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Abstract: Long non-coding RNAs (lncRNAs) can influence transcriptional and translational processes
in mammalian cells and are associated with various developmental, physiological and phenotypic
conditions. However, they remain poorly understood and annotated in livestock species. We combined
phenotypic, metabolomics and liver transcriptomic data of bulls divergent for residual feed intake
(RFI) and fat accretion. Based on a project-specific transcriptome annotation for the bovine reference
genome ARS-UCD.1.2 and multiple-tissue total RNA sequencing data, we predicted 3590 loci to
be lncRNAs. To identify lncRNAs with potential regulatory influence on phenotype and gene
expression, we applied the regulatory impact factor algorithm on a functionally prioritized set of
loci (n = 4666). Applying the algorithm of partial correlation and information theory, significant and
independent pairwise correlations were calculated and co-expression networks were established,
including plasma metabolites correlated with lncRNAs. The network hub lncRNAs were assessed for
potential cis-actions and subjected to biological pathway enrichment analyses. Our results reveal
a prevalence of antisense lncRNAs positively correlated with adjacent protein-coding genes and
suggest their participation in mitochondrial function, acute phase response signalling, TCA-cycle, fatty
acid β-oxidation and presumably gluconeogenesis. These antisense lncRNAs indicate a stabilizing
function for their cis-correlated genes and a putative regulatory role in gene expression.

Keywords: Bos taurus; feed efficiency; co-expression network analysis; lncRNA; Functional Annotation
of Animal Genomes (FAANG)

1. Introduction

While the functionality of protein-coding genes has been thoroughly explored and scrutinized
in the past century—and continues to be—the so-called ‘dark matter of the genome’ has shifted into
focus in the recent decades. Non-coding elements are estimated to cover about 98% of the mammalian
genome and to comprise different elements such as microRNAs, small nuclear RNAs, small nucleolar
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RNAs, transfer RNAs (miRNA, snRNA, snoRNA, tRNA, Encode Project Consortium [1]), the previously
discovered circular RNAs (circRNA [2]), as well as long non-coding RNAs (lncRNAs).

In cattle breeding and production, the efficient use of feed by the animal is continuously gaining
importance for ecological and economic reasons. In the beef industry, residual feed intake (RFI)
as a measure of feed efficiency is usually the measure of choice [3]. Numerous association studies
have aimed to find causative genomic regions and gene variants that drive bovine feed efficiency,
but repeatedly quantitative trait locus (QTL) peaks fall outside the protein-coding genes, e.g., [4–7].
This plethora of work suggests that the functional tasks of the non-coding elements affecting feed
efficiency need to be addressed in greater detail.

To date, functional annotation of lncRNAs is still not fully comprehensive in human and model
animals and even less so in livestock species, although first advances are in progress. Known modes of
action of lncRNAs include chromatin-remodelling and chromatin state maintenance, and transcriptional
enhancement or repression, e.g., through the binding to transcriptional regulatory factors as reviewed
by Long et al. [8] and Marchese et al. [9].

Increasing evidence has shown that lncRNAs are involved in a broad range of pathological
and disease conditions and environmental transitions but also in the general regulation of
immune and metabolic processes in normal cell and tissue homeostasis, e.g., by acting as signal
molecules that mark the regulation of developmental and physiological stages and gene expression.
Lu et al. [10] summarized results indicating that lncRNAs are able to reprogram glucose and lipid
metabolism in tumor cells by modulating key enzymes of glycolysis, oxidative phosphorylation and
pentose phosphate as well as lipid synthesis and degradation pathways. A recent comprehensive
overview of lncRNAs involved in lipid metabolism [11] elucidated lncRNAs that are potentially
associated with hepatic lipid and glucose metabolism and related to metabolic disorders, such as
obesity, cardiovascular diseases and hepatic steatosis. In murine liver, Yang et al. [12] found a lncRNA
with a pivotal effect on lipogenesis, which was documented to act through a negative feedback loop
relationship with a transcription factor coding gene (SREBP1c). Recently, Pradas-Juni et al. [13]
identified a transcription factor MAFG-lncRNA (obesity-repressed lincIRS2) axis controlling hepatic
glucose metabolism in health and metabolic disease.

LncRNAs are generally categorized as genic or intergenic RNA classes, which can be transcribed
as sense- or antisense-oriented with respect to their nearest neighbouring protein-coding gene.
Antisense lncRNAs, originating from the complementary strand of protein-encoding genes, comprise
a major proportion of lncRNAs in the transcriptome across species, e.g., [14–16]. They commonly
link neighbouring or overlapping genes in complex loci into chains of transcriptional units [15].
The genomic arrangement of antisense RNAs and opposite sense genes suggests that they might
be part of self-regulating circuits that allow afflicted genes to regulate their own expression [16].
Antisense lncRNAs can act in cis as stabilizers [17], thereby increasing the abundance of the respective
transcripts and protein of the protected gene [18]. Facilitated through the introduction of stranded
library protocols in the 2000s, many genes have been found to overlap with antisense non-coding
genomic elements, so-called natural antisense transcripts (NATs).

Although there are examples of lncRNAs with high sequence conservation across mammals,
e.g., MALAT1 [19], there is also evidence for a high level of sequence species-specificity in this RNA
class compared with protein-coding genes [20]. For this reason, the identification and characterization
of phenotype-influencing lncRNAs in the respective target species and tissue are advisable and one of
the declared goals of the global initiative for Functional Annotation of Animal Genomes (FAANG,
www.animalgenome.org/community/FAANG/).

While there are a variety of bioinformatics tools at hand for the prediction of long
non-coding sequences from transcriptomic data (e.g., PLEK [21], FEELnc [22], PLAR [23], CPC [24],
CPAT [25], and CNCI [26]), the functional annotation of novel non-coding loci remains challenging.
Common practice is to construct co-expression networks and use correlation partners of lncRNAs
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for gene and pathway enrichment analyses. This guilt-by-association approach has been applied to
non-coding elements, such as miRNAs [27–29] and lncRNAs [30–33].

In a previous study, we applied a combination of the regulatory impact factor (RIF [34]) and
a partial correlation and information theory (PCIT [35]) to build correlation networks to predict key
regulatory lncRNAs with an implication in metabolic efficiency in crossbred cattle [36]. We integrated
phenotypic data, plasma metabolite profiles and transcriptomic data from four tissues (jejunum, liver,
skeletal muscle, rumen) and two sexes. However, at that stage, little attention was given to the
tissue-specificity of expression data [37] and likely molecular function of lncRNAs. Due to its central
role in metabolic processes [38], the liver has repeatedly been the subject of transcriptomic studies,
also with regard to bovine feed efficiency [39–43]. Therefore, in the present study, we adapted our
analysis pipeline to the new bovine genome ARS-UCD.1.2 and to a single-tissue approach, where we
aim to identify liver lncRNAs with high regulatory potential and a functional relation to feed efficiency.

2. Results

2.1. Alignment and Mapping of RNA Sequencing Data

After quality trimming, the average sequencing depth of the RNA-sequencing libraries was
49.8 million read pairs per sample and the average alignment rate to the reference genome ARS-UCD.1.2
was 98.72% ± 0.26% (Table 1). The mapping of fragments to the project specific merged annotation
(Supplement 1), which contained 30,806 loci and 82,628 transcripts after quality filtering, resulted in
an average mapping rate of 85.98% ± 1.40%.

Table 1. RNA sequencing, alignment, and mapping statistics.

Sequencing Depth
[Read Pairs]

Alignment to
ARS-UCD.1.2 (%)

Mapping to Project-Specific
Annotation (%)

Mean 49,831,770 98.72 85.98
SD 5,588,004 0.26 1.40

SD = standard deviation.

2.2. Long Non-Coding RNA Prediction

The identification of lncRNAs with FEELnc based on the project-specific merged annotation
and the bovine reference genome and annotation yielded a total of 6161 non-coding transcripts
(3,590 loci) with a minimal length of 200 nt (results from FEELnc and differential expression analysis
and information on structure and position for each transcript are listed in Supplement 2).

Within the default window size (10,000 to 100,000 nt), a total of 19,184 interactions of 3,495 lncRNA
loci (out of 3590 loci) with positional partner genes were predicted, while 95 lncRNA loci (corresponding
to 202 of the 6161 lncRNA transcripts) remained without a potential positional interaction partner
locus. Out of the 3,495 loci with a predicted interaction partner, 1799 lncRNAs were in the sense
direction to the predicted partner gene and 1,696 lncRNAs were in the antisense direction to their
partner gene. The majority of the lncRNAs with an interaction partner assigned (2955) were classified
as genic, meaning that they overlapped with their predicted partner gene in the sense or antisense
orientation, and 540 lncRNAs were intergenic. The overall average expression level of the 3590 lncRNA
loci was 10.13 FPKM (± 325.21) with a median of 0.26 FPKM.

In a locus-based approach, where we considered the transcript with the highest exon number for
each lncRNA locus, we observed that strandedness was equally distributed among the 3590 loci (50.84%
on the plus and 49.16% on the minus strand). The average number of exons per locus amounted to
4.52 ± 7.14 (median = 3.00) and the geometric mean of the total exonic length was 1,723.78 nt.
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2.3. Differential Metabolite Abundance

Between the groups of high and low efficiency bulls, we found 45 plasma metabolites to be
significantly differentially abundant (q (Benjamini–Hochberg) ≤ 0.05 and absolute log-transformed
foldchange (log2FC) ≥ 1). Eighteen metabolites were downregulated, i.e., lower in abundance, in the
high efficiency group and 27 were upregulated. The most pronounced differences were found for
leukotriene B4 (q = 6.65× 10−4; log2FC = 2.40) and isovalerate (q = 6.65× 10−4; log2FC = 1.87), which were
significantly higher in abundance in highly efficient bulls compared with the low efficiency group
(see Figure 1, Supplement 3). The strongest downregulation in the high efficiency group was observed
for asparagine (q = 1.51 × 10−3; log2FC = −3.07) and methionine (q = 1.83 × 10−3; log2FC = −2.27).
Next to these two amino acids (AAs), the AAs glutamine and cysteine were also differentially abundant
(q = 1.49 × 10−3; log2FC = −1.71 and q = 8.75 × 10−3; log2FC = −1.12, respectively).
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Figure 1. Volcano plot of differentially abundant plasma metabolites for bulls of high (n = 12) and low
(n = 13) feed efficiency with upregulation (higher abundance) in highly efficient bulls with blue labels
and downregulation (lower abundance) with green labels. Significance threshold (horizontal dotted
line) at q (Benjamini-Hochberg) ≤ 0.05 and absolute log2(foldchange) ≥ 1 (vertical dotted lines).

Plotting of a metabolite based principal component analysis (PCA) showed a clear separation of
the bulls in the two efficiency groups (see Figure 2), with the first two components accounting for 38%
of the variance in the metabolite abundance.
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Figure 2. Principal component analysis (PCA) plot for 25 bulls divergent for feed efficiency. Plotting
based on plasma metabolite levels (n = 552).

2.4. Set of Prioritized Loci for Co-Expression Network

The AnimalQTL database listed 1573 QTL for RFI that stemmed from SNP array-based studies
(manual curation of the complete dataset) and could be remapped to the new bovine reference genome
ARS-UCD.1.2. Out of these 1573 QTLs, 1506 had a direct overlap with a locus in our project-specific
merged annotation and no QTL was more than 3 Mb away from the next annotated locus. Finally, 843
of these loci passed the minimal expression threshold and were categorized as QTL locus.

Out of the 745 loci that were significantly differentially expressed (DE) with q (Benjamini–Hochberg)
≤ 0.1 between the high and the low efficiency group, 219 were predicted to be lncRNAs (29.4%), and 84
out of the 843 QTL loci were also predicted to be lncRNAs (10.0%).

