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ABSTRACT

The three-dimensional (3D) configuration of chro-
matin impacts numerous cellular processes. How-
ever, directly observing chromatin architecture at
high resolution is challenging. Accordingly, infer-
ring 3D structure utilizing chromatin conformation
capture assays, notably Hi-C, has received consid-
erable attention, with a multitude of reconstruction
algorithms advanced. While these have enhanced
appreciation of chromatin organization, most suf-
fer from a serious shortcoming when faced with
diploid genomes: inability to disambiguate contacts
between corresponding loci on homologous chro-
mosomes, making attendant reconstructions poten-
tially meaningless. Three recent proposals offer a
computational way forward at the expense of strong
assumptions. Here, we show that making plausi-
ble assumptions about the components of homolo-
gous chromosome contacts provides a basis for res-
cuing conventional consensus-based, unphased re-
construction. This would be consequential since not
only are assumptions needed for diploid reconstruc-
tion considerable, but the sophistication of select un-
phased algorithms affords substantive advantages
with regard resolution and folding complexity. Rather
than presuming that the requisite salvaging assump-
tions are met, we exploit a recent imaging technol-
ogy, in situ genome sequencing (IGS), to compre-
hensively evaluate their reasonableness. We analo-
gously use IGS to assess assumptions underpinning
diploid reconstruction algorithms. Results convinc-
ingly demonstrate that, in all instances, assumptions
are not met, making further algorithm development,
potentially informed by IGS data, essential.

INTRODUCTION

The three-dimensional (3D) architecture of chromatin
within the eukaryotic nucleus is essential for numerous

fundamental biological processes, including transcription,
replication, development and even memory formation (1).
Much of the current understanding of global principles
of hierarchical chromatin organization derives from Hi-C
and related assays (2–5). While many of these findings have
emerged from analyses of the contact map – the matrix
of pairwise interactions generated by a Hi-C experiment –
there have a number of demonstrations of benefits in pro-
ceeding from a contact map to an inferred 3D reconstruc-
tion. In part, this added value derives from being able to
superpose genomic attributes on the reconstruction. Exam-
ples include co-localization of genomic landmarks such as
early replication origins in yeast (6,7), gene expression gra-
dients in relation to telomeric distance and co-localization
of virulence genes in the malaria parasite (8), the impact of
spatial organization on double strand break repair (9), and
elucidation of ‘3D hotspots’ corresponding to (say) over-
laid ChIP-Seq transcription factor extremes which can re-
veal novel regulatory interactions (10).

Such potential has seen the development of a broad range
of computational techniques for pursuing 3D genome re-
construction: a recent review (11) identified over 30 meth-
ods and there have numerous additions in subs equent years.
These methods are broadly categorized into either ensemble
or consensus approaches. The former generate a (large) col-
lection of 3D solution structures that accord with the under-
lying Hi-C data, the intention being to capture the popula-
tion of structures arising in a bulk cell experiment, with such
experiments typically comprising 105−106 cells. However,
as has been noted (12,13), whether such ensembles capture
biological, including allelic (see below) variability, is unclear
since decomposing variation into algorithmic and biologi-
cal components is problematic.

Until recently, neither ensemble nor consensus recon-
struction approaches have addressed the considerable chal-
lenge posed by typical Hi-C experiments conducted on
diploid organisms. Since the Hi-C readout does not differ-
entiate between allelic (homologous chromosome) copies,
an observed contact between loci i and j corresponds to one
of four possible events: either copy of locus i contacting ei-
ther copy of locus j; see Figure 1. While accommodating this
ambiguity seems essential to 3D reconstruction efforts, the
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Figure 1. Three homologous pairs of chromosomes (red, green, and blue
curves) are shown. For distances derived from unphased contact data the
inferred distance between loci i and j corresponds to the sum of the four
distances (depicted in purple) between the pairs of homologous loci (xi,
yi) and (xj, yj). From (18). Copyright @Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

fact of the matter is that the issue has been swept under the
rug, either by being altogether ignored (implicitly imposing
a haploid genome), or by assuming that chromosome ho-
mologs have a common 3D architecture (13–15).

The diploid reconstruction challenge has finally been met
with the emergence of three pioneering computational ap-
proaches (16–18). In the Materials and Methods section,
we briefly recapitulate these techniques, emphasizing the
strong assumptions that are invoked to resolve allelic iden-
tifiability. We then show that making a priori reasonable as-
sumptions about the components of homologous chromo-
some contacts provides the basis for salvaging conventional
consensus-based, unphased reconstruction. In addition to
averting issues associated with diploid 3D reconstruction
algorithms, such rescue would have the added benefit of in-
heriting the sophistication of some existing unphased algo-
rithms which, currently, afford substantive advantages with
respect to resolution and capturing folding complexity (19).
But while the needed assumptions are prima facie plausible,
they are assumptions nonetheless. Accordingly, we exploit
a newly developed imaging technology, in situ genome se-
quencing (IGS, (20), to comprehensively evaluate their rea-
sonableness. This evaluation makes recourse to statistical
approaches for comparing distance matrices and 3D config-
urations. We precede this assessment by also utilizing IGS
imaging to appraise some of the assumptions underpin-
ning the diploid-based reconstruction approaches. Findings
from these programs are presented in the Results section,
with concluding implications provided in the Discussion.

