SEPD: the distribution centered at 0.5 indicating the Bayesian method coupled with SEPD is overall unbiased. Also, the distribution 

is right-skewed indicating a general underestimation of the model. 
The error analysis for the 50 oil wells using the Arps, PLE, Duong, and SEPD models has been calculated according to the criteria 

outlined before as follows. 
Table 8 can be summarized as follows: 
Arps case: the average relative error is positive indicating that the model overestimates the reserves for the well. The average value 

represented in the last row should be compared with other models to see how wide the confidence interval is. The smaller this quantity 
the less uncertainty we have in the reserve estimates given that other error metrics are low. 

PLE case: the average relative error is negative indicating that the model underestimated the reserves for a well. The average 
quantity (last row) is less than the value for the Arps model so is the average relative error and average absolute relative error. 

Duong case: the average relative error is positive indicating that the model overestimates the reserves for wells at hand. The average 
quantity (last row) should be compared with other models to see how wide the confidence interval is. It is less than the value for Arps 
and PLE models but it is worthless to consider solely since CR here is lower than the previous two models this increase in the figure is 

Table 5 
The coverage rate resulting from Bayesian analysis for 50 oil wells utilizing the PLE DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

35 15 70.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 7 1 0 1 87.5 
bilinear-linear 23 19 4 2 2 82.6 
linear-BDF 13 9 4 1 3 69.2 
linear 6 0 6 0 6 0.0  

Table 6 
The coverage rate resulting from Bayesian analysis for 50 oil wells utilizing the Duong DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

16 34 32.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 3 5 5 0 37.5 
bilinear-linear 23 5 18 17 1 21.7 
linear-BDF 13 3 10 10 0 23.1 
linear 6 5 1 0 1 83.3  

Table 7 
The coverage rate resulting from Bayesian analysis for 50 oil wells utilizing the SEPD DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

38 12 76.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 7 1 0 1 87.5 
bilinear-linear 23 19 4 0 4 82.6 
linear-BDF 13 11 2 0 2 84.6 
linear 6 1 5 0 5 16.7  
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worthless. 
SEPD case: the average relative error is negative indicating that the model underestimated the reserves for a well. 

5.8. Gas wells 

As mentioned in the case of oil wells, probabilistic decline curve analysis using Bayesian methodology coupled with MCMC 
sampling algorithm has been applied to four decline curve analysis methods to generate probabilistic production forecasts and quantify 
single-well reserves uncertainty. As has been done with the previous section, the coverage rate, average relative error, average absolute 
error, and average (P10 − P90)/Actual for 54 gas wells in Marcellus Shale play are presented for each decline curve method. 

Fig. 6. (True-P90)/(P10–P90) distribution for 50 oil wells using a) the Arps model b) the PLE model c) the Duong model d) the SEPD model.  

Table 8 
The error analysis for the 50 oil wells using the Arps, PLE, Duong, and SEPD models.  

Error metric Arps PLE Duong SEPD 

Average relative error, % 11.9 − 2.3 20.1 − 9.2 
Average absolute relative error, % 22.4 10.1 16.5 27.4 
Average (P10–P90)/Actual 0.31 0.29 0.22 0.29  

Table 9 
The coverage rate resulted from Bayesian analysis for 54 gas wells utilizing the Arps DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

32 21 60.4 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 4 4 4 0 50.0 
bilinear-linear 28 24 3 1 2 85.7 
linear-BDF 13 3 10 0 10 23.1 
linear 5 1 4 0 4 20.0  
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5.8.1. Arps 
The results in Table 9 summarize 54 gas wells and the coverage rate percentage when Bayesian methodology is coupled with the 

Arps model. The total coverage rate, CR, is 60.4%. This indicates fairly acceptable calibration for the Bayesian P10–P90 range. The 
less-theoretical calibration may be attributed to the fact that the Arps model itself doesn’t adequately fit the production data, a small 
number of training data points (the range of the number of training points is between 9 and 36 months), a small number of wells have 
been considered (only 54 wells from the same region) or poor quality of data that the Arps model cannot tackle. It can be observed that 
the model performs very well with bilinear-linear (85.7% CR). It performed poorly with a bilinear-linear-BDF flow regime (50% CR). 
However, for both linear-BDF and linear flow regimes it did very poorly (23.1% and 20% CR respectively). So, when applying the Arps 
model with Bayesian analysis, caution should be exercised with these two flow regimes (linear-BDF and linear). Also, the model 
overestimates the reserves for all cases in bilinear-linear-BDF it fails to capture. Yet, it underestimates all of the reserves for linear-BDF 
and linear flow regimes. 