In the end, the prioritized loci for the RIF and PCIT analyses contained a total of 4,666 unique loci,
including 745 DE loci, 2083 lncRNAs, 2007 protein-coding partner gene loci, and 843 QTL loci (see Figure 3 and
Supplement 4). Loci included in the prioritized loci set had to be minimally expressed (>0.1 FPKM in at
least six animals of one efficiency group) and could fall into more than one category of the set.
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Figure 3. Venn diagram of 4666 loci in a prioritized loci set for co-expression network analysis: loci
predicted to be lncRNAs (lncRNA) and their potential positional interaction gene partners (partner
locus), loci overlapping with or no farther away than 3 Mb from a quantitative trait locus (QTL) for
residual feed intake in cattle (QTL locus), and loci with differential expression (DE locus) between bulls
of high and low feed efficiency.
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2.5. Regulatory Impact Factor Analysis

Ultimately, 2083 lncRNAs and 3400 unique target loci (loci in the categories partner gene, QTL
or DE locus) were submitted to the RIF analysis. In some cases, lncRNAs could be both potential
regulators as well as target loci, hence the higher number of target loci. After z-transformation and
filtering for lncRNAs with an absolute RIF1 or RIF2 score of ≥ 1.96, 238 lncRNAs were found to be
significant and therefore potential key regulators in this dataset. As the two RIF metrics are designed
to detect different mechanisms of regulation, the 238 key lncRNAs typically score either very high or
very low in RIF1 or RIF2 and have a score around zero in the other metric, which results in a bimodal
distribution of accumulated RIF scores (see Figure 4).
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Figure 4. Distribution of scores of the metrics RIF1 and RIF2 from the regulatory impact factor (RIF)
analysis for the top potential key regulatory lncRNAs, equalling 238 out of 2083 lncRNAs in the
prioritized dataset (absolute z-transformed RIF1 or RIF2 ≥ 1.96).

2.6. Co-Expression Networks Based on Partial Correlation and Information Theory Approach and Detection
of Hub LncRNAs

The prioritized loci set (4666 loci) that was used for the RIF analysis was subsequently also
submitted to the PCIT algorithm and results were filtered for significant pairwise correlations with
a minimal strength of |r| ≥ 0.65, where one correlation partner had to be a lncRNA with a significant RIF
score. This resulted in a total of 16,489 connections including 2299 out of the 4666 loci. After including
significant (p ≤ 0.01) correlations between key lncRNAs and plasma metabolites (|r| ≥ 0.65) the
co-expression networks comprised 2414 nodes with 16,709 edges. With 15,783 edges (94.46%), the vast
majority of correlations were positive and only 926 correlations (5.54%) were negative.

Out of the 238 lncRNAs with a significant RIF score in the network, 22 were also categorized as
a DE or QTL locus (see Supplement 4). A total of 17 lncRNAs had a network connection with at least 10
annotated genes with an official gene symbol in the bovine genome annotation (Supplement 5). In order
to also account for regulatory lncRNAs with high metabolite or exceptionally high gene connectivity,
the following additional lncRNAs were selected: five lncRNAs that were correlated with over ten
annotated genes and over ten metabolites, and five lncRNAs that showed a connectivity with more than
50 annotated genes. One lncRNA passed both filtering steps (Supplement 5). Finally, 26 hub lncRNAs
remained that were of interest regarding their associated interacting networks. These lncRNAs are
candidates that probably have a regulatory potential for modulating biological pathways linked to
divergent feed efficiency. One of these hub lncRNAs (MSTRG.16058) was connected with 14 RNA
genes (including snRNAs and snoRNAs), which had escaped filtering. Due to its clear involvement in
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ribosomal RNA expression and unsuccessful mapping of these genes in Ingenuity Pathway Analysis
(IPA), this lncRNA was excluded from further analyses.

2.7. Natural Antisense Transcripts

Out of the 238 lncRNAs with a significant RIF score (key lncRNAs), 237 had a predicted positional
interaction partner locus in the FEELnc results. Thereof, 119 lncRNA loci (50%) were in antisense
orientation and overlapped with an annotated locus that was termed as the most likely interaction
partner (isbest score = 1 according to FEELnc). These lncRNAs can be designated as natural antisense
transcripts (NATs). Of these 119 antisense lncRNA–sense partner locus pairs, 44 (18.49%) had
a significant correlation in the PCIT analysis (Supplement 6). The vast majority (42 out of 44) were
positive correlations and two pairs were negatively correlated. Negative correlations were found
for the lncRNA MSTRG.13915 and AZGP1 (Zinc-alpha-2-glycoprotein, r = −0.67) and the lncRNA
MSTRG.5787 and EPRS (Glutamyl-Prolyl-TRNA Synthetase 1, r = −0.51). A total of eight lncRNA-partner
locus pairs were found to have a positive co-expression with r > 0.9. The pairs MSTRG.5042 and
APOA1 (Apolipoprotein A, r = 0.98) and MSTRG.7472 and HP (Haptoglobin, r = 0.97) displayed the
strongest correlation coefficients (see Supplement 6). Regarding the ratio of expression levels of
the cis-interaction partner gene and the corresponding antisense lncRNA, we observed pronounced
differences with a minimal expression ratio of 0.21 and a maximum ratio of 392.77 (mean = 40.34,
SD = 61.12). Furthermore, the ratio of expression levels is not necessarily dependent on or in a linear
relationship with the general expression level of the two loci, which suggests that this observation
is more than random noise (Supplement 6). Only in two cases out of the 44 antisense lncRNA-sense
partner locus pairs did the antisense lncRNA have a higher expression level than that of the respective
cis-interaction partner gene and in such cases the expression ratio was comparatively low (below 0.5).

2.8. Characteristics of Key Regulatory Long Non-Coding RNAs in the Co-Expression Network

Out of the 26 hub lncRNAs (see Supplement 4), three coincided with a known QTL for RFI and
16 were differentially expressed between the efficiency groups. Two of these lncRNAs were both
DE and overlapped with a QTL: MSTRG.4802 and MSTRG.4839. In addition, we detected two hub
lncRNAs, MSTRG.3808 and MSTRG.7798, to be already annotated as lncRNAs in Ensembl release 97
(ENSBTAG00000048400 and ENSBTAG00000053946, respectively). Both lncRNAs, which were included
in our co-expression network, were also predicted by FEELnc to be partner loci to other lncRNAs in
the dataset.

The screening for potential cis-actions of the 26 hub lncRNAs, i.e., a significant PCIT correlation of
|r| ≥ 0.65 with a locus no farther than 1 Mb away, showed that potentially interacting neighbouring loci
could be predicted for 18 out of the 26 hub lncRNA loci. With a total of 45 interactions found, each hub
lncRNA had 2.5 cis-interactions on average.

Again, the highest correlation coefficients between lncRNA and cis-interaction partners were
found for MSTRG.5042 and Apolipoprotein A1 (APOA1, r = 0.98) and for MSTRG.7472 and Haptoglobin
(HP, r = 0.97). Two of the 26 hub lncRNAs stood out because of their strong wiring with plasma
metabolites: MSTRG.4390 and MSTRG.5042 were significantly correlated (p≤ 0.01, |r|≥ 0.65) with 44 and
45 metabolites, respectively. Both hub lncRNAs are also correlated with each other (r = 0.80) and shared
24 loci correlation partners and 42 metabolite correlations. Out of these 42 shared metabolite correlation
partners, five were differentially abundant between both groups (q (Benjamini-Hochberg) ≤ 0.05 and
|log2FC| ≥ 1): 10-heptadecenoate (17:1n7), 4-hydroxyglutamate, 9-hydroxystearate, succinate and
tetradecanedioate (see Supplement 3).

Because of its multi-categorization (hub lncRNA, DE and QTL locus, cis-interaction), we selected
MSTRG.4802 (see Figure 5) for a more detailed analysis of its regulatory function with regard to
associated biological pathways. Due to their strong intertwining and apparent connection to plasma
metabolite levels, MSTRG.4390 and MSTRG.5042 have also received more focus. MSTRG.5042,
along with MSTRG.7472, are relevant due to their strong cis-interaction with the corresponding
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antisense oriented protein-coding gene. Table 2 summarizes positional and structural information for
these top four potentially regulatory lncRNAs and condenses results from the differential expression
analysis, FEELnc application, and the screening for cis-interactions. These lncRNAs have been classified
by FEELnc as antisense lncRNAs transcribed in the opposite orientation to their partner genes and can
be regarded as NATs. The expression levels of the four hub lncRNAs and their antisense protein-coding
partner genes are depicted in Figures S1–S4.
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direction to protein-coding gene UQCRB on bovine chromosome BTA14 at 67.99 Mb, coinciding with
a remapped quantitative trait locus (QTL) for residual feed intake (RFI).
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Table 2. Characteristics of four hub lncRNAs with relation to feed efficiency in bulls.

lncRNA Position Structure Expression (FPKM 3) Differential Expression Analysis

Locus ID BTA 1 Start bp 2 End bp Strand Number Exons Exonic Length Mean Mean High
Efficiency Group

Mean Low
Efficiency Group Log2FC 4 p-Value Adjusted

p-Value (BH 5)

MSTRG.4390 14 518,688 534,106 - 2 20,919 2.586 2.672 2.507 0.0661 0.501 0.796

MSTRG.4802 14 67,986,656 67,991,285 - 5 806 1.009 0.798 1.205 -0.6310 0.004 0.091

MSTRG.5042 15 27,503,347 27,512,980 + 7 3,002 0.843 1.044 0.658 0.6330 0.043 0.287

MSTRG.7472 18 39,037,005 39,043,726 + 7 1,920 11.200 11.016 11.370 -0.1053 0.886 0.966

lncRNA FEELnc Analysis cis Action

Locus ID Best Potential Partner Gene Direction Type Distance Subtype Location Interaction Partner Gene PCIT (r) 7 Direction

MSTRG.4390 ENSBTAG00000046026 AS 6 genic overlapping exonic no cis interaction with a minimal correlation of r = 0.65

MSTRG.4802 ENSBTAG00000001521 (UQCRB) AS genic nested exonic ENSBTAG00000001521 (UQCRB) MSTRG.4780
ENSBTAG00000032432 MSTRG.4798

0.69
0.67
0.67
0.67

antisense
sensesense sense

MSTRG.5042 ENSBTAG00000002258 (APOA1) AS genic containing exonic ENSBTAG00000002258 (APOA1) 0.98 antisense

MSTRG.7472 ENSBTAG00000006354 (HP) AS genic containing exonic ENSBTAG00000006354 (HP) 0.97 antisense
1 BTA = bovine chromosome, 2 bp = base pair, 3 FPKM = fragment per kilobase per million, 4 FC = foldchange, 5 BH = Benjamini–Hochberg, 6 AS = anti-sense, 7 PCIT (r) = correlation
coefficient r from partial correlation and information theory analysis.
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2.9. Pathway Enrichment Analysis

In order to detect generally enriched pathways in the liver transcriptome between the two
efficiency groups, the DE genes were submitted to Ingenuity Pathway Analysis (IPA). The pathway
PPARα/RXRα activation was significantly enriched (p ≤ 0.01, equaling −log10(p) ≥ 2.0) (downregulated
in highly efficient bulls (−log10(p) = 6.12, z-score = −0.707), as was the pathway of VDR/RXR activation
(−log10(p) = 3.06, z-score = −1.0). A slight upregulation of the NRF2-mediated oxidative stress response
for high efficiency bulls was also detected (−log10(p) = 2.83, z-score = 0.447).

Focusing on transcriptional upstream regulators, we observed the strongest inhibition in the
high efficiency group for the peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PPARGC1A, activation = −2.268, p = 1.3 × 10−3) and the strongest activation for the hypoxia-inducible
factor 1-alpha (HIF1A, activation = 2.348, p = 3.21 × 10−3). Detailed results for enriched canonical
pathways and upstream regulators are given in Supplement 7 and Supplement 8, respectively.

The Ingenuity pathway enrichment analysis with genes associated with the four selected top
hub lncRNAs (the NATs MSTRG.4390, MSTRG.4802, MSTRG.5042, MSTRG.7472) revealed significant
enrichments of specific biological pathways. A summary of the top five enriched canonical pathways
is provided in Table 3. Transcriptional upstream regulators are listed in Table 4, prioritized for results
with an activation score if available.