Our focus here is strictly on unphased Hi-C. While
tools for phasing Hi-C data have recently been developed
(16,21,22), thereby circumventing allelic ambiguity con-
cerns, their use may be limited due to the sparsity of
homolog-differentiating SNPs and the need for ultra-deep

sequencing and attendant high resolution Hi-C maps re-
quired to effect phasing.

While it may seem misplaced to emphasize allelic iden-
tifiability issues in the face of the potentially more funda-
mental concern of inter-cell structural variation that is dis-
regarded in consensus-based reconstruction (although (15)
provide measures for evaluating adequacy of consensus so-
lutions), the reasons for our focus are as follows. First, for
3D diploid reconstructions based on single-cell Hi-C (23,24)
or SPRITE (25) assays the issue of inter-cellular structural
variation becomes moot, but allelic ambiguity concerns per-
sist. This concern is directly addressed by the work of (16)
that we subsequently evaluate. While the sparsity of single
cell proximity data has generally limited reconstruction ap-
plications to date, improved algorithms that accommodate
zero inflation may help redress this (26). Second, existing
methods for handling allelic ambiguity and effecting diploid
reconstruction either pertain to distance-based consensus
methods, or to single cell assays (where the distinction be-
tween consensus and ensemble is moot), and it is the rea-
sonableness of their associated assumptions that we seek to
assess. Appraising the impact of allelic ambiguity on the nu-
merous ensemble based reconstruction methods is beyond
the scope of this paper. Similarly, we do not attempt to ad-
dress 3D diploid reconstruction for methods that operate in
contact or neighborhood space without invoking distances.

MATERIALS AND METHODS

We position description and assessment of emergent diploid
3D reconstruction approaches by initially briefly review-
ing (implicitly haploid) consensus Hi-C based reconstruc-
tion methods below; in particular multi-dimensional scal-
ing (MDS) based techniques. This is followed by subse-
quently detailing the assumptions required to computation-
ally resolve allelic ambiguity and effect diploid reconstruc-
tion amongst existing approaches. The remainder of Ma-
terials and Methods then successively outlines the require-
ments needed to rescue haploid reconstruction methods, de-
scribes IGS data and processing, and showcases the statis-
tical procedures applied to this data in order to evaluate the
salvaging assumptions.

3D chromatin reconstructions from Hi-C data

We restrict attention to reconstruction of individual chro-
mosomes; whole genome architecture can follow by ap-
propriately positioning these solutions (27,28). As noted in
the Introduction, in emphasizing consensus reconstructions
from bulk cell experiments we disregard concerns surround-
ing inter-cellular structural variation.

The result of a Hi-C experiment is the contact map, a sym-
metric matrix C = [Ci j ] ∈ Z

n×n
+ of contact counts between

n (binned) genomic loci i, j on a genome-wide basis. Vari-
ous approaches to contact matrix normalization have been
proposed; the methods and issues dealt with here are agnos-
tic to these. The 3D chromatin reconstruction problem is to
use the contact matrix C to obtain a 3D point configura-
tion X = {x1, . . . , xn ; xi ∈ R

3} corresponding to the spatial
coordinates of loci 1, . . . , n respectively.

A common first step for many consensus based recon-
struction approaches is conversion of the contact matrix
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into a distance matrix D = [Dij] (8,13,28–30), followed
by solving the MDS (31) problem: position points (corre-
sponding to genomic loci) in 3D so that the resultant in-
terpoint distances ‘best conform’ to the distance matrix. A
variety of methods have been used for transforming con-
tacts to distances, with a number of approaches appeal-
ing to empirical observations and biophysical properties of
DNA to invoke inverse power-law transfer functions: Dij =
(Cij)−� ifCij > 0 (13,28,32). As has been emphasized (15),
power-law relationships vary according to cell type, chro-
mosome, organism, and resolution, making estimation of �
important. However, while current diploid reconstruction
methods both adopt such contact-distance conversion, they
all prespecify values for the power-law index.