5.8.1.1. PLE. Following a similar approach, Table 10 shows a summary of the 54 gas wells and the coverage rate percentage with the 
PLE model coupled with Bayesian methodology. The coverage rate for all the wells in the study, CR, is 58%. A low percentage like this 
indicates a poorly-calibrated Bayesian P10–P90 range. The way-less-theoretical calibration may be due to the fact that most of the 
cases of the wells at hand are of bilinear-linear flow regimes. The model coupled with Bayesian methodology doesn’t adequately 
capture the production data belonging to this flow regime. Other factors may include a small number of training data points (the range 
of the number of training points is between 9 and 36 months), a small number of wells have been considered (only 54 wells from 
relatively the same region), or poor quality of data that PLE cannot tackle. It can be observed that the model performs very well with 
bilinear-linear-BDF (87.5 % CR). It has done a good job capturing the reserves for linear-BDF with 76.9% CR. This CR could have been 
above 80% if more wells were available for analysis. It performed poorly with a bilinear-linear flow regime (50% CR). However, for 
both linear-BDF and linear flow regimes it did very poorly (42.9%). Yet, the model safely underestimated all of the cases under 
investigation. The model has not been able to capture the “true” reserves for any of the linear flow regimes. However, it also 
underestimated all of the cases. To conclude the results in accordance with the data investigated here, PLE coupled with Bayesian 
methodology performs well with bilinear-linear-BDF and linear-BDF. However, it fails completely with a linear flow regime. 

5.8.1.2. Duong. A brief analysis and statistics related to the performance of Bayesian methodology and the Duong model for 54 gas 
wells are addressed in Table 11. The most important quantity, the overall coverage rate, CR, is only 46%. This indicates a very poorly- 
calibrated Bayesian P10–P90 range. The poor calibration may be due to the fact that most of the cases of the wells at hand are of 
bilinear-linear flow regimes. As discussed earlier, the Duong model has been developed primarily to tackle linear flow regimes. 
Therefore, the model coupled with Bayesian methodology performs badly with other flow regimes. Other factors concerning low CR 
may include a small number of training data points (the range of the number of training points is between 9 and 36 months) or a small 
number of wells that have been considered (only 54 wells from relatively the same region). It can be observed that the model performs 
ultimately well with a linear flow regime (100 % CR). Other than that, it performed very poorly with linear-BDF, bilinear-linear-BDF, 
and bilinear-linear flow regimes (23.1%, 37.5%, and 42.9% CR respectively). The model also overestimates most of the cases it fails to 
capture it is true reserve rendering its application risky because the estimates are very optimistic. 

5.8.1.3. SEPD. The coverage rate and the flow regimes breakdown of 54 gas wells are presented in Table 12. The overall coverage 
rate, CR, is just 40.7%. The poor calibration of the P10–P90 range may be because most of the cases of the wells at hand are of bilinear- 
linear flow regimes. As outlined before, SEPD works well when BDF is present at the end of the production. The model coupled with 
Bayesian methodology doesn’t adequately represent the production data belonging to flow regimes that don’t include BDF. Other 
factors concerning low CR are related to the limited training data for the model as discussed with other models. It can be observed that 
the model performs well with bilinear-linear-BDF and linear-BDF flow regimes (87.5% and 76.9% CR). Other than that, it performed 
very poorly with bilinear-linear and linear flow regimes (17.9% and 0% CR respectively). The model underestimates all of the cases it 
fails to capture. This behavior makes the model coupled with Bayesian methodology a safe option for an engineer predicting the 
reserves. 

5.8.1.4. The distribution of (true-P50)/(P10-90) and the error analysis. The quantity (True − P50)/(P10 − P90) is calculated each well. 
The density plot of this quantity for the 54 gas wells should be normally distributed around 0.5 if the probabilistic reserves are unbiased 
[4]. 

Fig. 7 illustrates how each model performs on the field-wide data when coupled with the Bayesian methodology. A summary of the 
conclusions drawn from Fig. 7 is as follows: 

Arps: the distribution is fairly normal around ½ indicating good predictability for the model. predictability in this context is the 
model’s ability to output CI that captures the “true” reserves. The distribution is somewhat skewed to the left (the area under the curve 
is more from the left to 0.5) indicating a general overestimation of the model. 

PLE: the distribution peaks around ¾ which means that the model is biased with this set of data. It is right-skewed indicating that 
the model is generally underestimating the reserves. As indicated before, this distribution should be centered around ½ which is not the 
case here. This indicates poor predictivity (for the wells in general) for the CI capturing the true reserves. 