MSTRG.4802 had by far the strongest z-score (−2.236) for the pathway of oxidative phosphorylation
(−log10(p) = 7.00), followed by mitochondrial dysfunction (−log10(p) = 6.02). The enrichment of both
pathways was based on the correlated genes ATP5MF, ATP5PD, COX5A, NDUFB10 and UQCRB
encoding protein members of mitochondrial respiratory chain complexes. The gene ubiquinol-cytochrome
c reductase binding protein (UQCRB) was predicted by FEELnc to be the positional interaction partner
for MSTRG.4802, which was confirmed by the finding of a cis-interaction. The lncRNA MSTRG.4802
was found in the antisense direction to its interaction partner and both loci displayed a positive
correlation of their expression levels with r = 0.69. The abovementioned upstream regulators
PPARGC1A (p = 6.2 × 10−3) and HIF1A (p = 1.44 × 10−3) were detected to be significant for genes
correlated with MSTRG.4802 (see Supplement 7), as well as the paralogue transcription regulator
PPARGC1B (p = 3.0 × 10−3).

Of all performed enrichment analyses, MSTRG.7472 had the overall lowest p-value
(−log10(p) = 11.2) for the pathway of acute phase response signaling, which was downregulated
in the high efficiency group (z-score = −0.378). One of the major genes involved in this pathway is
haptoglobin (HP), which we predicted to be in cis-interaction with lncRNA MSTRG.7472. In addition,
the pathway unfolded protein response was found to be upregulated in highly efficient bulls (−log10(p)
= 6.82, z-score = 0.447) for MSTRG.7472. One of the correlated genes, STAT3, was also found to be
a downregulated transcription regulator (activation = −0.877, p = 6.51 × 10−5). Again, an upregulation
of HIF1A (activation = 1.932, p = 3.21 × 10−3) could be registered, as well a positive activation of
hepatocyte nuclear factor 1 homeobox a (HNF1A, activation = 1.114, p = 1.77 × 10−6) (Supplement 8).
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Table 3. Top 5 enriched canonical pathways for key lncRNAs related to feed efficiency.

Lnc RNA Ingenuity Canonical Pathways −log10(p) p-Value Ratio z-Score Molecules
M

ST
R

G
.4

39
0 Fatty Acid β-oxidation I 5.56 2.75 × 10−6 8.89 × 10−2 1.00 ACADM, ACSL1,

ECHS1, HADHB
Palmitate Biosynthesis I (Animals) 3.52 3.02 × 10−4 1.67 × 10−1 NaN lauric acid, palmitic acid

Stearate Biosynthesis I (Animals) 3.52 3.02 × 10−4 5.00 × 10−2 NaN ACSL1, palmitic acid,
stearic acid

Ketolysis 3.11 7.76 × 10−4 1.05 × 10−1 NaN HADHB, succinic acid
γ-linolenate Biosynthesis II (Animals) 2.91 1.23 × 10−3 8.33 × 10−2 NaN ACSL1, linoleic acid

M
ST

R
G

.4
80

2 Oxidative Phosphorylation 7.00 1.00 × 10−7 4.2 × 10−2 −2.236 ATP5MF, ATP5PD, COX5A,
NDUFB10, UQCRB

Mitochondrial Dysfunction 6.02 9.55 × 10−7 2.66 × 10−2 NaN ATP5MF, ATP5PD, COX5A,
NDUFB10, UQCRB

Spermine Biosynthesis 2.16 6.92 × 10−3 1.43 × 10-1 NaN SMS
Sirtuin Signaling Pathway 1.40 3.98 × 10−2 6.17 × 10−3 NaN ATG3, NDUFB10

TNFR1 Signaling 1.32 4.79 × 10−2 2.00 × 10−2 NaN MADD

M
ST

R
G

.5
04

2 TCA Cycle II (Eukaryotic) 3.48 3.31 × 10−4 7.14 × 10−2 NaN fumaric acid, L-malic acid,
succinic acid

Palmitate Biosynthesis I (Animals) 3.19 6.46 × 10−4 1.67 × 10−1 NaN lauric acid, palmitic acid
Glycerol Degradation I 3.12 7.59 × 10−4 1.54 × 10−1 NaN GK, glycerol

Stearate Biosynthesis I (Animals) 3.03 9.33 × 10−4 5.00 × 10−2 NaN ACSL1, palmitic acid,
stearic acid

γ-linolenate Biosynthesis II (Animals) 2.58 2.63 × 10−3 8.33 × 10−2 NaN ACSL1, linoleic acid

M
ST

R
G

.7
47

2

Acute Phase Response Signaling 1.12 x 101 6.31 × 10−12 5.52 × 10−2 −0.378 C5, FGG, HP, HPX, HRG, LBP,
OSMR, SAA2, SOCS3, STAT3

Unfolded protein response 6.82 1.51 × 10−7 8.93 × 10−2 0.447 CANX, DNAJC3, P4HB,
PDIA6, XBP1

Role of JAK family kinases in IL-6-type
Cytokine Signaling 4.64 2.29 × 10−5 1.20 × 10−1 NaN OSMR, SOCS3, STAT3

Role of JAK2 in Hormone-like
Cytokine Signaling 4.24 5.75 × 10−5 8.82 × 10−2 NaN GHR, SOCS3, STAT3

Role of Tissue Factor in Cancer 3.85 1.41 × 10−4 3.36 × 10−2 NaN CFL1, FGG, P4HB, PDIA6

NaN = not a number.

Table 4. Transcriptional upstream regulators for key lncRNAs with an activation score (except for
MSTRG.4802: here all transcriptional regulators are listed).

Lnc RNA Upstream Regulator Activation z-Score p-Value of Overlap Target Molecules in Dataset

M
ST

R
G

.4
39

0

PML −2.433 1.22 × 10−6 ACADM, APOA1, HADHB, myristic acid, palmitic acid,
stearic acid

TP53 0.113 3.21 × 10−2 ACADM, ACSL1, APOA1, HADHB, IDH1, INHBA,
NDRG2, PCK1

SIRT1 0.317 8.98 × 10−3 ACADM, glycerol, MAT2A, PCK1
MYC 0.577 2.51 × 10−2 IDH1, INHBA, MAT2A, NDRG2, PCK1, SHMT2

SREBF1 0.652 1.69 × 10−3 ACSL1, ARF4, IDH1, PCK1

HNF4A 1.181 8.09 × 10−3 ACSL1, APOA1, HADHB, HSDL2, INHBA, MAT2A, MPP1,
PCK1, RAB30, TRIP11

PPARGC1A 1.729 7.33 × 10−5 ACADM, INHBA, myristic acid, palmitic acid, PCK1,
stearic acid

PPARGC1B 2.177 4.51 × 10−7 ACADM, myristic acid, palmitic acid, PCK1, stearic acid

M
ST

R
G

.4
80

2

PPARGC1B 3.03 × 10−3 ATP5MF, COX5A
ARID5B 4.15 × 10−3 UQCRB

Esrra 5.68 × 10−3 ATP5MF, COX5A
PPARGC1A 6.22 × 10−3 ATP5MF, ATP5PD, COX5A

HNF1A 1.44 × 10−2 AP3M1, ATG3, CLTRN
KMT2D 1.85 × 10−2 FBXL21P, PTGR2

SUB1 2.97 × 10−2 NDUFB10
HTT 4.36 × 10−2 AGRN, ATP5MF, UQCRB

M
ST

R
G

.5
04

2

PML −2.000 1.89 × 10−3 APOA1, myristic acid, palmitic acid, stearic acid
SREBF1 0.652 7.56 × 10−3 ACSL1, ARF4, IDH1, PCK1
TCF7L2 0.728 2.99 × 10−3 ACSL1, ADIPOR2, FBP1, IDH1, PCK1

HNF4A 1.505 1.03 × 10−2 ACSL1, APOA1, ASGR2, FBP1, HSDL2, INHBA, MAT2A,
PABPN1, PCK1, RAB30, RTCB, SOAT2, TRIP11

PPARGC1A 1.673 7.26 × 10−4 GK, INHBA, myristic acid, palmitic acid, PCK1, stearic acid
SP1 1.934 2.66 × 10−2 ACSL1, APOA1, MAT2A, PCK1, THRB

PPARGC1B 2.000 8.73 × 10−5 myristic acid, palmitic acid, PCK1, stearic acid



Int. J. Mol. Sci. 2020, 21, 3292 12 of 24

Table 4. Cont.

Lnc RNA Upstream Regulator Activation z-Score p-Value of Overlap Target Molecules in Dataset
M

ST
R

G
.7

47
2

STAT3 −0.877 6.51 × 10−5 C5, FGG, HP, LBP, PDIA4, SOCS3, STAT3, XBP1

TP53 −0.640 3.11 × 10−2 CD44, HDLBP, NARS1, P4HB, PDIA6, STAT3,
TMSB10/TMSB4X, UGDH, XBP1

ATF4 −0.152 3.90 × 10−5 CANX, NARS1, OSMR, SLC39A14, STAT3
CEBPB −0.133 5.64 × 10−5 HP, HPX, LBP, SAA2, SOCS3, STAT3, XBP1

NFE2L2 0.000 6.00 × 10−8 C5, DNAJC3, GHR, NARS1, PDIA4, PDIA6, SOCS3,
TMED2, UGDH, XBP1

XBP1 0.262 1.16 × 10−6 DNAJC3, FKBP2, P4HB, PDIA4, PDIA6, SEC61G, XBP1
ATF6 0.762 1.50 × 10−5 DNAJC3, PDIA4, SLC39A14, XBP1

TCF3 1.000 6.56 × 10−8 AZGP1, EPRS1, GPLD1, NUF2, PDIA4, PDIA6, RASSF4,
SOCS3, XBP1

TCF4 1.000 3.11 × 10−4 NUF2, PDIA4, PDIA6, SOCS3, STAT3, XBP1
HNF1A 1.114 1.77 × 10−6 C5, FGL1, HOPX, HPX, LBP, NUF2, SOCS3, TARS1, XBP1
PRDM1 1.176 1.91 × 10−3 CD44, FGG, TRIB1, XBP1
HIF1A 1.932 3.21 × 10−3 CD44, GHR, HP, SOCS3, STAT3

The lncRNAs MSTRG.4390 and MSTRG.5042 were highly correlated with each other (r = 0.80).
The analysis showed that, based on their correlation partners, they were enriched for functionally related
pathways: fatty acid ß-oxidation (−log10(p) = 5.56, z-score = 1) was upregulated for MSTRG.4390 in
highly efficient animals and MSTRG.5042 showed an enrichment for the TCA cycle II (−log10(p) = 3.48,
no z-score) in this experimental group. The analysis of potential upstream regulators revealed the
same strongest transcriptional regulators for both lncRNAs: a downregulation of promyelocytic
leukemia (PML; MSTRG.4390: activation = -2.433, p = 1.22 × 10−6, MSTRG.5042: activation = −2.000,
p = 1.89 × 10−3) and an upregulation of PPARGC1B (MSTRG.4390: activation = 2.177, p = 4.51 × 10−7,
MSTRG.5042: activation = 2.000, p = 8.73× 10−5) in the high efficiency group could be observed (Table 4).

The analysis of both lncRNAs and their correlation partners combined showed a significant
enrichment for valine degradation (-log10(p) = 5.18, z-score = 0), followed by the pathways that had been
detected on an individual basis as well: fatty acid ß-oxidation (−log10(p) = 4.74, z-score = 1.00) and the
TCA cycle II (-log10(p) = 3.37, no z-score). Analogously, to the individual analysis of potential upstream
regulators, the strongest activation for transcription regulators was observed for PPARGC1B (activation
= 2.177, p = 6.26 × 10−6) and PML was significantly inhibited (activation = −2.433, p = 2.68 × 10−5) in
animals of high efficiency (see Supplement 7 and Supplement 8).