MDS operationalizes the notion of ‘best conforms’ via
an objective function termed the stress, a standard version
of which is:

σ (X) = σ (x1, . . . , xn) =
∑
i< j

wi j (‖xi − xj‖ − Di j )2 (1)

where ‖ · ‖ denotes the Euclidean norm and wij are anal-
ogous to precision weights often taken as D−1

i j (15) or D−2
i j

(13). More elaborate variants incorporate penalties to en-
sure loci with Cij = 0 are not positioned too close (15).
Several 3D reconstruction approaches use MDS as a build-
ing block (8,28–30), overlaying, for example, probabilistic
(typically Poisson) modeling of contact counts. One such
method, PASTIS (13), serves as a foundation for a diploid
reconstruction approach.

Computational approaches to diploid 3D reconstruction

As indicated, there have been three recently proposed com-
putational approaches for pursuing diploid reconstruction
from strictly unphased Hi-C data which we describe in
turn with respect to attendant assumptions. While there are
many facets to each of the methods, our focus is on evalu-
ating the reasonableness of these assumptions that are key
to enabling diploid reconstruction. The availability of even
modest amounts of phased Hi-C data can appreciably al-
ter the problem landscape, a topic we address further in the
Discussion.

The first approach (16) assigns haplotypes based on the
reasoning that unknown haplotypes can be imputed from
‘neighboring’ (in terms of genomic distances) contacts by
assuming that the two homologs would typically contact
different chromosome partners. We term this the DCP as-
sumption. The underpinnings of this assumption are un-
clear. While it would follow from a random model of chro-
mosome arrangement, this is contrary to interphase nuclear
organization being evolutionarily conserved and strongly
influenced by gene density and chromosome size in mouse
and human (33), organisms relevant to our subsequent IGS
analyses. Indeed, such organizing principles would tend to
result in comparably sized and gene dense homologs occu-
pying proximal territories. We provide empiric assessment
of the DCP assumption in the Results.

The second approach (17) builds on the abovementioned
PASTIS method by applying two constraints to the underly-
ing Poisson log-likelihood. The first constraint attempts to

impose chromatin connectivity by minimizing the variance
in the distance between locus positions that correspond to
neighboring genomic loci. While similar constraints have
previously been employed (34), capturing contiguity by im-
posing that the 3D solution lie on 1D curve, achieved using
principal curve metric scaling (19), arguably affords a more
principled and flexible approach.

The second constraint is central to disambiguating
diploid genome contact counts and is based on the tendency
of homologs of most organisms to reside in distinct chromo-
some territories (33,35). In something of a leap, this obser-
vation is used to contend that the separation between chro-
mosome centers of mass is expected to be similar to the cor-
responding separation between homologs. We term this the
ECM (equal centers of mass) assumption which, again, can
be tested using IGS data. This constraint, which can be in-
terpreted as a log-prior in a Bayesian context where the dis-
tance between homolog centers of mass for chromosome C
is normally distributed with mean rC, is formulated as

hC(X) = max
{

0,
(

rC − ∥∥X̄M − X̄P
∥∥)}

(2)

h(X) =
∑
C∈K

hC(X)2 (3)

where, in (2), ‖ · ‖ is the Euclidean norm, |CM| gives the num-
ber of points in the 3D reconstructed maternal homolog
Xi , i ∈ CM, with X̄M = 1

|CM|
∑

i∈CM
Xi its center of mass,

and analogous definitions for the paternal homolog, while
K in (3) denotes the set of autosomes.

The parameter rC in (2) is crucial for PASTIS diploid re-
construction. In the setting of interest here, where only un-
phased Hi-C data is available, (17) set this predefined scalar
as the mean distance between chromosome centers of mass
of a 3D reconstruction that ignores ploidy, invoking the as-
sumption that this distance is similar to that between ho-
mologs. We assess this presumed similarity, the ECM as-
sumption, using IGS data in the Results section.

The third approach (18) provides a comprehensive math-
ematical treatment of identifiability concerns that derive
from phase ambiguity, coupled with constraints and data
augmentations needed to effect 3D diploid reconstruction.
Here such reconstruction is effected using embedding (eigen
decomposition) techniques applied to the diploid (2n × 2n)
Gram matrix constructed from the observed n × n contact
matrix and the constraints. Analogous embedding methods
having previously been used in the (implicitly) haploid set-
ting (15). In addition to a constraint pertaining to 3D dis-
tances between neighboring genomic loci, identifiability is
achieved via a constraint derived from multi-way contact
assays such as SPRITE (36) or GAM (37).

