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Abstract: The objective of the study is to provide age-related normative values for dorsal sural
nerve (DSN) and to analyse its application during follow-up of hereditary transthyretin amyloidosis
(ATTRv) pre-symptomatic subjects. We consecutively recruited ATTRv pre-symptomatic carriers
in which clinical examination, cardiological evaluation, and nerve conduction studies of the sural
nerve and DSN were performed. To provide normative data of DSN, neurophysiologic parameters
from healthy controls referred to our service were entered into linear regression analyses to check the
relative influence of age and height. A correction grid was then derived. We collected 231 healthy
subjects: the mean DSN sensory nerve action potential (SNAP) amplitude was 9.99 ± 5.48 µV; the
mean conduction velocity was 49.01 ± 5.31 m/s. Significant correlations were found between age and
height with DSN SNAP amplitude. Fifteen ATTRv pre-symptomatic carriers were examined. Sural
nerve NCS were normal in 12/15 and revealed low/borderline values in three subjects. Considering
our correction grid, we found an abnormal DNS amplitude in 9/15 subjects and low/borderline
values in 2/15. In ATTRv, early detection of peripheral nerve damage is crucial to start a disease-
modifying treatment. DSN may be easily and reliably included in the routine neurophysiological
follow-up of ATTRv pre-symptomatic subjects.

Keywords: ATTRv; dorsal sural nerve; monitoring; pre-symptomatic carrier

1. Introduction

Hereditary transthyretin amyloidosis (ATTRv; v for “variant”) is an autosomal domi-
nant, progressive, and life-threatening disorder caused by mutations in the transthyretin
(TTR) gene [1,2]. The disease results from an extracellular deposition of amyloid fibrils in a
variety of organs, leading to a multisystemic condition with a prevalent involvement of the
peripheral nervous system (transthyretin amyloid polyneuropathy, ATTR-PN) and heart
(transthyretin amyloid cardiomyopathy, ATTR-CM), but kidney, ocular vitreous, liver, and
gastrointestinal tract may also be involved [3–6]. In the past decades, significant advances
have been achieved in the treatment of ATTRv amyloidosis as several therapies with the
potential to delay the disease progression have emerged [7–10], especially if started early
during the course of the illness [11]. Depending on the geographic areas, a wide variation
in age at onset and clinical presentation of the disease is described. Patients from endemic
areas have an early-onset disease with initial involvement of small nerve fibers and frequent
autonomic dysfunction, while in non-endemic areas, patients present more often with a
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late-onset progressive axonal polyneuropathy and cardiac involvement but with fewer
autonomic symptoms [3,12].

Nowadays, TTR gene sequencing represents the diagnostic gold standard. How-
ever, the diagnosis can be confirmed by the demonstration of amyloid deposits in biopsy
specimens [13].

Diagnostic techniques, along with biomarker and genetic testing, could detect the
disease earlier and allow the identification of pre-symptomatic carriers [14]. This evidence
highlights the importance of identification and monitoring of asymptomatic carriers of TTR
mutation and the early detection of symptoms when they first occur [14].

The diagnostic techniques used in the follow-up of TTR mutation carriers include
neurophysiological assessments with nerve conduction studies (NCS) [14]. The sural nerve
is the sensory nerve in the lower limb, which is routinely examined in patients with periph-
eral neuropathies because it is accessible for nerve biopsy, allowing a correlation between
pathological and neurophysiological findings [15]. However, it is well known that this site
is often proximal to the sites affected by the earliest signs of distal polyneuropathies [15].
Indeed, the investigation of dorsal sural nerves (DSN) is an approach that could overcome
this limitation, exploring one of the most distal sensory nerve branches [16]. NCS of DNS,
in the routine neurophysiological diagnostic process of polyneuropathies, may allow early
detection of peripheral nerve damage. However, DSN may vary considerably depending
on the age of the subjects, and currently, there are no available normative values [16].

In this paper, we performed a study on a large cohort of healthy adults over an
extended age range to provide age-related normative values for DSN and we analysed its
application during follow-up of ATTRv pre-symptomatic subjects.