3. Discussion

We studied crossbred F2-bulls (Charolais x Holstein Friesian) with divergent feed efficiency and
fat deposition at a transcriptomic (liver) and metabolomics (blood plasma) level and integrated these
data to identify lncRNAs and predict their potential biological function through biological pathway
enrichment analyses. Using the bioinformatics lncRNA prediction tool FEELnc [22], which has been
applied to determine lncRNAs in different species, including dogs [44], chicken [45], cattle [30,36] and
pigs [46], we have identified 3590 lncRNA loci expressed in the liver transcriptome.

In a previous study, our group employed the herein presented pipeline, which applied a systems
biology approach combining RIF and PCIT algorithms with biological network prediction to identify
potential key regulatory lncRNAs in a tissue- and sex-overarching approach [36]. However, other
studies have shown that many lncRNAs are tissue-specific in their expression pattern [47]. To better
understand the function of lncRNAs and their interactions in the liver, we have now focused on this
single organ due to its relevance in the context of metabolism [38] and the immune system [48].

We therefore adjusted the pipeline, especially regarding the loci set prioritization: the category of
tissue-specific loci was excluded and instead potential positional partner loci of lncRNAs, as predicted
by FEELnc, were included. Furthermore, we lowered the minimal expression threshold to at least 0.1
FPKM in at least six animals of one group. In contrast to the previous study, we used raw FPKM values
for calculations instead of log-transformed values. This step presented itself as necessary to account for
the relatively low abundance of lncRNAs compared with mRNAs in the transcriptome [37,49]. Indeed,
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in our study, 2335 out of the 3590 lncRNA loci (65%) had an average expression level in the liver of less
than 1 FPKM.

The prediction of potential biological functions of the identified key lncRNAs was based on the
premise that they were involved in the same biological pathway as their correlated partner loci or
metabolites. This guilt-by-association heuristic, in which correlating genes or metabolites are used to
perform enrichment analyses for biological pathways and then to infer functional involvement for
novel, non-coding elements has already been applied to miRNAs and lncRNAs, e.g., [27,32], and [30].
When interpreting the results of such analyses, it should be kept in mind that these predictions heavily
depend on the statistical method used to calculate the correlation coefficients [50]. The PCIT algorithm
that we applied in our study ensures that the detected pairwise loci correlations are independent of
any other third locus in the dataset [35].

Up to now, the combined application of the RIF and PCIT allowed for the discovery of
regulatory genomic elements in cattle with regard to a variety of phenotypes: e.g., feed efficiency [51],
puberty [52,53], as well as the mineral content [54], intramuscular fat content [55] and fatty acid
composition in muscle [56]. Our study showed that the functional prediction of lncRNAs with
potential regulatory activity in cattle that differed in their phenotypes in terms of feed efficiency,
pointed towards their involvement in immunological pathways, the TCA-cycle, fatty acid β-oxidation,
and mitochondrial function.

3.1. LncRNAs Participating in Fatty Acid β-Oxidation and TCA-Cycle

The relevance of mitochondrial function and energy metabolism for feed efficiency was underlined
by the key lncRNAs MSTRG.4390 and MSTRG.5042 and their respective pathway enrichments for
fatty acid β-oxidation and the TCA-cycle. In the mitochondria, the fatty acids are broken down to
produce acetyl-CoA that then enters the TCA cycle. The β-oxidation is MTP-dependent (mitochondrial
trifunctional protein), which is encoded by the genes HADHA and HADHB. The latter was part
of our prioritized loci set because it was predicted as the positional interaction gene of lncRNA
MSTRG.2669, but it turned out to be significantly correlated (r = 0.7153) with MSTRG.4390. Though no
differential abundance was found for carnitine or acetylcarnitine, which are indicative of a challenged
β-oxidation when decreased [57], a number of long-chain fatty acids (e.g., stearoyl carnitine, palmitoyl
carnitine, docosapentaenoate) was positively correlated with MSTRG.4390 expression, along with
the related enzyme encoding gene ACSL1. Both MSTRG.4390 and MSTRG.5042 shared most of their
correlation partners, including fatty acids, which suggests a common biological function. However,
only MSTRG.5042 correlated with all three successive TCA cycle products: succinate, fumarate,
and malate. Analogous to these findings, Wang and Kadarmideen [58] also found an enrichment for
the citrate cycle in an integrative study of metabolomics and transcriptomic data in cattle divided into
high and low residual feed intake.

A definitive functional prediction for MSTRG.5042 remained challenging, because its
strongest associations (r > 0.9) were with its cis-partners APOA1 (Apolipoprotein A1) and MAT2A
(Methionine Adenosyltransferase 2A). The protein encoded by MAT2A catalyses the production of
S-adenosylmethionine from methionine. While MAT2A had higher expression levels in animals of
high feed efficiency, methionine itself was of significantly higher abundance in plasma in bulls of low
feed efficiency (high RFI). APOA1 was downregulated in bulls of low efficiency, which is in accordance
with findings of Gondret et al. [59] in pigs and Zhuo et al. [60] in chickens. It is noteworthy that the
lncRNA MSTRG.5042 was exactly in the antisense position to APOA1, but displayed a 50-fold lower
average expression. We found that PPARGC1B, a key regulator of mitochondrial biogenesis [61], is the
most strongly activated upstream regulator (z-score = 2.177, p = 6.26 × 10−6) when comparing animals
of high efficiency with low efficiency animals, which is supported by the findings of Vigors et al. [62]
in pigs.
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3.2. LncRNA Linked to Mitochondrial Function and Energy Metabolism

Exploring the potential regulatory impact of the hub lncRNAs revealed that they might
modulate mitochondrial processes and energy metabolism. In our study, the enrichment hits for
lncRNA MSTRG.4802 suggest its involvement in oxidative phosphorylation and mitochondrial
dysfunction. MSTRG.4802 was particularly interesting, because it did not only have a significant RIF1
score—and thereby a predicted high regulatory potential—but was also DE with a significantly lower
expression in high efficiency bulls. In addition, its cis-interaction partner UQCRB (Ubiquinol-Cytochrome
C Reductase Binding Protein) also displayed a lower expression level in animals of high feed efficiency.
UQCRB, which is fundamental for the functioning of the mitochondrial respiratory chain complex III [63],
is on the opposite strand and in complete overlap with MSTRG.4802. Interestingly, this locus falls
within a remapped QTL region for RFI as well [4], which supports its putative relevance in the
regulation of the related biological processes.

3.3. LncRNA Associated with Immunological Functions

There is a tight relationship between the animal’s immune response and its performance in feed
efficiency or growth-related traits. Although not DE in our dataset, the correlation of MSTRG.7472
with HP, LBP, SOCS3 and SAA2 indicates that this lncRNA is functionally involved in the acute
phase signaling. Already in early life stages, inflammation negatively affects growth rates and the
average daily gain in feedlot calves [64]. Subsequently, at puberty, gene modules that were associated
with feed efficiency in bulls showed enrichments for an immune and an inflammatory response,
whereby the authors had reasons to assume that this was due to a bacterial infection of the liver [39].
Mukiibi et al. [41] assessed the liver transcriptome of bulls—similar in age to our cohort—in different
breeds and found the acute phase signaling pathway to be among the top enrichment hits in Angus
steers of divergent growth performance.

3.4. LncRNAs Putatively Involved in Gluconeogenesis

As Ingenuity Pathway Analysis is deeply rooted in human research, biological processes and
pathways that are specific to other species might therefore be overlooked. We considered it noteworthy
that MSTRG.4390 and MSTRG.5042 both correlated with the gene PCK1 at expression level and that
MSTRG.5042 expression also correlated with that of FBP1. Both PCK1 and FBP1 occupy key roles
in gluconeogenesis, a biological pathway that is particularly important for the energy balance in
cattle [65]. The correlation of MSTRG.5042 with the metabolite glycerol supports the assumption
that these lncRNAs might be involved in the regulation of hepatic gluconeogenesis in cattle [66].
Additionally, we found lactate to be differentially abundant and at significantly higher levels in the
plasma of highly efficient animals. The available amount of the glucogenic precursors lactate and
glycerol, next to glucogenic amino acids and volatile fatty acids, substantially influences the hepatic
glucose production [66]. In this context, we found that the high-connectivity key lncRNA MSTRG.9118
was co-expressed with G6PC, encoding the enzyme that controls the glucose release in hepatocytes
and thereby plays a central role in this biological pathway [67]. MSTRG.9118 is also antisense oriented
to G6PC.

3.5. LncRNAs as Natural Antisense Transcripts

The above-mentioned four hub lncRNAs (MSTRG.4390, MSTRG.4802, MSTRG.5042, MSTRG.7472)
lie in antisense orientation to and almost completely overlap with a protein-coding gene on the opposite
strand. Furthermore, all four hub lncRNAs were positively co-expressed with their cis-partner locus.
The observation of nearly complete or perfect antisense overlaps between the paired protein-coding
genes and non-coding RNAs has already been described and reviewed for natural antisense transcripts
(NATs) by Latgé et al. [68]. Our observation of predominantly positive correlations between key
lncRNAs and the paired locus on the opposite strand confirmed the findings of Wenric et al. [17].
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The authors found that strong negative correlations (r < −0.4) between the mirroring pairs were rare
and the correlation coefficients ranged between 0.431 and 0.533 [17]. Indeed, we only found two
strong negative correlations between key antisense lncRNAs and the overlapping paired partner locus.
We could also confirm strong differences in expression levels between the non-coding NATs and their
protein-coding partners, although not as strong as described by Wenric et al. (up to a 1000-fold).
Indeed, the observed expression ratios of partner gene expression level divided by antisense lncRNA
expression level were rather variable and ranged from 0.21 to 392.77. Only in two exceptional cases
of cis-interactions of NAT lncRNAs (out of 44) did these have higher expression levels than their
cis-partner gene, and in both cases, the expression ratio was below 0.5. As reported by Napoli et al. [69],
NATs have been found to be implicated in multiple regulatory mechanisms, including RNA masking,
alternative splicing and chromatin remodelling. A conceivable function of our key lncRNAs, which are
positively correlated with their associated antisense locus partner at expression level, could be the
stabilization of the corresponding paired transcript. The stabilization might occur by protecting
the transcript from degradation, binding to miRNAs or corrosive post-transcriptional processes [70].
Such lncRNAs with potential protective properties would easily have been overlooked in the past
before the introduction of stranded RNA sequencing libraries in 2008 [71].

4. Materials and Methods

4.1. Animals

The bulls in our study were part of a F2-population of a Charolais x Holstein Friesian cross
(SEGFAM [72]). The animals were bred and raised at the Leibniz Institute for Farm Animal Biology
(FBN) in Dummerstorf (Germany) and kept under standardized housing conditions, as previously
described by Eberlein et al. [73] and Widmann et al. [74]. The bulls’ individual feed intake was measured
daily, and body weight was recorded on a monthly basis. Animals were slaughtered at 18 months of
age and the carcasses underwent detailed dissection, including measurements for intramuscular (IMF)
and carcass (CF) fat percentage. The bulls were split into groups of high or low efficiency depending
on their residual feed intake (RFI) in the last month of life, their IMF in M. longissimus dorsi and their CF
percentage. Bulls were assigned to the high efficiency group if they had a low RFI (at least one standard
deviation (SD) below average) and a lower CF as well as a lower IMF than the population mean (CF:
mean = 16.5% ± 4.0%; IMF: mean = 3.67% ± 1.76%; n = 246). All animals had to have a positive daily
weight gain and no less than the population average minus one SD. Accordingly, bulls were grouped
to low efficiency if they had a high RFI (at least one SD above average), and a higher CF and IMF than
the mean (see Table 5). Archer’s formula [75] was used to calculate the individual RFI, which equals
the bulls’ energy intake while accounting for the average daily weight gain and metabolic mid-weight
(average body weight during the last month of life raised to the power of 0.75). For the current study,
out of 246 deeply phenotyped F2-bulls, 26 bulls were selected with extremely high (n = 13) or low
efficiency (n = 13).