To use multi-way contacts for (distance based) recon-
struction, a corresponding multi-way distance is needed.
For a three-way (intra-chromosomal) interaction in the
phased setting (18) operationalize the higher-order distance
between 3D loci as the sum of their distances to their cen-
troid; see Figure 2A. We comment on alternate formula-
tions using point-set diameters or tensor distance in the
Discussion. In the unphased setting there are eight possible
higher-order distances resulting from the 8 centroids per-
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Figure 2. (A) Phased setting. Two chromosomes (green, blue curves) with
three loci xi1 , xi2 , xi3 on the same chromosome are shown. In the phased
setting, the higher-order distance Dxi1 xi2 xi3

is defined as the sum of the dis-
tances (pink dashed lines) of the three loci to their centroid (pink circle). (B)
Unphased setting. Three chromosomes (green, blue and red curves) with
three homologous loci (xi1 , yi1 ), (xi2 , yi2 ), (xi3 , yi3 ) depicted. These give rise
to eight possible higher-order distances, based on the eight centroids, il-
lustrated by the colored dashed lines. The higher-order distance Di1i2i3 is
defined as the minimum of these eight distances, here achieved by the three
black dashed line segments. From (18). Copyright @Society for Industrial
and Applied Mathematics. Reprinted with permission. All rights reserved.

taining to the three pairs of homologous loci; see Figure 2B.
Of these eight, the smallest is chosen as the defining dis-
tance, based on an assumption that one of the three-way in-
teractions (triplets) constitutes the majority of the observed
contact frequency count. We term this the Dom8 assump-
tion, and use IGS data for evaluation thereof.

Rescuing unphased reconstruction methods

For phased Hi-C data the allele-aware contact matrix for a
homolog pair with n bins is

C =
[

CMM CMP
CPM CPP

]
(4)

where C is 2n × 2n and each intra- or inter- maternal (M)
or paternal (P) homolog block is n × n. Let D designate
the correspondingly partitioned distance matrix obtained,
for example, by power-law transformation of C. As noted
by (18), for unphased diploid data a naive approach is to
assume that the four distances that make up the observed
composite distance Dij are equal. While earlier single-cell
imaging studies make such an assumption untenable, here
we posit alternate, a priori plausible assumptions about the
composite contacts and attendant distances, and then turn
to more recent imaging data for validity checking.

From Figure 1 the composite distance due to allelic ambi-
guity is the sum Dij = ||xi − xj||2 + ||xi − yj||2 + ||yi − xj||2 + ||yi

− yj||2 which we rewrite as Di j = DMi Mj + DMi Pj + DPi Mj +
DPi Pj . (While Figure 1 depicts the general scenario where
loci i, j reside on different chromosomes, all considerations
specialize to the setting where they reside on the same chro-
mosome.) Due to the abovementioned tendency for chro-
mosomes to occupy distinct, spatially separated territories
within the nucleus we assume that the intra-homolog com-
ponent distances are appreciably smaller than their inter-
homolog counterparts. Further, based solely on underlying
sequence similarity and disregarding consequential consid-
erations such as epigenetic and local nuclear environmen-

tal factors, we assume that the maternal and paternal alle-
les have similar configurations. Thus, our salvaging distance
assumptions are

DMi Mj � DMi Pj DPi Pj � DPi Mj (5)

DMi Mj ≈ DPi Pj (6)

Mapping (5-6) back to the underlying contacts gives
CMi Pj /CMi Mj ≈ CPi Mj /CPi Pj ≈ 0 and CMi Mj ≈ CPi Pj . Thus,
our observed n × n contact matrix Cn will approximate CMM
or CPP and performing 3D reconstruction thereon will re-
capitulate the (assumed) common architecture.

Note that these assumptions are framed in terms of ap-
proximations. Recall that our objective was salvaging ex-
isting 3D reconstruction approaches that utilize unphased
Hi-C data. Such reconstructions, as well as their analogs
based on phased Hi-C data, are inherently approximate, be-
ing subject to numerous sources of uncertainty impacting
both data (biological, technical variation) and methodol-
ogy (algorithm choice, tuning) components. However, for-
mal analysis of what constitutes adequate degrees of agree-
ment is problematic in view of an absence of linked gold
standards: while we use IGS, described next, as a proxy we
would require Hi-C data on the same samples to effect such
quantification. So, in appraising assumptions we are limited
to statistical tests on IGS 3D configurations and attendant
distance matrices.

In situ genome sequence imaging

To evaluate the distance-based assumptions we turn to IGS
(20) which, crucially, provides whole genome, high reso-
lution, allele specific spatial maps and offers advantages
over other recent approaches (38,39). Data consisting of 3D
coordinates, and corresponding genomic coordinates, for
the two systems analyzed––106 human fibroblasts (PGP1f
cells) and 24 mouse zygotes––were obtained from https://
www.science.org/doi/10.1126/science.aay3446 (Supplemen-
tary Tables S1 and S2, last accessed 5 April 2022). Figure 3
displays whole genome as well as an illustrative homolog
pair (chromosome 3) image data for the zygote and cell with
the greatest number of reads for mouse and human respec-
tively. In using the term ‘reads’ we are adhering to the above
data sources and (20), to which details of the IGS assay are
deferred.

