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Beyond multi view deconvolution 
for inherently aligned fluorescence 
tomography
Daniele Ancora1*, Gianluca Valentini1,2, Antonio Pifferi1,2 & Andrea Bassi1,2

In multi-view fluorescence microscopy, each angular acquisition needs to be aligned with care to 
obtain an optimal volumetric reconstruction. Here, instead, we propose a neat protocol based on 
auto-correlation inversion, that leads directly to the formation of inherently aligned tomographies. 
Our method generates sharp reconstructions, with the same accuracy reachable after sub-pixel 
alignment but with improved point-spread-function. The procedure can be performed simultaneously 
with deconvolution further increasing the reconstruction resolution.

The field of tomographic imaging experienced a silent revolution during the last decade. A strong demand driven 
by deep learning and data mining has prompted hardware manufacturers to improve computing performances 
while keeping the price affordable. Nowadays, high throughput computation is possible with graphic processing 
units (GPU). GPUs allow parallel data-processing with performances beyond belief just a few years ago, radically 
changing the field of signal processing. In particular, standard image processing tasks such as Fourier-transfor-
mation, convolution, and matrix operations experience a constant-rate performance increase1,2. GPUs are the 
ideal solution for the massive image processing tasks required by tomographic reconstructions3. At visible wave-
lengths, optical projection tomography (OPT) is an example of an imaging technique applied for tomographic 
studies at microscopic level4. By rotating the specimen and collecting its optical projections at multiple angles, 
it is possible to form the reconstruction of the specimen via tomographic inversion. Another optical technique, 
light-sheet fluorescence microscopy (LSFM), offers a straightforward way to optically section the sample for 
the inspection of its internal structure5. Even if LSFM is a direct tomographic technique (i.e., it does not strictly 
require computation to generate a section of the sample) it is often desirable to observe the object from different 
angles to increase the reconstruction quality6. LSFM suffers from non-isotropic resolution (the axial resolu-
tion is lower than the lateral) and, in many cases, the sample is not visible as a whole due to tissue scattering or 
absorption. Multi-view approaches address these problems, either relying on the sample rotation7 or exploiting 
multiple objectives to observe the specimen from different angles8. Before their fusion, each acquisition is reg-
istered (aligned) against a chosen reference9, to place the information captured at different angles appropriately. 
Usually, the registration is accomplished by locating the best overlap between the volumes, eventually including 
beads around the specimen to enforce the alignment fidelity10. Here we discuss a new reconstruction strategy 
for the formation of an inherently aligned tomographic view of a biological specimen. We exploit the property 
of the auto-correlation (we indicate it by the operator A ) to avoid any alignment procedure. At the same time, 
we demonstrate that the reconstruction based on multi-view auto-correlation brings an improved resolution due 
to the rejections of second order-correlations of the point-spread-function in the A-space. The work is inspired 
by previous results in OPT, where the auto-correlation is used to perform alignment-free reconstructions11. 
The use of A was possible because it commutes with the projection operator12. Here, instead, we calculate a 
tomographic auto-correlation of the sample based on multi-view light-sheet acquisitions. Fusing them leaves us 
with an ensembled A , created without aligning the views. It constitutes our starting point for the reconstruction: 
by inverting A , we form a tomographic view aligned at the sub-pixel level. Furthermore, we demonstrate that 
this inversion turns into a reconstruction sharper than the average fusion carried out in direct space. Since it is 
desirable to take into account the resolution-loss determined by the finite aperture of the optical system13, our 
protocol can further accomplish simultaneous deconvolution with a modified Bayesian A inversion scheme. For 
this study, the use of powerful GPUs plays a crucial role due to the computational complexity of our protocols. 
Without graphics cards, the reconstruction problem presented here would remain just a mere theoretical exercise.
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Results
Our reconstruction strategy is grounded on the property of the auto-correlation of being centered in the shift-
space. Each observation of the object is auto-correlated, and it concurs at the formation of the tomographic 
average A of the sample. Let us use the subscript µ to indicate the stack obtained by camera acquisitions and 
the superscript ϕi to denote its angular orientation indexed by i. In an experimental measurement, we observe 
a blurred version of the object due to the point spread function (PSF) of the system h, further corrupted by the 
presence of the noise ε . A typical acquisition is rendered in Fig. 1A, where we display a volumetric object imaged 
with a light-sheet microscope at the reference angle of 0◦ . For the moment, we use Fig. 1 just for the discussion of 
the reconstruction pipeline; we will present the details about the specimen and the setup afterward. We assume 
that the additive ε can be neglected in case of high signal-to-noise ratio measurements. Now, we arrange the 
auto-correlation in a more convenient form. By applying the operator A to a given stack (see the Methods), we 
have that:

here, χ = o ⋆ o is the ideal auto-correlation of the object, H = A{h} is the PSF in auto-correlation space and 
K = o ⋆H is an effective kernel. Figure 1D shows the auto-correlation of the volume displayed in panel A. The 
first equality in Eq. (2) implies that the auto-correlation of the ideal object is blurred by H , given by the auto-
correlation of the direct space PSF h. The second indicates that χµ can be seen as a convolution of the object with 
a blurring kernel that contains the object itself. We consider N evenly rotated measurements that we denote with 
the index ϕi . The rotation of each measurement back to the reference angle 0◦ by −ϕi is the only pre-processing 
step required. Additionally, we subtract the mean value of a dark region where the sample is not present. In 
Fig. 1B, we display an orthogonal acquisition which was rotated by 90◦ to match the angular view of Fig. 1A, and 
then used to compute the auto-correlation (Fig. 1E). Denoting each observation as oϕµ , and its corresponding A 
as χϕ

µ , the quantities of interest are the averages:

Before computing the fusion as oµ (that we consider as the standard reconstruction, rendered in Fig. 1C), 
each measurement required an accurate alignment against the reference. The χµ displayed in Fig. 1F, instead, 
is accurate because the auto-correlations are centered by definition. Ideally, this implies that we can obtain an 
intrinsically aligned average-reconstruction14 from χµ , provided that we have a robust way to carry out the 
inversion oρ = A−1{χµ} . The rigid shifts between different observations are encoded in their Fourier phase, 
which we always discard when working in the A-space. Instead, we retain only the information coming from the 
Fourier transformations of each acquisition. By inverting χµ , we implicitly look for a new phase of the object that 
represents an overall alignment between each of the views. In fact, this problem falls within the class of phase 
retrieval (PR) since we have access to the Fourier modulus of a real object, but the phase information is missing15.
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Figure 1.   Reconstruction pipeline. (A) Rendering of the reference view taken at ϕ = 0
◦ . The planes indicate 

the xy-camera acquisition along the z-scanning direction. (B) Orthogonal detection by rotating the sample 
at ϕ = 90

◦ . (C) Aligned-average of 12 measurements. The axes are chosen according to the reference view 
(x-lateral, y-transverse, z-longitudinal). (D) Auto-correlation of the view at 0◦ . (E) A of the view at 90◦ . (F) A 
averaged through 12 angles. (G) Reconstructions obtained by using deauto-correlation methods. For visual 
comparison, the upper part shows the result using the Schultz-Snyder protocol. The bottom one compares it 
with that of the Anchor-Update method.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15723  | https://doi.org/10.1038/s41598-021-95266-2

www.nature.com/scientificreports/

With these two quantities in hand, we try to extrapolate intrinsically-aligned reconstructions by inverting 
the A with two schemes: 

	 (I).	 Given χµ = oρ ⋆ oρ , find oρ;
	 (II).	 Given χµ = (o ⋆ o) ∗H , deblur it by H and find o.