All experimental procedures were carried out according to the German animal care guidelines
and were approved (27 March 2003) and supervised by the relevant authorities of the State
Mecklenburg-Vorpommern, Germany (State Office for Agriculture, Food Safety and Fishery; LALLF
M-V/TSD/7221.3-2.1-010/03).

Table 5. Phenotypic characteristics of bulls in high and low efficiency group.

Group Number of Animals.
CF (%) IMF (%) RFI in MJ ME/day

Mean SD Mean SD Mean SD

high efficiency 13 14.39 2.86 2.77 0.95 −20.91 4.47

low efficiency 13 20.28 4.06 4.59 1.71 20.48 4.40

CF = carcass fat content, IMF = intramuscular fat content in M. longissimus dorsi, RFI = residual feed intake,
MJ ME = megajoule metabolizable energy, SD = standard deviation.
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4.2. Plasma Metabolites

Blood samples were taken on the day of slaughter before transit to the slaughterhouse and holistic
metabolite profiles with 640 biochemical compounds and molecules in plasma were established by
Metabolon Inc. (Durham, NC, USA, https://www.metabolon.com/). With ultra-high-performance liquid
chromatography and tandem accurate mass spectrometry (UHPLC/MS/MS) methods, compounds and
derivatives of eight different metabolite classes were determined: amino acids (n = 167), carbohydrates
(n = 27), cofactors and vitamins (n = 19), energy (n = 10), lipids (n = 278), nucleotides (n = 36), peptides
(n = 35), and xenobiotics (n = 68). As animal B002 (high efficiency group) clustered unexpectedly
within the inefficient group in the transcriptomic analysis, this animal was excluded from further
metabolomics analysis steps.

For differential abundance analysis of metabolites in the blood plasma, the R-package
MetaboDiff [76] was used and the author’s instructions were closely followed. As recommended,
metabolites with more than 40% missing cases were excluded and for the remaining metabolites,
missing values were imputed with the k-nearest neighbor algorithm. A total of 552 metabolites
remained in the dataset, which was then normalized using a variance stabilization transformation.
For the comparison of the high and low efficiency group, a Student’s t-Test was applied, and p-values
were corrected for multiple testing with the Benjamini–Hochberg procedure [77].

4.3. Sampling, RNA Isolation, Library Preparation, and Sequencing

Immediately after slaughter and dissection, tissue samples were taken from the liver
(Lobus caudatus), shock frozen in liquid nitrogen and then stored at −80 ◦C. For RNA extraction,
the samples were ground in liquid nitrogen and 30 mg were subjected to an on-column-purification
with the NucleoSpin RNA II kit (Macherey and Nagel, Düren, Germany), which included a DNase
digestion to remove genomic DNA. RNA was subsequently tested for remaining DNA residues and
further cleansed, if necessary, according to Weikard et al. [78]. The RNA concentration and integrity
were measured with a Qubit Fluorometer (Invitrogen, Karlsruhe, Germany) and a 2100 Bioanalyzer
Instrument (Agilent Technologies, Waldbronn, Germany). From 1 µg of total RNA per sample,
stranded, ribodepleted and indexed libraries were prepared with the TruSeq Stranded RNA-Ribo-Zero
H/M/R Gold Kit (Illumina, San Diego, CA, USA). Paired-end reads were sequenced (2 × 100 bp) in
a multiplexed design on a HiSeq 2500 Sequencing System (Illumina).

4.4. Alignment and Assembly

Raw reads were subjected to quality control with FastQC [79], adapter trimming with Cutadapt
v.1.6.1 [80] and thereafter quality trimming with Quality Trim v. 1.6.0 [81]. For quality trimming,
the sequence start was also processed (option -s), the maximum number of missing bases (N) was
set to 3, and the minimum base quality was set to 15. In a guided alignment, the reads were then
mapped with HISAT2 v.2.1.0 [82] to the latest bovine reference genome ARS-UCD1.2 [83] with Ensembl
annotation release 97 [84]. The sorting and indexing of BAM files were performed with samtools
v.1.6 [85] and Stringtie v.1.3.4d [86] was used for the individual assembly while using the reference
genome and annotation in a guided approach. For this study, we created a project-specific annotation
with Stringtie merge (default settings for Stringtie merge and a minimal read alignment per exonic
base (-c) of 15). To this end, we made use of the bovine reference genome, the 26 bull liver samples,
as well as 178 other samples available from a previous study [36]. These samples included 26 liver
samples from cows of the same resource population, as well as muscle (n = 52), jejunum (n = 48) and
rumen (n = 52) samples of these cows and the bulls used in the present study.

The merged annotation was checked for plausibility, i.e., the number of exons for each transcript
and the number of transcripts for each locus. We excluded loci that had over 20 transcripts, unless one
of these transcripts was already annotated, in which case only that particular transcript was kept for the
locus. In the reference annotation (Ensemble release 97), the maximum number of exons per transcript

https://www.metabolon.com/
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was 173 and therefore we set a cut-off threshold of 200 exons per transcript. Transcripts with more
than 200 exons were excluded from the merged annotation, except for two transcripts overlapping
with the gene titin, which is highly expressed in muscle tissue and has been annotated with 335 exons
in NCBI (National Center for Biotechnology Information, annotation release 106).

The transcriptome dataset examined in this study was already used in a previous study ([36],
aligned to UMD.3.1, Ensembl annotation release 92) and is stored in the Functional Annotation of Animal
Genomes (FAANG) database (https://data.faang.org/dataset) under project number PRJEB34570.

4.5. Long Non-Coding RNA Prediction and Fragment Counting

The computational identification of lncRNAs was carried out with FEELnc [22], while making use
of the merged annotation and the bovine reference genome and annotation ARS-UCD1.2. (Ensembl 97).
Annotated loci of the protein coding biotype were excluded, and the minimal transcript length was
kept at the default of 200 nt. To reduce the number of false positives, monoexonic transcripts were
discarded, unless they were in antisense localization. The coding potential for all remaining transcripts
was determined in shuffling mode.

Except for the differential expression analysis, fragments per kilobase per million mapped reads
(FPKM) were used in all further analysis steps. These were calculated based on fragment counts
derived with featureCounts [87]. All loci needed to have a minimal expression of at least 0.1 FPKM in
at least six animals of one experimental group. The expression threshold was deliberately set this low
in order to keep as many predicted lncRNAs in the dataset as possible. Loci that were annotated as
ribosomal, spliceosomal, metazoan or Y-RNA genes were generally discarded.

4.6. Loci Set Prioritization

To enable the construction of meaningful co-expression networks, we compiled a list of prioritized
loci, which included loci that belonged to at least one of the following four categories: predicted
lncRNA (lncRNA), potential interaction partner of the lncRNA (partner locus), overlapping or in close
proximity of up to 3 Mb of a QTL (QTL locus), and differentially expressed between the groups of high
and low efficiency (DE locus).

Loci were included in the ‘lncRNA’ category if one of the locus’ transcripts was predicted as
lncRNA using FEELnc and the minimal expression threshold was exceeded. Loci were included in the
category ‘partner locus’ of the prioritized loci set if FEELnc predicted them to be positional interaction
partners and rated them ‘best choice’ with a score of 1. FEELnc determines the most likely positional
interaction partner for a lncRNA based on its physical genomic position relative to the nearest locus.
The best choice thereby is a locus that overlaps with the lncRNA, preferentially at an exon, and if no
overlapping locus can be found, the closest neighbor is chosen instead.

Loci were included in the category ‘QTL locus’ if they were minimally expressed and overlapped
with or were no farther away than 3 Mb from a QTL for residual feed intake (RFI) in cattle. QTLs were
downloaded from the Animalgenome QTL database (https://www.animalgenome.org/cgi-bin/QTLdb/

BT/index, accessed 10 October 2019) and only QTL based on SNP array studies were kept. The QTL
positions were then remapped to the new reference genome ARS-UCD1.2 with the NCBI Genome
Remapping Service and default options (https://www.ncbi.nlm.nih.gov/genome/tools/remap, accessed
on 22 November 2019).

The differential expression analysis was performed with the R-package DESeq2 [88]. Cluster
analysis revealed unexpected clustering of animal B002 in a PCA-plot based on read counts. Due to
pathological findings in the liver, this animal was excluded from all further analyses. The model for
differential expression analysis included the efficiency group; an effect of year of slaughter or birth
could not be included because all animals of the high efficiency group were born between 2002 and 2007
and all animals of the low efficiency group were born between 2008 and 2011. Loci were considered
significantly differentially expressed (DE) if they were minimally expressed and withstood a correction
for multiple testing with the Benjamini–Hochberg [77] procedure (adjusted p-value (q) ≤ 0.1).

https://data.faang.org/dataset
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.animalgenome.org/cgi-bin/QTLdb/BT/index
https://www.ncbi.nlm.nih.gov/genome/tools/remap
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4.7. Regulatory Impact Factor Analysis

The regulatory impact factor (RIF) algorithm of Reverter et al. [34] is designed to detect loci with
high regulatory potential in a prioritized loci set while contrasting two biological conditions or groups.
The analysis makes use of two metrics: RIF1 and RIF2. A high RIF1 score was attributed to lncRNAs
that were co-expressed with abundant target loci (DE, QTL, partner) in both efficiency groups. A high
RIF2 score was assigned to lncRNAs if they were strongly correlated with a target locus in one group
but displayed no or a reversed correlation to the same target locus in the other group. Since some
lncRNAs were also categorized as DE, QTL or partner loci, they could also be targets in the RIF analysis.
RIF scores were standardized with a z-transformation and lncRNAs with either a RIF1 or RIF2 score of
≥ 1.96 were deemed significant, which corresponds to a significance threshold of p ≤ 0.05 in a t-test.
Subsequently, lncRNAs with a significant RIF score (key lncRNAs) were closely scrutinized in the
co-expression networks.

4.8. Partial Correlation and Information Theory

The partial correlation and information theory (PCIT [35]) calculates pairwise correlations
between loci while accounting for the influence of a third locus. Unlike likelihood-based approaches,
which invoke a parametric distribution (e.g., normal) assumed to hold under the null hypothesis
and then a nominal p-value (e.g., 5%) used to ascertain significance, PCIT is an information theoretic
approach. Its threshold is an informative metric, in this case the partial correlation after exploring
all trios in judging the significance of a given correlation, which might then become a connection
when inferring a network. It thereby tests all possible three-way combinations in a dataset and only
keeps correlations between loci if they are significant and independent of the expression of another
locus, whereas no hard threshold is set for the correlation strength. The significance threshold for
each combination of loci depends on the average ratio of partial and direct correlation [35]. The set of
prioritized loci that was subjected to the RIF analysis was also used for the PCIT.

4.9. Correlation of Plasma Metabolites with Key LncRNAs

A Pearson correlation coefficient was calculated with the function rcorr of the Hmisc R-package [89]
for all key lncRNAs (significant RIF score) and plasma metabolites. The data curation was independent
from the differential abundance analysis of metabolites and a lower number of missing cases was
accepted for the correlation analysis. The raw metabolite values were filtered for metabolites with less
than five missing cases and missing values imputed with the minimum observation, assuming that the
missing value was due to a value below the detection limit and not a technical error. The values were
then scaled with the scale-function in R (without centering). Correlations were considered significant
if they had a p ≤ 0.01.

4.10. Natural Antisense Transcripts

The results from FEELnc were filtered for key lncRNAs (significant RIF score) that overlapped
with a predicted positional interaction partner locus on the opposite strand (antisense direction and
a distance of 0 bp to the partner locus). LncRNAs that are in antisense position to another gene
have been described as natural antisense transcripts (NATs) in the literature before [17] and fall into
the category of cis-interaction partners. We wanted to screen for valid cis-interactions, meaning
a correlation in expression and not a mere positional neighborhood. To this end, we checked for
significant PCIT correlations between the antisense lncRNAs and the respective partner loci, regardless
of correlation strength or direction (positive or negative).