From the standpoint of evaluating our salvaging distance
assumptions above some salient considerations emerge
from Figure 3. As is evident from panel A, the maternal and
paternal pronuclei have yet to fully fuse. This will greatly
distort the comparison of intra- and inter- homolog dis-
tances, needed to assess (5). So, in order to utilize the rel-
atively rich zygote data, we artificially impose fusion by
translating one pronucleus to the other so that they share a
common center of mass. We note that while apparent scale
differences between the pronuclei are accommodated by
some of our statistical testing procedures, rescaling so that
the pronuclei have a common scale was also performed so
as to permit the direct distance-based comparisons needed,
for example, to assess the DCP assumption.

This artificial fusion procedure is admittedly crude and
may not reflect the complexity of chromatin reorganization

https://www.science.org/doi/10.1126/science.aay3446


NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 5

Figure 3. IGS 3D coordinates. (A) Mouse zygote 8 with 7284 phased reads
color coded for chromosomes 1 through 19. (B) Zoomed out view for chro-
mosome 3 maternal and paternal homologs (560 total reads). (C) PGP1f
cell 85 with 461 phased reads color coded for chromosomes 1 through 22.
D: Zoomed out view for chromosome 3 maternal and paternal homologs
(53 total reads).

following fertilization (40). So, it may seem preferable to fo-
cus exclusively on PGP1f cells. However, as is apparent from
Figure 3, their read counts are appreciably sparser than
those for mouse zygotes, respective medians being 257 and
3909. This relative sparsity is exacerbated by our distance
assumption evaluation requiring alignment in terms of ge-
nomic coordinates: Mi and Pi (similarly Mj and Pj) in (5-6)
need to correspond to the same genomic locus. To achieve
this binning, akin to that employed in constructing Hi-C
contact matrices, must be deployed. Given that IGS imag-
ing does not preferentially target common loci on compan-
ion homologs, restricting to bins shared between homologs
results in sparse data for all PGPf1 cells, when undertaken at
1 Mb resolution. We therefore use both systems in a manner
that reflects their respective strengths for assumption eval-
uation.

Formal comparisons of distance matrices and 3D structures

We use two main approaches for testing our proposed sal-
vaging of 3D genome reconstruction from unphased Hi-C
data, drawing on phased 3D chromosome configurations
obtained from IGS. The rescue effort is framed in terms
of equality of maternal and paternal distance matrices (6),
which we construct using binned IGS data as above, and
test using the Generalized RV test (GRV, (41)), briefly de-
scribed below. Additionally, we graphically examine inter-
versus intra- homolog distances to appraise the territory-
driven assumptions (5).

Irrespective of the outcome of this GRV testing program
it is purposeful to directly compare the observed mater-
nal and paternal 3D IGS structures, as opposed to puta-
tive 3D reconstructions from distance matrices. This is on
account of GRV test results being impacted by operating
characteristics of the test, here notably sparsity and to elim-
inate the impact of the reconstruction process itself. We ef-
fect such comparison, after binning IGS 3D coordinates to

provide common (between allele) genomic loci, using Pro-
crustes alignment and attendant permutation testing, fur-
ther described subsequently.

Generalized RV test. The GRV test for equality of distance
matrices can handle a variety of data types and distance
measures and offers improved power over competing tests
in many settings (41). Let GM, GP be the n × 3 matrices
with rows the 3D coordinates for the n (common, binned)
genomic loci obtained from IGS imaging. The precursor RV
statistic is developed as a matrix extension of Pearson’s cor-
relation:

φR(G M, G P) = RV(G M, G P)

= tr
(
GT

MG PGT
PG M

)
||GT

MG M||F ||GT
PG P||F

= tr
(
G MGT

MG PGT
P

)
||G MGT

M||F ||GT
PGT

P||F
(7)

Since G MGT
M = −1/2AD2

MMA where A = (In − Jn/n) with
In the n × n identity matrix and Jn the n × n matrix of ones,
and similarly for G PGT

P, �R is completely determined by
the intra-homolog distance matrices DMM, DPP. The gener-
alized RV test simply replaces the underlying Euclidean dis-
tances with any distance measure although for our spatial
applications we do not consider non-Euclidean distances.
An important feature of the GRV test is that inference can
utilize closed-form p-value approximations. These are de-
rived by matching the first three moments of the exact null
distribution obtained from all n! distance matrix row (or
column) permutations to a Pearson type III distribution
which captures appropriate skewness characteristics, and
are readily computed via attendant analytical results.