2. Materials and Methods
2.1. Study Population

We consecutively recruited ATTRv pre-symptomatic carriers aged >18 years referred
to the Neurophysiology Service of Fondazione Policlinico Universitario A. Gemelli IRCCS
in Rome. Enrolled subjects gave written informed consent to participate in the study. The
study conforms to the ethical guidelines of the 1975 Declaration of Helsinki (6th revision,
2008). The study was approved by Ethic Committee of Fondazione Policlinico A. Gemelli
IRCSS (Prot. ID 4108).

As a control population, we considered subjects with no history or risk factors for
neuropathies (such as diabetes mellitus, systemic diseases, alcohol abuse, or use of drugs
that can cause neuropathy) and neither signs nor symptoms suggestive of neuropathy (no
numbness, tingling or burning sensation in the lower limbs and normal muscle strength)
referred to our service from 2005 to 2015 because of several reasons such as radiculopathy,
low back pain, carpal tunnel syndrome or other compressive neuropathies.

In pre-symptomatic subjects, we performed a clinical examination, cardiological eval-
uation, and nerve conduction studies of the sural nerve, as previously described [15,17].

2.2. Nerve Conduction Studies

DSN was examined with a standard antidromic technique. The surface bar recording
electrodes were placed over the lateral dorsal surface of the foot, with the distal electrode
at the origin of digits 4 and 5 and the proximal active electrode 3 cm from the distal
electrode, the stimulation site was posterior to the lateral malleolus, directly over the
sural nerve, with the cathode placed 14 cm from the proximal recording electrode, the
ground electrode was placed on the dorsum of the foot equidistant between the recording
and stimulating electrodes [16,18]. In an attempt to correlate neurophysiological findings
obtained in the sural and DSN nerves, the ratio between SNAP of the sural nerve and DSN
was also calculated.
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2.3. Data Analysis

Statistical analysis was performed as previously described for the sural nerve [15].
Correlation coefficients were obtained in order to assess the relationship between age,
height, and neurophysiological parameters. Afterwards, neurophysiologic parameters
were entered into linear regression analyses in order to check the relative influence of age
and height. The effects of age and height were also studied after various transformations
(logarithmic, quadratic, inverted, subtraction) and the most effective transformation in
reducing the residual variance was adopted. An adjusted score was calculated for each
subject by adding or subtracting the contribution of the concomitant variables from the
original parameter. A correction grid was then derived to allow immediate adjustment of
the raw performance of newly tested individuals. After ranking the adjusted scores from
worst to the best performance, we also computed inner and outer tolerance limits. Para-
metric techniques cannot be used with adjusted scores, whereas nonparametric techniques
only require that the scores possess ordinal scale properties. Therefore, we determined
nonparametric tolerance limits according to Wilks’ method [19], which allows to determine
an inner tolerance limit that can be assumed as a cut-off and an outer tolerance limit that
can be assumed as the lowest normal value; the values included between the inner and
outer tolerance limits can be considered as “borderline values”.

The cohort was described using descriptive statistics techniques in its clinical and
demographic features. Quantitative variables were described using mean, median, range,
and standard deviation (SD). The distribution of each numerical variable was checked
with Shapiro–Wilk test. Comparisons were performed with Mann–Whitney or t-test as
appropriate. The linear correlation between two variables was tested using Spearman rho.
The significance level was set at p < 0.05.