4.11. Selection of Hub Key lncRNAs in Co-Expression Network

The visualization of the co-expression network was realized in Cytoscape 3.6.1 [90]. All significant
PCIT correlations with a minimum strength of |r|≥ 0.65 between lncRNAs with a significant RIF score
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and any other locus from the prioritized loci set were included. Additionally, significant correlations
between the above-mentioned lncRNAs and plasma metabolites were also included if they had
a minimal correlation strength of |r|≥ 0.65. We filtered for lncRNAs with a significant RIF score that
were correlated with at least 10 annotated genes, having an official gene symbol available and not
predicted to be a lncRNA. To further narrow down the selection to impactful lncRNAs, we filtered for
lncRNAs that fulfilled either of the following three criteria: I) categorization as a DE or QTL locus, II)
additional correlation with at least 10 metabolites, or III) exceptionally high connectivity with >50
annotated genes with an official gene symbol in the bovine genome annotation. LncRNAs that fulfilled
these criteria were labelled key lncRNAs.

4.12. Cis-Action of Hub LncRNAs

In addition to the screening for NATs, we searched for cis-interaction partners for hub lncRNAs in
a larger radius. All loci within a physical distance of up to 1 Mb and with a correlation significant
according to PCIT and substantial in magnitude such that |r| ≥ 0.65 were considered for each individual
hub lncRNA. Since the lncRNA prediction in FEELnc works in a transcript-based manner, only the
transcript of a locus that was actually predicted to be non-coding was considered.

4.13. Pathway Enrichment Analysis

In order to discern the probable biological functions of hub lncRNAs, we conducted pathway
enrichment analyses with significantly and substantially correlated loci and metabolites (|r| ≥ 0.65) for
each of them. Additionally, to investigate which biological pathways are generally to be addressed for
our animal material and phenotype, an enrichment analysis was done for all DE between the high and
low efficiency group. The list of metabolites and genes and their logged fold changes were submitted to
the Ingenuity Pathway Analysis (IPA: QIAGEN, Inc., http://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis) [91]. Pathways were considered significantly enriched at a p-value of
p ≤ 0.05 equalling a −log10(p-value) of 1.3. The same significance threshold was applied to upstream
regulators in the pathway enrichment analyses.

5. Conclusions

With this study, we enlarged the catalogue of lncRNAs from bovine liver, identified hub lncRNAs
that are potentially involved in biological processes and pathways modulating feed efficiency in
bulls and made first predictions contributing to their functional annotation. Our results underline
the importance of immunological pathways and metabolic pathways associated with mitochondrial
processes of the metabolic phenotype related to feed efficiency in bulls and suggest a possible
regulatory function of key lncRNAs with regard to their modulating and fine-tuning role within these
biological pathways.

A substantial proportion of the identified lncRNAs fall into the category of natural antisense
transcripts, which most likely perform a stabilizing function with respect to mRNAs transcribed from
the opposite strand. This function needs to be validated by further studies. To what extent these
lncRNAs and the associated biological processes and pathways are also relevant in cows or bulls at
other life stages requires further investigations.
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RFI residual feed intake
QTL quantitative trait locus
NAT natural antisense transcript
FAANG Functional Annotation of Animal Genomes
RIF regulatory impact factor
PCIT partial correlation and information theory
nt nucleotide
FC foldchange
PCA principal component analysis
DE differentially expressed
FPKM fragments per kilobase million
IPA Ingenuity Pathway Analysis
SD standard deviation
CF carcass fat
IMF intramuscular fat content
Mb megabase

References

1. Encode Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature
2012, 489, 57–74. [CrossRef] [PubMed]

2. Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript
isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [CrossRef] [PubMed]

3. Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Invited review: Improving feed efficiency of beef cattle
– the current state of the art and future challenges. Animal 2018, 12, 1815–1826. [CrossRef] [PubMed]

4. Saatchi, M.; Beever, J.E.; Decker, J.E.; Faulkner, D.B.; Freetly, H.C.; Hansen, S.L.; Yampara-Iquise, H.;
Johnson, K.A.; Kachman, S.D.; Kerley, M.S.; et al. QTLs associated with dry matter intake, metabolic mid-test
weight, growth and feed efficiency have little overlap across 4 beef cattle studies. BMC Genom. 2014, 15, 1004.
[CrossRef] [PubMed]

5. Seabury, C.M.; Oldeschulte, D.L.; Saatchi, M.; Beever, J.E.; Decker, J.E.; Halley, Y.A.; Bhattarai, E.K.; Molaei, M.;
Freetly, H.C.; Hansen, S.L.; et al. Genome-wide association study for feed efficiency and growth traits in U.S.
beef cattle. BMC Genom. 2017, 18, 386. [CrossRef] [PubMed]

6. de Oliveira, P.S.; Cesar, A.S.; do Nascimento, M.L.; Chaves, A.S.; Tizioto, P.C.; Tullio, R.R.; Lanna, D.P.;
Rosa, A.N.; Sonstegard, T.S.; Mourao, G.B.; et al. Identification of genomic regions associated with feed
efficiency in Nelore cattle. BMC Genet. 2014, 15. [CrossRef]

7. Higgins, M.G.; Fitzsimons, C.; McClure, M.C.; McKenna, C.; Conroy, S.; Kenny, D.A.; McGee, M.; Waters, S.M.;
Morris, D.W. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and
GFRA2 expression in beef cattle. Sci. Rep. 2018, 8, 14301. [CrossRef]

8. Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017, 3.
[CrossRef]

9. Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function.
Genome Biol. 2017, 18, 206. [CrossRef]

10. Lu, W.; Cao, F.; Wang, S.; Sheng, X.; Ma, J. LncRNAs: The Regulator of Glucose and Lipid Metabolism in
Tumor Cells. Front. Oncol. 2019, 9, 1099. [CrossRef]

11. Muret, K.; Désert, C.; Lagoutte, L.; Boutin, M.; Gondret, F.; Zerjal, T.; Lagarrigue, S. Long noncoding RNAs in
lipid metabolism: Literature review and conservation analysis across species. BMC Genom. 2019, 20, 882.
[CrossRef]

http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1371/journal.pone.0030733
http://www.ncbi.nlm.nih.gov/pubmed/22319583
http://dx.doi.org/10.1017/S1751731118000976
http://www.ncbi.nlm.nih.gov/pubmed/29779496
http://dx.doi.org/10.1186/1471-2164-15-1004
http://www.ncbi.nlm.nih.gov/pubmed/25410110
http://dx.doi.org/10.1186/s12864-017-3754-y
http://www.ncbi.nlm.nih.gov/pubmed/28521758
http://dx.doi.org/10.1186/s12863-014-0100-0
http://dx.doi.org/10.1038/s41598-018-32374-6
http://dx.doi.org/10.1126/sciadv.aao2110
http://dx.doi.org/10.1186/s13059-017-1348-2
http://dx.doi.org/10.3389/fonc.2019.01099
http://dx.doi.org/10.1186/s12864-019-6093-3


Int. J. Mol. Sci. 2020, 21, 3292 21 of 24

12. Yang, L.; Li, P.; Yang, W.; Ruan, X.; Kiesewetter, K.; Zhu, J.; Cao, H. Integrative Transcriptome Analyses of
Metabolic Responses in Mice Define Pivotal LncRNA Metabolic Regulators. Cell Metab. 2016, 24, 627–639.
[CrossRef] [PubMed]

13. Pradas-Juni, M.; Hansmeier, N.R.; Link, J.C.; Schmidt, E.; Larsen, B.D.; Klemm, P.; Meola, N.; Topel, H.;
Loureiro, R.; Dhaouadi, I.; et al. A MAFG-lncRNA axis links systemic nutrient abundance to hepatic glucose
metabolism. Nat. Commun. 2020, 11, 644. [CrossRef] [PubMed]

14. Zhang, Y.; Liu, X.S.; Liu, Q.R.; Wei, L. Genome-wide in silico identification and analysis of cis natural
antisense transcripts (cis-NATs) in ten species. Nucleic Acids. Res. 2006, 34, 3465–3475. [CrossRef] [PubMed]

15. Katayama, S.; Tomaru, Y.; Kasukawa, T.; Waki, K.; Nakanishi, M.; Nakamura, M.; Nishida, H.; Yap, C.C.;
Suzuki, M.; Kawai, J.; et al. Antisense transcription in the mammalian transcriptome. Science 2005, 309,
1564–1566. [CrossRef] [PubMed]

16. Pelechano, V.; Steinmetz, L.M. Gene regulation by antisense transcription. Nat. Rev. Genet. 2013, 14, 880–893.
[CrossRef]

17. Wenric, S.; ElGuendi, S.; Caberg, J.-H.; Bezzaou, W.; Fasquelle, C.; Charloteaux, B.; Karim, L.; Hennuy, B.;
Frères, P.; Collignon, J.; et al. Transcriptome-wide analysis of natural antisense transcripts shows their
potential role in breast cancer. Sci. Rep. 2017, 7, 17452. [CrossRef]

18. Li, B.; Hu, Y.; Li, X.; Jin, G.; Chen, X.; Chen, G.; Chen, Y.; Huang, S.; Liao, W.; Liao, Y.; et al. Sirt1
Antisense Long Noncoding RNA Promotes Cardiomyocyte Proliferation by Enhancing the Stability of Sirt1.
J. Am. Heart Assoc. 2018, 7, e009700. [CrossRef]

19. Ma, X.-Y.; Wang, J.-H.; Wang, J.-L.; Ma, C.X.; Wang, X.-C.; Liu, F.-S. Malat1 as an evolutionarily conserved
lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage
hematopoietic cells. BMC Genom. 2015, 16, 676. [CrossRef]

20. Washietl, S.; Kellis, M.; Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding
RNAs in six mammals. Genome Res. 2014, 24, 616–628. [CrossRef]

21. Li, A.; Zhang, J.; Zhou, Z. PLEK: A tool for predicting long non-coding RNAs and messenger RNAs based
on an improved k-mer scheme. BMC Bioinf. 2014, 15, 311. [CrossRef] [PubMed]

22. Wucher, V.; Legeai, F.; Hedan, B.; Rizk, G.; Lagoutte, L.; Leeb, T.; Jagannathan, V.; Cadieu, E.; David, A.;
Lohi, H.; et al. FEELnc: A tool for long non-coding RNA annotation and its application to the dog
transcriptome. Nucleic Acids Res. 2017, 45, e57. [CrossRef] [PubMed]

23. Hezroni, H.; Koppstein, D.; Schwartz, M.G.; Avrutin, A.; Bartel, D.P.; Ulitsky, I. Principles of long noncoding
RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 2015, 11, 1110–1122.
[CrossRef] [PubMed]

24. Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential
of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007, 35, 345–349.
[CrossRef] [PubMed]

25. Wang, L.; Park, H.J.; Dasari, S.; Wang, S.; Kocher, J.-P.; Li, W. CPAT: Coding-Potential Assessment Tool using
an alignment-free logistic regression model. Nucleic Acids Res. 2013, 41, e74. [CrossRef]

26. Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing sequence intrinsic
composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013, 41, e166.
[CrossRef]

27. Oliveira, G.B.; Regitano, L.C.A.; Cesar, A.S.M.; Reecy, J.M.; Degaki, K.Y.; Poleti, M.D.; Felicio, A.M.; Koltes, J.E.;
Coutinho, L.L. Integrative analysis of microRNAs and mRNAs revealed regulation of composition and
metabolism in Nelore cattle. BMC Genom. 2018, 19, 16. [CrossRef]

28. Deng, L.; Wang, J.; Zhang, J. Predicting Gene Ontology Function of Human MicroRNAs by Integrating
Multiple Networks. Front. Genet. 2019, 10. [CrossRef]

29. Bansal, A.; Singh, T.R.; Chauhan, R.S. A novel miRNA analysis framework to analyze differential biological
networks. Sci. Rep. 2017, 7, 14604. [CrossRef]