Procrustes distance testing. There are many sources de-
scribing Procrustes analysis (e.g. (31)) which facilitates as-
sessing correspondences between shapes. In comparing 3D
chromosome configurations we are interested in reflection
similarity shape, under which two configurations that only
differ by a reflection, rotation, translation and scaling are
deemed equivalent. The closeness of GM and GP can be
measured by how far apart corresponding points are, after
optimizing for the allowed transformations. Initially, ignor-
ing scaling, this gives rise to the criterion:

min
μ,Z

||G P − (G MZ + 1μT)||F (8)

where Z is a 3 × 3 orthogonal matrix and � is a 3-
vector of translation coordinates. Closeness is measured
by the Frobenius norm: ||X||2F = trace(XT X) = ∑

i j x2
i j .

Let ḡM, ḡP be the respective column means of GM, GP

and G̃ M, G̃ P centered versions obtained by column mean
subtraction. Let the singular value decomposition of
(G̃ M)TG̃ P = U�VT. Then the solution to (8) is

Ẑ = UVT (9)

μ̂ = ḡP − ẐḡM (10)

Based on the form of the solution (9-10) we can work with
G̃ M, G̃ P and disregard location. Then, after re-introducing
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scaling, we arrive at our Procrustes distance equality crite-
rion:

φP(G̃ M, G̃ P) = min
β,Z

||G̃ P − βG̃ MZ||F (11)

with solutions Ẑ as in (9) and β̂ = trace(�)/||G̃ M||2F . Infer-
ence for φP(G̃ M, G̃ P) makes recourse to permutation which
we effect using theprotest function of the R packageve-
gan (42).

RESULTS

We use IGS data to assess the respective assumptions under-
pinning the three 3D diploid reconstruction approaches, as
well as those facilitating salvage of haploid 3D reconstruc-
tion approaches outlined above. In each instance we find
that the assumptions are generally not supported.

Current diploid reconstruction technique assumption evalua-
tion

Tan et al.. We evaluated the DCP assumption using both
fused, rescaled mouse zygotes and human fibroblast PGP1f
cells by simply determining whether or not the closest chro-
mosome to a given homolog was its partner. Here closest
is measured via Euclidean distance between chromosome
centroids (centers of mass).

Eleven of the 24 mouse zygotes possessed chromosomes
for which the closest neigboring chromosome amongst the
37 (=(2*19) − 1) competing chromosomes was its homolog
partner. This greatly exceeds expectation under a random
chromosome positioning assumption according to an exact
one-sample binomial test, even after stringent adjustment
for multiple testing (over chromosomes) with a Bonferroni
corrected P-value <2.32 × 10−13.

Similarly, for 22 of the 106 human PGP1f cells the clos-
est neighboring chromosome amongst the 43 (=(2*22) − 1)
competing chromosomes was its homolog partner. Again
this greatly exceeds expectation under a random chromo-
some positioning assumption, tested as above, with Bonfer-
roni corrected p-value <3.75 × 10−10. However, this result
is subject to the uncertainty accompanying the sparsity of
PGP1f data.

Hence, the DCP assumption that homologs are closer to
chromosomes other than their homolog partner, is not sup-
ported. As previously indicted, this is not surprising in view
of chromosomal nuclear positioning being strongly influ-
enced by gene density and size, properties clearly shared by
homolog pairs.

Cauer et al.. The ECM assumption is crucial to the ap-
proach of (17) for effecting diploid 3D reconstruction.
This assumption, which asserts that distance between non-
homologous chromosome centroids is similar to the dis-
tance between homolog centroids is also amenable to test-
ing based on IGS imaging. We effect such testing by sim-
ply computing the respective distances (per mouse zygote
or PGP1f cell) for the two groups (homolog, non-homologs)
and comparing these using two-sample t-tests.

Overall, 92% (=22/24) zygotes exhibit statistically sig-
nificant (P < 0.05) distance non-overlap whereby inter-

Figure 4. Distances (Y axis) between chromosome centroids for non-
homologous and homologous pairs: (A) mouse zygote 24; (B) PGP1f cell
59.

homolog centroid distances exceed inter-chromosome cen-
troid distances, with 46% (=11/24) of these withstanding
Bonferroni multiple testing correction (P < 0.05/24). A
boxplot showcasing these differences for the most extreme
instance is shown in Figure 4 A.

In assessing ECM using PGP1f cells we again confront
sparsity issues. Erring on the side of inclusivity, we only
exclude chromosomes with <3 reads thereby retaining 86
of 106 cells. Of these, 69% (=59/86) cells exhibit statisti-
cally significant distance non-overlap with 21% (=18/86)
withstanding Bonferroni correction. The extreme example
is shown in Figure 4B. In summary, the ECM assumption
is not supported by IGS image data.