At first sight, only the second scheme that deconvolves the PSF appears to provide a super-resolved recon-
struction. However, the scheme (I) implies something even more interesting that we describe in Fig. 2. By aver-
aging oϕiµ  in direct space, the resulting volume gets blurred by an average PSF given by h = 1

N

∑
i h

ϕi (Fig. 2A). 
Its A{h} = h ⋆ h can be visualized in Fig. 2B. By averaging auto-correlations, instead, we neglect second-order 
cross-terms of the PSF. Those contributions introduce long-correlations in the fused image and degrade the 
image quality. For comparison, the corresponding A-PSF is shown in Fig. 2C. As a consequence, by solving for 
oρ , we achieve an effective PSF that is sharper than h . Interestingly, this is an implicit property that comes along 
with the average of multiple views of A . Thus, the resolution gain is attainable without having access to the PSF 
of the system. However, for comparison, we show the effective point-spread function achieved heff = A−1{H} 
in Fig. 2D. For a detailed discussion, see the Supplement Materials. We decided to tackle the scheme (I) by using 
the Schultz-Snyder (SS) iterations17:

For the scheme (II), instead, we implement the Anchor-Update (AU) protocol18 that was developed ad-hoc 
for this purpose:

Both are fixed-point iterative Bayesian methods, having the number of iterations as the only parameter to set. 
In the present case, we set a high number of 5 · 105 iterations for both since these methods are very stable and 
can withstand long runs. On the other hand, this is also a drawback since these algorithms suffer from a slow 
convergence rate (each update t + 1 is close to the previous one t).

To delve into the proposed method, let us consider volumetric acquisitions taken with an LSFM setup of a 
cleared mouse popliteal lymph node19. We are interested in reconstructing the three-dimensional vasculature 
stained with a fluorescent label. The stack oϕµ constitutes a single volumetric view of the specimen and contains 
the camera detections of the sample scanned through the light sheet. We use 12 volumes by rotating the sample 
in steps of 30◦ . The oϕµ acquired at 0◦ and 90◦ were already rendered in Fig. 1A, B. Standard multi-view reconstruc-
tion algorithms require the alignment of every dataset against the reference view (that we assume at ϕ = 0

◦ ). 
A consolidated strategy (accurate at pixel level) is to locate the maximum of the cross-correlation between the 
reference and the view, translating it back accordingly. However, the researcher may be looking for sub-pixel 
accuracy, which would require to upsample the volume accordingly to the resolution that he wants to reach20. 
This condition makes the size of the problem rapidly explode, leaving the user with an up-sampled estimation 
(compared to the original measurement) that needs to be down-sampled for the formation of the final image 
(Supplement Materials). Here, instead, we produce a multi-view reconstruction that is accurate at the sub-pixel 
level and directly formed at the original resolution. We do not calculate any volume translation; we simply process 
the reconstruction altogether starting from its auto-correlation χµ.

We analyze two experimental situations. In Figs. 3 and 4, we report the results obtained on two regions 
of the specimen. The first contains the whole specimen and corresponds to a volume of 5123 voxels, with a 
size of (1320 μm)3. The second volume takes a region of interest of 256× 256× 128 voxels, with a size of 
330 μm × 330 μm × 165 μm. Convolutions and correlations are implemented via Fast-Fourier Transform (FFT) 
spectral decomposition. The GPU implementation is essential to perform such reconstructions since the method 
relies on intensive usage of 3D-FFT. We implemented the code in Python by using the CuPy library21, which 
provides a flexible CUDA framework for matrix operations. The problems were tackled using a single Nvidia 
Titan RTX, equipped with 4608 CUDA cores and 24 gigabytes of RAM. Each step is accomplished in 0.48 s 
for the first volume, while the second needs 0.05 s. We choose the reference view at angle ϕ = 0

◦ for the initial 
guess at t = 0 . The results obtained for the reconstructions of the whole specimen are rendered in Fig. 1G, 
where the top-half is the result of SS, and the bottom half is the result of AU. We show the maximum intensity 
projection (MIP) along each spatial coordinate to compare the different results. The top row of Fig. 3 shows the 

(4)ot+1 = ot
[( χµ
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)
∗ õt +

( χµ

ot ⋆ ot

)
⋆ ot

]
.
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)
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]
, updating: Kt = ot ⋆H.