30. Weikard, R.; Hadlich, F.; Hammon, H.M.; Frieten, D.; Gerbert, C.; Koch, C.; Dusel, G.; Kuehn, C. Long
noncoding RNAs are associated with metabolic and cellular processes in the jejunum mucosa of pre-weaning
calves in response to different diets. Oncotarget 2018, 9, 21052–21069. [CrossRef]

31. Lin, X.C.; Zhu, Y.; Chen, W.B.; Lin, L.W.; Chen, D.H.; Huang, J.R.; Pan, K.; Lin, Y.; Wu, B.T.; Dai, Y.; et al.
Integrated analysis of long non-coding RNAs and mRNA expression profiles reveals the potential role of
lncRNAs in gastric cancer pathogenesis. Int. J. Oncol. 2014, 45, 619–628. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.cmet.2016.08.019
http://www.ncbi.nlm.nih.gov/pubmed/27667668
http://dx.doi.org/10.1038/s41467-020-14323-y
http://www.ncbi.nlm.nih.gov/pubmed/32005828
http://dx.doi.org/10.1093/nar/gkl473
http://www.ncbi.nlm.nih.gov/pubmed/16849434
http://dx.doi.org/10.1126/science.1112009
http://www.ncbi.nlm.nih.gov/pubmed/16141073
http://dx.doi.org/10.1038/nrg3594
http://dx.doi.org/10.1038/s41598-017-17811-2
http://dx.doi.org/10.1161/JAHA.118.009700
http://dx.doi.org/10.1186/s12864-015-1881-x
http://dx.doi.org/10.1101/gr.165035.113
http://dx.doi.org/10.1186/1471-2105-15-311
http://www.ncbi.nlm.nih.gov/pubmed/25239089
http://dx.doi.org/10.1093/nar/gkw1306
http://www.ncbi.nlm.nih.gov/pubmed/28053114
http://dx.doi.org/10.1016/j.celrep.2015.04.023
http://www.ncbi.nlm.nih.gov/pubmed/25959816
http://dx.doi.org/10.1093/nar/gkm391
http://www.ncbi.nlm.nih.gov/pubmed/17631615
http://dx.doi.org/10.1093/nar/gkt006
http://dx.doi.org/10.1093/nar/gkt646
http://dx.doi.org/10.1186/s12864-018-4514-3
http://dx.doi.org/10.3389/fgene.2019.00003
http://dx.doi.org/10.1038/s41598-017-14973-x
http://dx.doi.org/10.18632/oncotarget.24898
http://dx.doi.org/10.3892/ijo.2014.2431
http://www.ncbi.nlm.nih.gov/pubmed/24819045


Int. J. Mol. Sci. 2020, 21, 3292 22 of 24

32. Bakhtiarizadeh, M.R.; Salami, S.A. Identification and Expression Analysis of Long Noncoding RNAs in
Fat-Tail of Sheep Breeds. G3-Genes Genom. Genet. 2019, 9, 1263–1276. [CrossRef] [PubMed]

33. Yue, B.; Li, H.; Liu, M.; Wu, J.; Li, M.; Lei, C.; Huang, B.; Chen, H. Characterization of lncRNA–miRNA–mRNA
Network to Reveal Potential Functional ceRNAs in Bovine Skeletal Muscle. Front. Genet. 2019, 10. [CrossRef]
[PubMed]

34. Reverter, A.; Hudson, N.J.; Nagaraj, S.H.; Perez-Enciso, M.; Dalrymple, B.P. Regulatory impact factors:
Unraveling the transcriptional regulation of complex traits from expression data. Bioinformatics 2010, 26,
896–904. [CrossRef]

35. Reverter, A.; Chan, E.K. Combining partial correlation and an information theory approach to the reversed
engineering of gene co-expression networks. Bioinformatics 2008, 24, 2491–2497. [CrossRef]

36. Nolte, W.; Weikard, R.; Brunner, R.M.; Albrecht, E.; Hammon, H.M.; Reverter, A.; Kühn, C. Biological
Network Approach for the Identification of Regulatory Long Non-Coding RNAs Associated With Metabolic
Efficiency in Cattle. Front. Genet. 2019, 10. [CrossRef]

37. Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of
human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011,
25. [CrossRef]

38. Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [CrossRef]
39. Alexandre, P.A.; Kogelman, L.J.A.; Santana, M.H.A.; Passarelli, D.; Pulz, L.H.; Fantinato-Neto, P.; Silva, P.L.;

Leme, P.R.; Strefezzi, R.F.; Coutinho, L.L.; et al. Liver transcriptomic networks reveal main biological
processes associated with feed efficiency in beef cattle. BMC Genom. 2015, 16, 13. [CrossRef]

40. Fonseca, L.D.; Eler, J.P.; Pereira, M.A.; Rosa, A.F.; Alexandre, P.A.; Moncau, C.T.; Salvato, F.; Rosa-Fernandes, L.;
Palmisano, G.; Ferraz, J.B.S.; et al. Liver proteomics unravel the metabolic pathways related to Feed Efficiency
in beef cattle. Sci. Rep. 2019, 9, 5364. [CrossRef]

41. Mukiibi, R.; Vinsky, M.; Keogh, K.; Fitzsimmons, C.; Stothard, P.; Waters, S.M.; Li, C. Liver transcriptome
profiling of beef steers with divergent growth rate, feed intake, or metabolic body weight phenotypes1.
J. Anim. Sci. 2019, 97, 4386–4404. [CrossRef] [PubMed]

42. Salleh, S.M.; Mazzoni, G.; Lovendahl, P.; Kadarmideen, H.N. Gene co-expression networks from RNA
sequencing of dairy cattle identifies genes and pathways affecting feed efficiency. BMC Bioinf. 2018, 19, 15.
[CrossRef] [PubMed]

43. Tizioto, P.C.; Coutinho, L.L.; Decker, J.E.; Schnabel, R.D.; Rosa, K.O.; Oliveira, P.S.; Souza, M.M.; Mourão, G.B.;
Tullio, R.R.; Chaves, A.S.; et al. Global liver gene expression differences in Nelore steers with divergent
residual feed intake phenotypes. BMC Genom. 2015, 16, 242. [CrossRef] [PubMed]

44. Le Beguec, C.; Wucher, V.; Lagoutte, L.; Cadieul, E.; Botherel, N.; Hedan, B.; De Brito, C.; Guillory, A.S.;
Andre, C.; Derrien, T.; et al. Characterisation and functional predictions of canine long non-coding RNAs.
Sci. Rep. 2018, 8, 12. [CrossRef] [PubMed]

45. Muret, K.; Klopp, C.; Wucher, V.; Esquerré, D.; Legeai, F.; Lecerf, F.; Désert, C.; Boutin, M.; Jehl, F.; Acloque, H.;
et al. Long noncoding RNA repertoire in chicken liver and adipose tissue. Genet. Sel. Evol. 2017, 49, 6.
[CrossRef] [PubMed]

46. Jin, L.; Hu, S.; Tu, T.; Huang, Z.; Tang, Q.; Ma, J.; Wang, X.; Li, X.; Zhou, X.; Shuai, S.; et al. Global Long
Noncoding RNA and mRNA Expression Changes between Prenatal and Neonatal Lung Tissue in Pigs. Genes
2018, 9, 443. [CrossRef] [PubMed]

47. Ulitsky, I.; Shkumatava, A.; Jan, C.H.; Sive, H.; Bartel, D.P. Conserved function of lincRNAs in vertebrate
embryonic development despite rapid sequence evolution. Cell. 2011, 147. [CrossRef]

48. Bogdanos, D.P.; Gao, B.; Gershwin, M.E. Liver immunology. Compr. Physiol. 2013, 3, 567–598. [CrossRef]
49. Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.;

Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene
structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [CrossRef]

50. Ehsani, R.; Drabløs, F. Measures of co-expression for improved function prediction of long non-coding RNAs.
BMC Bioinf. 2018, 19, 533. [CrossRef]

51. Alexandre, P.A.; Naval-Sanchez, M.; Porto-Neto, L.R.; Ferraz, J.B.S.; Reverter, A.; Fukumasu, H. Systems
Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front. Genet. 2019,
10. [CrossRef] [PubMed]

http://dx.doi.org/10.1534/g3.118.201014
http://www.ncbi.nlm.nih.gov/pubmed/30787031
http://dx.doi.org/10.3389/fgene.2019.00091
http://www.ncbi.nlm.nih.gov/pubmed/30842787
http://dx.doi.org/10.1093/bioinformatics/btq051
http://dx.doi.org/10.1093/bioinformatics/btn482
http://dx.doi.org/10.3389/fgene.2019.01130
http://dx.doi.org/10.1101/gad.17446611
http://dx.doi.org/10.1002/cphy.c130024
http://dx.doi.org/10.1186/s12864-015-2292-8
http://dx.doi.org/10.1038/s41598-019-41813-x
http://dx.doi.org/10.1093/jas/skz315
http://www.ncbi.nlm.nih.gov/pubmed/31583405
http://dx.doi.org/10.1186/s12859-018-2553-z
http://www.ncbi.nlm.nih.gov/pubmed/30558534
http://dx.doi.org/10.1186/s12864-015-1464-x
http://www.ncbi.nlm.nih.gov/pubmed/25887532
http://dx.doi.org/10.1038/s41598-018-31770-2
http://www.ncbi.nlm.nih.gov/pubmed/30194329
http://dx.doi.org/10.1186/s12711-016-0275-0
http://www.ncbi.nlm.nih.gov/pubmed/28073357
http://dx.doi.org/10.3390/genes9090443
http://www.ncbi.nlm.nih.gov/pubmed/30189656
http://dx.doi.org/10.1016/j.cell.2011.11.055
http://dx.doi.org/10.1002/cphy.c120011
http://dx.doi.org/10.1101/gr.132159.111
http://dx.doi.org/10.1186/s12859-018-2546-y
http://dx.doi.org/10.3389/fgene.2019.00230
http://www.ncbi.nlm.nih.gov/pubmed/30967894


Int. J. Mol. Sci. 2020, 21, 3292 23 of 24

52. Canovas, A.; Reverter, A.; DeAtley, K.L.; Ashley, R.L.; Colgrave, M.L.; Fortes, M.R.S.; Islas-Trejo, A.;
Lehnert, S.; Porto-Neto, L.; Rincon, G.; et al. Multi-Tissue Omics Analyses Reveal Molecular Regulatory
Networks for Puberty in Composite Beef Cattle. PLoS ONE 2014, 9, 17. [CrossRef] [PubMed]

53. Nguyen, L.T.; Reverter, A.; Cánovas, A.; Venus, B.; Anderson, S.T.; Islas-Trejo, A.; Dias, M.M.; Crawford, N.F.;
Lehnert, S.A.; Medrano, J.F.; et al. STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452
Differentially Expressed Genes Associated With Puberty in Brahman Heifers. Front. Genet. 2018, 9.
[CrossRef] [PubMed]

54. Afonso, J.; Fortes, M.R.S.; Reverter, A.; da Silva Diniz, W.J.; Cesar, A.S.M.; de Lima, A.O.; Petrini, J.; de
Souza, M.M.; Coutinho, L.L.; Mourão, G.B.; et al. Genetic regulators of mineral amount in Nelore cattle
muscle predicted by a new co-expression and regulatory impact factor approach. bioRxiv 2019. [CrossRef]

55. Cesar, A.S.M.; Regitano, L.C.A.; Koltes, J.E.; Fritz-Waters, E.R.; Lanna, D.P.D.; Gasparin, G.; Mourao, G.B.;
Oliveira, P.S.N.; Reecy, J.M.; Coutinho, L.L. Putative Regulatory Factors Associated with Intramuscular Fat
Content. PLoS ONE 2015, 10, 21. [CrossRef]