Belyaeva et al.. Evaluation of the enabling Dom8 identifi-
ability assumption requires identifying inter-chromosomal
triples of homologous points and computing the attendant
eight distances per Figure 2B. We focus on PGP1f cells since
evaluation is performed on the individual locus level (as op-
posed to the centroids utilized above) and the process of
pronuclear fusion (via translation) and rescaling, as applied
to mouse zygotes, may be too crude at this level. Homol-
ogous loci were identified after averaging 3D positions ac-
cording to underlying one megabase (mb) genomic coordi-
nate bins. To combat sparsity, we restrict attention to the
top two cells (IDs 85, 26) for which >500 total reads were
available for chromosomes 1–22. Even with this restriction
there is a paucity of homologous loci; results only being at-
tainable for a limited number of chromosome triples.

Formal testing of assumption of dominant smallest dis-
tance among eight three-way distance candidates requires
operationalizing the notion of ‘dominance’. It is natural to
base Dom8 evalaution on the proportion of the minimum
distance to total distance: sum of all 8 distances. Formal in-
ference surrounding this proportion will inevitably have lim-
ited power due to the exceedingly small sample size (eight
distances), so we provide a more qualitative assessment.

Under uniformity (all eight distances equal) the propor-
tion of the minimum (or any) distance to the sum of the
distances is 1/8 = 0.125. If we stipulate that for the mini-
mum distance to be dominant it should be <0.125/4 we see
from the histogram in Figure 5 that none of the 58 homolo-
gous triplet comparisons for cell 85 achieve this. Moreover,
while cell 26 only yielded eight comparisons the minimum
of these was 0.1, also notably non-dominant.
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Figure 5. Histogram of the proportion of the minimum distance to the
total distance of the eight higher-order (three-way) distances between 58
homologous loci triplets on three differing chromosomes (from the set {1,
2, 3, 4, 5} for PGP1f cell 85.

Figure 6. Comparison of maternal and paternal intra-homolog distances
for mouse zygote 7: (A) chromosome 6; (B) chromosome 1. The red line
corresponds to the first principal component while the blue line is the prin-
cipal curve.

Salvaging haploid 3D reconstruction methods

Central to our proposed rescue of existing phase-blind or
implicitly haploid 3D reconstruction techniques are the
phase-aware distance relationships given by (5) and (6).
Again, in view of sparsity concerns, we limit formal evalua-
tion of these assumptions to mouse zygotes, restricting anal-
yses to (i) all chromosomes with >500 reads, or (ii) the chro-
mosome (1 through 20) with the maximal number of reads
among the 24 zygotes. Further, we focus on formal testing of
(6)––equality of maternal and paternal intra-chromosomal
distance matrices––since attendant data is not subject to
potential artifacts associated with computational fusion of
pronuclei.

In almost all instances––25 / 27 chromosomes across
seven zygotes – maternal and paternal distance matrices
were significantly different (Bonferroni corrected p-value
<0.01) according to GRV testing. Figure 6 illustrates these
contrasting intra-homolog distances for zygote 7: panel A
presents an instance (chromosome 6) of similar distances

while panel B provides a representative example (chromo-
some 1) of distinct distances. Relationships are highlighted
by superposition of principal components and principal
curves (43).

To the extent that data adequacy supports exploration
in PGP1f cells, graphical checks of (5) generally affirm
that inter-chromosomal distances greatly exceed their cor-
responding intra-chromosomal counterparts. Select results
for chromosome 1 (under a relaxed 10mb binning scheme)
are shown in Figure 7. The rightmost graphic in each panel
displays relationships between intra-maternal and inter-
maternal-paternal distances. While panel C shows compa-
rable intra- and inter- homolog distances this is the ex-
ception over other cells and chromosomes. The leftmost
graphic plots intra-maternal and intra-paternal distances,
revealing instances of similarity (A, C) and absence of asso-
ciation (B, D), again reflective of broader findings.

Despite this preponderance of results rejecting the as-
sumption of similar maternal and paternal distance ma-
trices, it remains possible that the observed maternal and
paternal 3D structures (as opposed to reconstructions) are
similar, disagreement arising due to operating characteris-
tics of the GRV test and the (reconstruction) process of in-
ferring 3D structure from distance matrices. Accordingly,
we pursued direct testing of actual IGS configurations, for
the same chromosomes and zygotes as above, using Pro-
crustes tests. Results were entirely concordant with GRV
testing with only the same two chromosome, zygote com-
binations having similar configurations.

DISCUSSION

The emergence of IGS imaging has facilitated our objective
of assessing assumptions surrounding 3D diploid genome
reconstructions based on Hi-C assays. Naturally, this begs
the question as to why such reconstructions are necessary,
given that IGS provides actual, rather than inferred, 3D
configurations. There are at least two reasons supporting
an ongoing role for reconstruction. First, both the resolu-
tion and extent of IGS assays is, at least currently, limited in
comparison with Hi-C. Second, there are substantive vol-
umes of historic Hi-C data, in a wide range of organisms
and conditions, that can benefit from the added value con-
ferred by 3D reconstruction. However, this ongoing rele-
vance of Hi-C reinforces the need to further develop allele-
specific reconstruction methods, particularly in light of the
issues we identified with current approaches and our pro-
posed salvaging scheme.