Duong: the distribution peaks around ½ and is extremely left-skewed indicating that the model is generally overestimating the 
reserves. 
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PLE: the distribution peaks around 1 and is right-skewed indicating that the model generally underestimates the reserves. As 
indicated before, this distribution should be centered around ½ which is not the case here. This indicates poor predictivity (for the wells 
in general) for the CI capturing the true reserve. 

The error analysis for the 54 gas wells using the Arps, PLE, Duong, and SEPD models has been calculated according to the criteria 
outlined before as follows. 

Table 13 can be summarized as follows: 
Arps case: The average relative error is positive indicating that the model overestimates the reserves for the wells at hand. The 

quantity in the last row should be compared with other models to see how wide the confidence interval is. The smaller this quantity the 
less uncertainty we have in the reserve estimates given that other error metrics are low. 

PLE case: The average relative error is negative indicating that the model underestimates the reserves for the wells at hand. 
Duong case: The average relative error is positive indicating that the model generally overestimates the reserves for the wells at 

hand. 
SEPD case: The average relative error is negative indicating that the model generally underestimates the reserves for the wells at 

hand. 

6. Conclusions 

Oil and gas wells can equally be modeled using the well-known DCA models coupled with Bayesian analysis. Regardless of the 
nature of the fluid being produced, DCA basically models reflect the flow regime under which a well is flowing. 

The following points can be drawn out from the Bayesian analysis with regard to the oil and gas wells tackled in the study.  

• Arps’ model performs the lowest amongst other models even when incorporated with Bayesian methodology. This is mostly 
because the model is intrinsically developed for BDF or because the time frame for the production was not enough to exhibit BDF in 

Table 10 
The coverage rate resulting from Bayesian analysis for 54 gas wells utilizing the PLE DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

29 21 58.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 7 1 0 1 87.5 
bilinear-linear 28 12 12 0 12 42.9 
linear-BDF 13 10 3 0 3 76.9 
linear 5 0 5 0 5 0.0  

Table 11 
The coverage rate resulting from Bayesian analysis for 54 gas wells utilizing the Duong DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

23 27 46.0 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 3 5 5 0 37.5 
bilinear-linear 28 12 12 11 1 42.9 
linear-BDF 13 3 10 9 1 23.1 
linear 5 5 0 0 0 100.0  

Table 12 
The coverage rate resulting from Bayesian analysis for 54 gas wells utilizing the Duong DCA model.  

Flow Regime Number of Wells Captured CR, % 

Yes No  

22 32 40.7 

Total Total Overestimated Underestimated  

bilinear-linear-BDF 8 7 1 0 1 87.5 
bilinear-linear 28 5 23 0 23 17.9 
linear-BDF 13 10 3 0 3 76.9 
linear 5 0 5 0 5 0.0  
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many cases. However, in cases where a well starts with a bilinear flow regime Arps model incorporated with Bayesian methodology 
can be used to yield fairly good results. This is because the bilinear-flow period seems to pitch down the rest of the Arps’ decline 
curve.  

• The PLE model can be applied to all cases with a good prediction of the reserves even if a well starts with a linear flow regime that’s 
because the PLE model underestimates the reserves for most of the cases where the reserves are not included in the CI. The model 
performs best when the well life is long enough to allow BDF to develop.  

• Duong model is only valid for wells exhibiting linear flow all over their production life which is very hard to predict – as per this 
study’s findings. Thus, researchers should refrain from using Duong in other cases because of its tendency to overestimate the 
reserves.  

• SEPD is the best-performing model amongst the other models because it was able to give an excellent calibration for the coverage 
rate. The model performs best when the well life is long enough to allow BDF to develop. The only case where it fails is when the 
linear model is the dominant model throughout the lifetime of a well. Nonetheless, it underestimated all the reserves it failed to 
capture in the CI. This makes economic decisions less risk-prone if the model is used in economic studies. 

Data availability 

Sharing research data helps other researchers evaluate your findings, build on your work and to increase trust in your article. We 
encourage all our authors to make as much of their data publicly available as reasonably possible. Please note that your response to the 
following questions regarding the public data availability and the reasons for potentially not making data available will be available 
alongside your article upon publication. 

Fig. 7. (True-P90)/(P10–P90) distribution for 54 gas wells using a) the Arps model b) the PLE model c) the Duong model d) the SEPD model.  

Table 13 
The error analysis for the 54 gas wells using the Arps, PLE, Duong, and SEPD.  

Error metric Arps PLE Duong SEPD 

Average relative error, % 2.7 − 0.1 8.8 − 10.4 
Average absolute relative error, % 13.2 0.2 9.1 14.9 
Average (P10–P90)/Actual 0.15 0.16 0.11 0.15  
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