56. de Oliveira, P.S.N.; Coutinho, L.L.; Cesar, A.S.M.; Diniz, W.J.d.S.; de Souza, M.M.; Andrade, B.G.; Koltes, J.E.;
Mourão, G.B.; Zerlotini, A.; Reecy, J.M.; et al. Co-Expression Networks Reveal Potential Regulatory Roles of
miRNAs in Fatty Acid Composition of Nelore Cattle. Front. Genet. 2019, 10. [CrossRef]

57. Adam, A.C.; Lie, K.K.; Moren, M.; Skjaerven, K.H. High dietary arachidonic acid levels induce changes in
complex lipids and immune-related eicosanoids and increase levels of oxidised metabolites in zebrafish
(Danio rerio). Br. J. Nutr. 2017, 117, 1075–1085. [CrossRef]

58. Wang, X.; Kadarmideen, H.N. Metabolomics Analyses in High-Low Feed Efficient Dairy Cows Reveal Novel
Biochemical Mechanisms and Predictive Biomarkers. Metabolites 2019, 9. [CrossRef]

59. Gondret, F.; Vincent, A.; Houée-Bigot, M.; Siegel, A.; Lagarrigue, S.; Causeur, D.; Gilbert, H.; Louveau, I. A
transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in
feed efficiency of growing pigs. BMC Genom. 2017, 18, 244. [CrossRef]

60. Zhuo, Z.; Lamont, S.J.; Lee, W.R.; Abasht, B. RNA-Seq Analysis of Abdominal Fat Reveals Differences
between Modern Commercial Broiler Chickens with High and Low Feed Efficiencies. PLoS ONE 2015, 10,
e0135810. [CrossRef]

61. Lehman, J.J.; Barger, P.M.; Kovacs, A.; Saffitz, J.E.; Medeiros, D.M.; Kelly, D.P. Peroxisome proliferator–
activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J. Clin. Invest. 2000, 106,
847–856. [CrossRef] [PubMed]

62. Vigors, S.; O’Doherty, J.V.; Bryan, K.; Sweeney, T. A comparative analysis of the transcriptome profiles of
liver and muscle tissue in pigs divergent for feed efficiency. BMC Genom. 2019, 20, 461. [CrossRef] [PubMed]

63. Haut, S.; Brivet, M.; Touati, G.; Rustin, P.; Lebon, S.; Garcia-Cazorla, A.; Saudubray, J.M.; Boutron, A.;
Legrand, A.; Slama, A. A deletion in the human QP-C gene causes a complex III deficiency resulting in
hypoglycaemia and lactic acidosis. Hum. Genet. 2003, 113, 118–122. [CrossRef] [PubMed]

64. Gifford, C.A.; Holland, B.P.; Mills, R.L.; Maxwell, C.L.; Farney, J.K.; Terrill, S.J.; Step, D.L.; Richards, C.J.;
Burciaga Robles, L.O.; Krehbiel, C.R. Growth and Development Symposium: Impacts of inflammation on
cattle growth and carcass merit. J. Anim. Sci. 2012, 90, 1438–1451. [CrossRef]

65. Fassah, D.M.; Jeong, J.Y.; Baik, M. Hepatic transcriptional changes in critical genes for gluconeogenesis
following castration of bulls. Asian Austral. J. Anim. Sci. 2018, 31, 537–547. [CrossRef]

66. Larsen, M.; Kristensen, N.B. Effect of abomasal glucose infusion on splanchnic and whole-body glucose
metabolism in periparturient dairy cows. J. Dairy Sci. 2009, 92, 1071–1083. [CrossRef]

67. Tanaka, A.; Urabe, S.; Takeguchi, A.; Mizutani, H.; Sako, T.; Imai, S.; Yoshimura, I.; Kimura, N.; Arai, T.
Comparison of activities of enzymes related to energy metabolism in peripheral leukocytes and livers
between Holstein dairy cows and ICR mice. Vet. Res. Commun. 2006, 30, 29–38. [CrossRef]

68. Latgé, G.; Poulet, C.; Bours, V.; Josse, C.; Jerusalem, G. Natural Antisense Transcripts: Molecular Mechanisms
and Implications in Breast Cancers. Int. J. Mol. Sci. 2018, 19, 123. [CrossRef]

69. Napoli, S.; Piccinelli, V.; Mapelli, S.N.; Pisignano, G.; Catapano, C.V. Natural antisense transcripts drive
a regulatory cascade controlling c-MYC transcription. RNA Biol. 2017, 14, 1742–1755. [CrossRef]

70. Rosikiewicz, W.; Makalowska, I. Biological functions of natural antisense transcripts. Acta biochimica Polonica
2016, 63, 665–673. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0102551
http://www.ncbi.nlm.nih.gov/pubmed/25048735
http://dx.doi.org/10.3389/fgene.2018.00087
http://www.ncbi.nlm.nih.gov/pubmed/29616079
http://dx.doi.org/10.1101/804419
http://dx.doi.org/10.1371/journal.pone.0128350
http://dx.doi.org/10.3389/fgene.2019.00651
http://dx.doi.org/10.1017/S0007114517000903
http://dx.doi.org/10.3390/metabo9070151
http://dx.doi.org/10.1186/s12864-017-3639-0
http://dx.doi.org/10.1371/journal.pone.0135810
http://dx.doi.org/10.1172/JCI10268
http://www.ncbi.nlm.nih.gov/pubmed/11018072
http://dx.doi.org/10.1186/s12864-019-5740-z
http://www.ncbi.nlm.nih.gov/pubmed/31170913
http://dx.doi.org/10.1007/s00439-003-0946-0
http://www.ncbi.nlm.nih.gov/pubmed/12709789
http://dx.doi.org/10.2527/jas.2011-4846
http://dx.doi.org/10.5713/ajas.17.0875
http://dx.doi.org/10.3168/jds.2008-1453
http://dx.doi.org/10.1007/s11259-005-3223-y
http://dx.doi.org/10.3390/ijms19010123
http://dx.doi.org/10.1080/15476286.2017.1356564
http://dx.doi.org/10.18388/abp.2016_1350


Int. J. Mol. Sci. 2020, 21, 3292 24 of 24

71. Cloonan, N.; Forrest, A.R.; Kolle, G.; Gardiner, B.B.; Faulkner, G.J.; Brown, M.K.; Taylor, D.F.; Steptoe, A.L.;
Wani, S.; Bethel, G.; et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods
2008, 5, 613–619. [CrossRef] [PubMed]

72. Kühn, C.; Bellmann, O.; Voigt, J.; Wegner, J.; Guiard, V.; Ender, K. An experimental approach for studying the
genetic and physiological background of nutrient transformation in cattle with respect to nutrient secretion
and accretion type. Arch. Anim. Breed 2002, 45, 317–330. [CrossRef]

73. Eberlein, A.; Takasuga, A.; Setoguchi, K.; Pfuhl, R.; Flisikowski, K.; Fries, R.; Klopp, N.; Furbass, R.;
Weikard, R.; Kuhn, C. Dissection of genetic factors modulating fetal growth in cattle indicates a substantial
role of the non-SMC condensin I complex, subunit G (NCAPG) gene. Genetics 2009, 183, 951–964. [CrossRef]
[PubMed]

74. Widmann, P.; Nuernberg, K.; Kuehn, C.; Weikard, R. Association of an ACSL1 gene variant with
polyunsaturated fatty acids in bovine skeletal muscle. BMC Genet. 2011, 12, 96. [CrossRef]

75. Archer, J.A.; Arthur, P.F.; Herd, R.M.; Parnell, P.F.; Pitchford, W.S. Optimum postweaning test for measurement
of growth rate, feed intake, and feed efficiency in British breed cattle. J. Anim. Sci. 1997, 75, 2024–2032.
[CrossRef]

76. Mock, A.; Warta, R.; Dettling, S.; Brors, B.; Jäger, D.; Herold-Mende, C. MetaboDiff: An R package for
differential metabolomic analysis. Bioinformatics 2018, 34, 3417–3418. [CrossRef]

77. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. J. Royal. Stat. Soc. Ser. B 1995, 57, 289–300. [CrossRef]

78. Weikard, R.; Goldammer, T.; Brunner, R.M.; Kuehn, C. Tissue-specific mRNA expression patterns reveal
a coordinated metabolic response associated with genetic selection for milk production in cows. Physiol. Genom.
2012, 44, 728–739. [CrossRef]

79. Andrew, S. FastQC: A quality control tool for high throughput sequence data. Available online: http:
//www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 28 March 2018).

80. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 2011,
17, 10–12. [CrossRef]

81. Robinson, A. Quality Trim version 1.6.0. Available online: https://bitbucket.org/arobinson/qualitytrim/

downloads/ (accessed on 29 March 2018).
82. Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements.

Na. Methods 2015, 12, 357. [CrossRef]
83. Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.;

Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing.
Gigascience 2020, 9. [CrossRef] [PubMed]

84. Frankish, A.; Vullo, A.; Zadissa, A.; Yates, A.; Thormann, A.; Parker, A.; Gall, A.; Moore, B.; Walts, B.;
Aken, B.L.; et al. Ensembl 2018. Nucleic Acids Res. 2017, 46, 754–761. [CrossRef]

85. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.
The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef] [PubMed]

86. Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved
reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [CrossRef]

87. Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence
reads to genomic features. Bioinformatics 2014, 30, 923–930. [CrossRef]

88. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. 2014, 15, 550. [CrossRef]

89. Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. R Package Version 2019.
90. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.

Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res.
2003, 13, 2498–2504. [CrossRef]

91. Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway
Analysis. Bioinformatics 2014, 30, 523–530. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nmeth.1223
http://www.ncbi.nlm.nih.gov/pubmed/18516046
http://dx.doi.org/10.5194/aab-45-317-2002
http://dx.doi.org/10.1534/genetics.109.106476
http://www.ncbi.nlm.nih.gov/pubmed/19720859
http://dx.doi.org/10.1186/1471-2156-12-96
http://dx.doi.org/10.2527/1997.7582024x
http://dx.doi.org/10.1093/bioinformatics/bty344
http://dx.doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://dx.doi.org/10.1152/physiolgenomics.00007.2012
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://dx.doi.org/10.14806/ej.17.1.200
https://bitbucket.org/arobinson/qualitytrim/downloads/
https://bitbucket.org/arobinson/qualitytrim/downloads/
http://dx.doi.org/10.1038/nmeth.3317
http://dx.doi.org/10.1093/gigascience/giaa021
http://www.ncbi.nlm.nih.gov/pubmed/32191811
http://dx.doi.org/10.1093/nar/gkx1098
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1038/nbt.3122
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1093/bioinformatics/btt703
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Alignment and Mapping of RNA Sequencing Data 
	Long Non-Coding RNA Prediction 
	Differential Metabolite Abundance 
	Set of Prioritized Loci for Co-Expression Network 
	Regulatory Impact Factor Analysis 
	Co-Expression Networks Based on Partial Correlation and Information Theory Approach and Detection of Hub LncRNAs 
	Natural Antisense Transcripts 
	Characteristics of Key Regulatory Long Non-Coding RNAs in the Co-Expression Network 
	Pathway Enrichment Analysis 

	Discussion 
	LncRNAs Participating in Fatty Acid -Oxidation and TCA-Cycle 
	LncRNA Linked to Mitochondrial Function and Energy Metabolism 
	LncRNA Associated with Immunological Functions 
	LncRNAs Putatively Involved in Gluconeogenesis 
	LncRNAs as Natural Antisense Transcripts 

	Materials and Methods 
	Animals 
	Plasma Metabolites 
	Sampling, RNA Isolation, Library Preparation, and Sequencing 
	Alignment and Assembly 
	Long Non-Coding RNA Prediction and Fragment Counting 
	Loci Set Prioritization 
	Regulatory Impact Factor Analysis 
	Partial Correlation and Information Theory 
	Correlation of Plasma Metabolites with Key LncRNAs 
	Natural Antisense Transcripts 
	Selection of Hub Key lncRNAs in Co-Expression Network 
	Cis-Action of Hub LncRNAs 
	Pathway Enrichment Analysis 

	Conclusions 
	References