Figure 2.   Point-spread-functions analysis. (A) PSF that blurs oµ . (B) Auto-correlation of h . (C) PSF H that 
blurs the average χµ . (D) Corresponding PSF in the object domain, sharper than h.
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ground-truth reconstruction, obtained by averaging the views previously aligned by locating the peak of their 
cross-correlation. The second row of Fig. 3, instead, shows the results of SS iterations. Since the reconstruction 
is formed from an inherently aligned auto-correlation, the features of the specimen are better resolved than the 
standard reconstruction. Compared to the oµ , the reconstructed oρ is crisp, with sharp features better isolated 
from an intensity background. The reconstruction contrast improved due to the sharper PSF heff  implied by 
the usage of the auto-correlation. The third row of Fig. 3 displays the results obtained with AU, deconvolving 
H from the estimated auto-correlation. The final effect is a deblurring of the reconstruction with respect to the 
SS. We can further assess the effectiveness of the method by examining a tomographic slice taken through the 
middle of the full-resolution volume. In Fig. 4A, we show the standard reconstruction result of the aligned and 
averaged volume. We have chosen a detailed region that displays a bifurcated blood vessel and a smaller circular 
opening located at the bottom. Figure 4B slices the same plane of the volume oρ after the inversion of χµ via 
SS iterations. If we compare it with the standard result, we observe a clear improvement in the reconstruction 
quality. Having correctly reinterpreted sub-pixel misalignment and with a neat PSF, the image is rich in details 
and well contrasted, where the standard reconstruction appears fuzzier. On the other hand, Fig. 4C shows the 
reconstruction of the same volume by using AU. Here, it is possible to appreciate the deblurring effect that leaves 
us with a highly-resolved reconstruction. To assess the qualitative verdict of our analysis, we examine a small 
detail of the vessel located at the bottom of panel C. The region of interest is displayed in panel E as a reference 
in the case of AU reconstruction. We draw a line profile in the middle of it, and we plot the intensities for each 
of the reconstructions considered in Fig. 4D. The standard reconstruction almost confuses the walls of the small 
blood vessel, whereas SS resolves this detail. The opening within the blood vessel becomes even more evident 
when we use AU, given that the simultaneous PSF deconvolution lets us resolve sharper details. Thorough image 
analyses are presented in the Supplement Materials document accompanying this manuscript.

Figure 3.   Methods comparison for the reconstruction of the vasculature in a mouse popliteal lymph node. 
The quality of the first row improves in the central and in the bottom rows. Results of aligned mean shown 
in a transverse (A), longitudinal (B) and lateral (C) direction. The shown data are color-encoded maximum 
intensity projection (MIP)16 along each spatial coordinate. In all these MIPs, the color indicates the depth at 
which the corresponding feature is located. The small letters indicate the cropped volume. The cropped regions 
located within the whole specimen are framed with white boxes. The scale bar is 100µm . (A, a) Transverse view 
of the volume oµ averaged and aligned by cross-correlation (Rendered in Fig.1, viewed from the top). (B, b) 
Longitudinal (or side) view projection. (C, c) Lateral (or front) view. (D, d) Transverse, (E, e) longitudinal, and 
(F, f) lateral projections of the volume oρ reconstructed with SS. (G, g) Transverse, (H, h) longitudinal, and (I, i) 
lateral projections of the volume o deconvolved with AU.
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Discussion
It is worth stressing that our auto-correlation method goes beyond the deconvolution approach. We are explor-
ing a new path in alignment-free image formation, studying its advantage in terms of PSF. With this work, we 
presented an approach to the problem of shift-invariant reconstructions in volumetric multi-view tomography. 
Rather than relying on alignment and fusion pipelines, we proposed a conceptually simple approach that pro-
motes the reconstruction into the shift-invariant A-space. We made use of multiple views of the specimen with 
the sole goal of refining the estimation of the auto-correlation of the object since we consider it as the ideal 
quantity for the formation of inherently aligned reconstructions. Since the user is free from the alignment task, 
one could direct his attention to better ways to estimate the auto-correlation. In particular, this may open the 
path for the corrections of higher-order transformations as, for example, those introduced by inaccuracies of the 
rotation stage. Two-axes angular tilts are seen easier in the shift-invariant space than in the object space since 
we no longer worry about the object positioning. Furthermore, we have proven that the solution of the A−1 can 
be accompanied with deconvolution18. Concatenating two inverse problems can be hazardous since remaining 
artifacts from the first inversion may condition the behavior of the following method. Technically, these prob-
lems can only converge if we pad enough the reconstruction volume: the auto-correlation of a discrete n-signal 
is defined on a translation-space that is 2n− 1 long. However, we found that starting with a close guess ensures 
convergence even for volumes that do not comply with appropriate frequency padding. In volumetric tomogra-
phy, this guess may be either a single view or the aligned mean of the specimen since both are not distant from 
the ideal reconstruction. Unpadded volumes are smaller, and this lets us save computer memory and speeds up 
the execution. The main computational burden of our algorithms, however, is performing convolutions of large 
volumes. Processing 105 SS-iterations on a volume of 5123 voxels takes about 80 min. Additionally, each AU 
step needs one convolution more than SS, and it is typically 25% slower. Novel GPU architectures continuously 
speed up those operations, and there are several ways to implement convolutions (direct, Fourier, or overlap-add 
methods) optimized for the size of the problem considered. In any case, both SS and AU are Bayesian quadratic 
methods and typically require many iterations to converge17,22. With this respect, a new approach to Bayesian 
deconvolution23 managed to reduce by two orders of magnitude the iterations needed by tuning the forward and 
backward projection operators. Those operators are similar to what we have -respectively- at the denominator 
and numerator in our Eq. (5) and, in the future, we may consider the adoption of a similar approach to increase 
efficiency. Both the iteration number and time consumption are crucial aspects that we plan to investigate further, 
and that may decrease the processing time from a few hours to a fraction of it.