3. Results
3.1. Healthy Controls

We collected 231 healthy subjects. The mean age of the sample was 51.38 years ± 17.32
(range 8–92); the mean height was 168.55 ± 9.32 cm (range 133–190). The mean height of
the female subjects was 163 ± 5.80 cm; the mean height of the male subjects was 174 ± 8.77.
There was a statistically significant difference in the average height between male and
female subjects (p < 0.001) (the demographic data of healthy subjects are available in
Supplementary Materials). The mean sural SNAP amplitude was 21.66 ± 10.30 µV (range
4.7–68.0); the mean conduction velocity was 54.98 ± 5.33 m/s (range 42–69). The mean
DSN SNAP amplitude was 9.99 ± 5.48 µV (range 0.6–47); the mean conduction velocity
was 49.01 ± 5.31 m/s (range 37–69). The mean sural/DNS amplitude ratio was 2.37 ± 0.90
(range 1.0–3.51). There was a statistically significant difference between male and female
subjects for DSN SNAP amplitude [respectively, 8.45 ± 4.25 vs. 11.51 ± 6.17; p < 0.001] and
not for NCV [respectively, 49.52 ± 5.81 vs. 48.50 ± 4.72; p = 0.524].

3.2. Linear Regression Model

Significant correlations were found between age and DSN SNAP amplitude (rho = −0.418;
p < 0.001) and not with NCV (rho = −0.108; p = 0.102). Analogously, height displayed
significant correlation with SNAP amplitude (rho = −0.140; p = 0.033) and not with NCV
(rho = −0.030; p = 0.647). For this reason, in order to exclude collinearity effects that may
make regression models less reliable, we chose to enter into the models only the variable
displaying the strongest correlation with the dependent variable together with gender.

The lower residual variance among the models predicting DSN SNAP with age as a de-
pendent variable was obtained using the logarithmic transformation of age [log(100 − age)].
The final model was:

SNAP amplitude = 8.235 + 5.384 × [log(100 − age) − 3.80] + 3.529 × gender (F = 1; M = 0)
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This model accounted for about 25% of total variance (adjR2 = 0.252); 3.80 is the
arithmetical mean of log(100 − age). Table 1 reports the correction grid for age with
a five-year step; corrected SNAP can be obtained by summing the measured SNAP to
the corresponding correction factor. The inner limit of the tolerance limit, correspond-
ing to the cut-off score, was 7.357; the outer limit, corresponding to the lowest normal
value, was 9.112. Corrected SNAP amplitude comprised between these values should be
considered “borderline”.

Table 1. Correction grid for sensory nerve action potential of the dorsal sural nerve.

Age Male Female

20 −3.13 −6.66
25 −2.79 −6.34
30 −2.42 −5.95
35 −2.02 −5.55
40 −1.59 −5.12
45 −1.12 −4.65
50 −0.60 −4.13
55 −0.04 −3.57
60 +0.60 −2.93
65 +1.32 −2.21
70 +2.15 −1.38

3.3. ATTRv Pre-Symptomatic Carriers

Fifteen ATTRv pre-symptomatic carriers were examined. Demographic and neuro-
physiological data are summarised in Table 2. Clinical examination and cardiological
evaluation were unremarkable in all subjects. Sural nerve NCS were normal in 12/15 and
revealed low/borderline values in three (#7, #11, and #12).

Table 2. Demographic findings and raw neurophysiological data of pre-symptomatic ATTRv carriers.

Car TTR
Variant Age Sex PADO Sural Nerve

SNAP (µV)
Sural Nerve
CV (m/Sec)

DSN
SNAP (µV)

DSN CV
(m/Sec)

Sural/DSN
Amplitude R

#1 V30M 42 F 54 29.8 65 19.9 51 1.50
#2 V30M 39 F 54 31.0 54 12.5 47 2.48
#3 V30M 40 M 54 43.3 67 35.1 66 1.23
#4 F64L 73 F 51 16.6 67 3.7 51 4.49
#5 F64L 43 F 51 26.6 55 4.5 55 5.91
#6 F64L 49 M 51 22.1 57 10.0 41 2.21
#7 V30M 42 F 50 17.0 54 8.7 56 1.95
#8 V30M 49 M 65 26.3 55 6.1 42 4.31
#9 V30M 65 M 50 16.9 59 8.8 55 1.92
#10 V30M 69 M 50 6.3 61 3.6 53 1.75
#11 V30M 45 F 56 16.3 64 4.2 49 3.88
#12 V30M 43 M 56 12.8 45 8.9 43 1.44
#13 V30M 55 F 62 38.9 66 7.6 56 5.12
#14 V30M 72 M 67 11.1 51 2.2 45 5.05
#15 V30M 68 M 67 11.2 50 2.5 46 4.48