While our focus here has been on using IGS image data
solely to evaluate assumptions underlying these approaches,
it is possible to integrate IGS-derived features into Hi-C
based reconstructions in a variety of ways. Most obvious
would be the amending of constraints and assumptions
when, as here, IGS finds these deficient. More sophisticated
approaches involve expanding earlier analogs of integrat-
ing fluorescence in situ hybridization (FISH) and Hi-C data
(30,44).

We have emphasized apparent violations of some of the
assumptions enabling the three extant diploid 3D recon-
struction techniques. In so doing we have acknowledged the
limitations surrounding utilizing available IGS data for this
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Figure 7. Comparison of maternal and paternal intra- and inter- homolog
distances for chromosome 1 of select PGP1f cells exhibiting differing pat-
terns with respect to salvaging assumptions: (A) cell 85; (B) cell 94; (C) cell
26; (D) cell 53. The red line corresponds to the diagonal (equality) while
the blue line is a lowess smooth.

purpose; notably, the prefusion state of maternal and pa-
ternal pronuclei in the mouse zygotes and read sparsity for
PGP1f cells. However, beyond the inferred assumption vi-
olations, there are additional concerns and/or possibilities
regarding these methods, which we briefly overview.

Even preceding the diploid 3D reconstruction step,
the approach of (16) attempts some ambitious modeling
of inter-chromosomal relationships between Hi-C contact

counts and genomic (coordinate) distances. Their start-
ing presumption is that a power-law relationship for intra-
chromosomal contacts with index -1, the fractal globule
model (2) can be extended genome-wide. But, the prescribed
intra-chromosomal model is far from general, there being
many instances of power-law violations and/or indices �=–
1 (8,13,28,29). Moreover, as demonstrated by (15), the in-
dex is (mathematically) dependent on resolution; with fur-
ther dependence on organism and cell type among other
factors (45). Accordingly, the notion that the joint inter-
chromosomal contact : genomic distance probability distri-
bution can be characterized by a single parameter, indepen-
dent of the identities of interacting chromosomes, especially
given preferential territory occupancy, seems overly simplis-
tic.

A concern impacting the approach of (17) (which also ap-
plies to (16), pertains to initialization of allele specific con-
figurations in the absence of any phased Hi-C data. Specifi-
cally, the manner in which CM, CP and, especially, the corre-
sponding Xi, Xj in (2) are declared at the outset seems likely
to be highly influential on resultant solutions.

As shown, the Dom8 assumption of (18) that facilitates
resolving allelic ambiguity and thereby enabling 3D diploid
reconstruction does not enjoy empiric support based on
IGS data. This assumption followed from the definition of
multi-way distances, as depicted in Figure 2A. But, alter-
natively, multi-way distances could be defined as the point-
set diameter, which may better reflect the SPRITE cross-
linking process (36). Importantly, such a definition is com-
patible with the Gram formulation used to effect the em-
bedding that yields the 3D solution. A further possibil-
ity would be to utilize tensor distances, defined via ten-
sor inner products and norms that generalize their vec-
tor analogs, then use embedding as implemented in multi-
linear multidimensional scaling (46) to effect 3D recon-
struction. Finally, distance-free reconstruction techniques
may offer a natural approach to accommodating multi-way
contacts.

The rigorous development of (18), establishing identifia-
bility for diploid 3D reconstruction, is pursued in a joint,
whole genome context, and the Dom8 assumption applies
to multi-way inter-chromosomal contacts. However, from
a data usage perspective, arguments have been made for
obtaining whole genome 3D reconstructions by a staged
approach, whereby single chromosome solutions are rel-
atively positioned using (sparser) inter-chromosomal con-
tacts (27,28). Adapting the diploid 3D reconstruction ap-
proach, and attendant assumptions, to this single allelic pair
strategy might inherit the corresponding benefits.

Given the demonstrated difficulties confronting 3D
diploid reconstruction algorithms based on unphased Hi-C
data there is a clear upside to advancing methods for phas-
ing Hi-C data, thereby overcoming these obstacles. While
current approaches, such as HiCHap (21), achieve excel-
lent accuracy, they are reliant on the availability of phased
genomes. In turn, obtaining phased genomes often makes
recourse to Hi-C data in conjunction with long-range se-
quencing (47). Developing pipelines that integrate these
data types and algorithms, ultimately yielding phased whole
genome, 3D chromatin configuration reconstructions, rep-
resents an important future objective.
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