Methods
Image pre‑processing.  Each raw dataset was subtracted with a corresponding average background value, 
rotated to the same angular orientation of the first dataset acquired at ϕ = 0 . The PSF of the system was assumed 
to be Gaussian, elongated along the direction of scanning. For each of these stacks, we computed the correspond-
ing auto-correlation sequence. We took the absolute value of the average auto-correlation to avoid any presence 
of unwanted negative values. These are determined by the background-subtraction and eventually by rounding 
errors due to FFT computation.

Multi‑view registration and fusion.  As standard reconstruction comparison, we aligned the views 
against each other by finding the location of the maximum of the cross-correlation between X {oiµ; o

j
µ} , for i  = j . 

We defined the displacement vector mmmi with respect the central coordinate ξξξ = 000 . We kept ϕ0 = 0
◦ as a reference 

and we translated each ϕi by the vector −mmmi defined in this way. Then we computed the average of the registered 
stacks to form oµ.

Figure 4.   Tomographic slice of the cropped volume. (A) Aligned mean (standard reconstruction). (B) 
Reconstruction using SS. (C) Reconstruction using AU. (D) Profile plot along the dashed line in panel (E) for 
the three cases. (E) Detail of the small opening for AU.
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Rearranging the auto‑correlation.  We suppose that a generic measurement oµ is described by:

We neglect the additive noise by assuming ε = 0 . Using the commutation properties of the convolution-
correlation, the relations (a ∗ b) ⋆ (a ∗ b) = (a ⋆ a) ∗ (b ⋆ b) and a ⋆ (b ∗ c) = (a ⋆ b) ∗ c , we have that:

here we have called χ = o ⋆ o , H = h ⋆ h and K = o ⋆H . In the body of the article, we use only the last two 
equations.

Experimental details.  For the tests performed in our study, we use the image data taken from the work 
of Ozga et al.19, to which we refer for the experimental protocols. The sample, provided by Prof. J. Stein and 
imaged by J. Swoger, is a cleared mouse popliteal lymph node having the vasculature stained with the Alexa Fluor 
488 dye (HEV, high endothelial venule). This specimen was embedded in agarose, then cleared and imaged in 
Benzyl-Alcohol Benzyl-Benzoate (BABB). The fluorescence was excited with a light-sheet perpendicular to the 
camera detection at �exc = 488 nm, imaged onto the sample with a 2.5×/0.07 N PLAN (air) objective lens. With 
a band-pass filter at 525/50 nm, they recorded the emitted fluorescence using a 5×/0.12 N Plan EPI (air) objective 
lens. The sample was scanned through the light sheet along the z-axis, perpendicularly to the camera detection 
in steps of 4.985 μm.
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