Legend: Car, carriers; TTR, transthyretin; PADO, predictive age of disease onset; SNAP, sensory nerve action
potential; CV, conduction velocity; DSN, dorsal sural nerve; R, ratio. Abnormal values are written in italics.
Patients #1, #2, #3 come from the same kindred as well as patients #4, #5, #6, patients # 9 and #10, patients #11 and
#12, patients #14 and #15.

Considering our correction grid, we found an abnormal DNS amplitude in 9/15 sub-
jects (60%) and low/borderline values in 2/15 (#2 and #12). An increased sural/DNS
amplitude ratio, defined as >4.17 (mean values +2 SD), confirming this data, was found in
6/9 (66%). In two subjects (#7 and #11), the concomitant presence of low/borderline values
of sural nerve amplitude could explain this result.

If we divided the subjects into two groups, considering age at examination accord-
ingly to predictive age of disease onset (PADO), defined as ten years before the onset of
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the affected relative, we found a significant difference regarding abnormal DSN SNAP
distribution (5/10 subjects before PADO and 4/5 after PADO, p = 0.017).

4. Discussion

In ATTRv, early detection of peripheral nerve damage is crucial to start a disease-
modifying treatment [11]. ATTRv is generally a length-dependent polyneuropathy, and
the most distal sensory fibers are affected first [12]. However, classical neurophysiolog-
ical follow-up of pre-symptomatic carriers is generally limited to the sural nerve that
does not include the most distal sensory fibers [14]. We examined our cohort of ATTRv
pre-symptomatic carriers and also DSN, and we found abnormal values, according to
our normative data, in 60% of the subjects. DSN can be accurately and easily tested by
using standard electromyography equipment, as already reported in a few reports and
confirmed by this normative study [16]. The DSN study was successfully performed in
all the healthy subjects examined in our series. A significant age-related decrease in DSN
SNAP amplitude was found, which agrees with what has been observed previously in
sural nerve studies [15].

We suggested to also evaluate in ATTRv sural/DSN amplitude ratio that, if increased,
can confirm length-dependent nerve damage: distal nerve fibers may be firstly involved
not only in early-onset ATTRv but also in late-onset, as recently suggested by studies about
intra-epidermal nerve fibers density [20].

Furthermore, we found a significant difference in the proportion of abnormal DSN
amplitude values considering PADO: this data may suggest the importance of this test as
an early marker of nerve damage in age at risk.

Recently, in ATTRv, radiological or serological biomarkers have been proposed to
follow up pre-symptomatic carriers in order to detect early signs of the disease [21–23].
The diagnosis of conversion of symptomatic ATTRv amyloidosis relies mainly on clinical
symptoms, although the change from baseline in NCS represents a criterion for conver-
sion [14]. NCS can significantly change 1–2 years before the development of ATTR-PN
symptoms [24]. Nevertheless, the use of composite neurophysiological scores is considered
more adequate than individual NCS studies to assess disease progression [24].

A limitation of the study could be due to the great variability of DSN values, which
we have tried to overcome by providing normative data. Another limitation is the small
number of pre-symptomatic carriers examined in the study.

5. Conclusions

We can conclude that DSN may be easily and reliably included in the routine neuro-
physiological follow-up of ATTRv pre-symptomatic subjects. The normative data we have
described could serve as reference values. DSN could also be employed in a neurophysio-
logical sum score to facilitate the early detection of conversion.

Abnormal values may lead clinicians to start a disease-modifying therapy; on the
other hand, normal, or low/borderline, values can be observed during regular follow-up
(as commonly used for sural nerve) in order to detect a pathological amplitude decrease.
Longitudinal studies on a larger cohort and follow-up studies will clarify the significance
of our result.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci12081037/s1, Table S1: demographic data of healthy subjects.
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