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While the exact function of sleep remains unknown, it is evident that sleep was 
developed early in phylogenesis and represents an ancient and vital strategy for 
survival. Several pieces of evidence suggest that the function of sleep is 
associated with energy metabolism, saving of energy, and replenishment of 
energy stores. Prolonged wakefulness induces signs of energy depletion in the 
brain, while experimentally induced, local energy depletion induces increase in 
sleep, similarly as would a period of prolonged wakefulness. The key molecule in 
the induction of sleep appears to be adenosine, which induces sleep locally in the 
basal forebrain.  
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WHY DO WE HAVE TO SLEEP?  

Sleep is an essential part of the everyday life of animals as well as human beings. Despite 
intensive research, the key function(s) of sleep remain unknown. Indirect evidence suggests that 
whatever the function of sleep is, or whatever was the reason that sleep was developed in the 
course of evolution, it is vitally important. Three points in this respect are particularly relevant: 
(1) during the state of sleep the responsiveness of organisms to external stimuli is decreased, 
making them vulnerable to dangers of the surrounding world — still, practically all animals sleep, 
(2) sleep need is homeostatically regulated[1], which also suggests an important, life supporting 
function for sleep, (3) if rodents are kept awake for extreme time periods (several weeks) they 
die[2].  

Sleep appears to have developed early in the course of evolution[3], suggesting that the core 
of sleep need is related to primitive functions of life, e.g., energy metabolism. Energy 
conservation, or the restoration of energy during sleep, has offered itself as an intuitive 
explanation of sleep propensity[4]. The replenishment of brain glycogen stores has also been 
suggested as a possible cause of sleep[5].  
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BRAIN ENERGY METABOLISM  

Sources of Brain Energy  

According to the classical view, oxidation of glucose (Fig. 1) is the main source of energy in the 
brain, while lactate, produced by anaerobic glycolysis, is used only in pathological conditions[6]. 
More recent studies have revealed that neurons use lactate as their energy source also under 
normoxic conditions, and may even prefer it over glucose during neuronal activation[7,8]. 
Glucose is metabolized to lactate in astrocytes and transferred to neurons[7,8], where lactate 
dehydrogenase converts it to pyruvate, which is further oxidized to produce ATP. In addition to 
blood glucose, the brain has a small energy reservoir in the form of glycogen, that is stored in 
astrocytes. The total glycogen content in astrocytes is small: as a sole source of energy it could 
keep up brain activity for less than 5 min[9].  

 
FIGURE 1. Main phases of energy metabolism. Glycolysis: glucose is converted to pyruvate. Pyruvate can be 
metabolized either to lactate to produce 2ATP, or enter the citric acid cycle to produce 36 ATP.  

How is Brain Energy Used?  

The main part of brain energy is used to sustain neuronal activity: it has been estimated that in the 
human brain, glutamate/glutamine cycle is the major metabolic flux with a rate of about 80% of 
glucose oxidation[10]. There is thus a close relation between the activity level of neurons and 
energy consumption in the brain (for review see [7]).  

Stimulation of the brain (sensory or cognitive) will increase lactate in the stimulated 
area[11,12,13]. The elevation in lactate coincides with the growing energy demand of increased 
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neuronal activity[14]. The origin and exact role of lactate in the course of stimulation are not 
clear. According to Magistretti et al., increased neuronal firing would stimulate the use of lactate 
as a neuronal fuel, leading to elevated lactate level[7]. Another possible mechanism of lactate 
elevation would be the glycogen shunt: glucose is rapidly metabolized from glycogen in 
astrocytes[8]. This view is supported by the finding that tactile stimulation in rats decreased 
glycogen levels, while lactate levels were elevated[15].  

ENERGY METABOLISM AND SLEEP  

General  

During non-REM sleep, brain energy expenditure decreases; cerebral blood flow[16] and the 
cerebral metabolic rate decrease[17,18], while glucose[19,20] and ATP concentrations 
increase[19,21]. Decreased extracellular lactate and pyruvate concentrations during sleep further 
indicate a reduction in energy metabolism[19,20,21].  

During prolonged wakefulness, energy is utilized continuously and brain extracellular 
glucose concentrations[20], as well as phosphocreatinine and ATP levels, decrease[19]. At the 
cellular level, waking activates mitochondrial genes related to energy production (e.g., subunits of 
cytochrome c oxidase, NADH dehydrogenase, and 12S rRNA)[22]. PET studies in humans have 
shown that the cerebral metabolic rate for glucose is decreased after prolonged 
wakefulness[23,24].   

Energy Depletion and Sleep  

The relationship between energy depletion and sleep induction has been addressed 
experimentally: the intraperitoneal infusion of 2-deoxy-D-glucose, a glucose antimetabolite, 
increased sleep dose dependently in cats[25], while in diabetic patients experimentally induced 
mild hypoglycemia for 1 h during the night generated subjective feelings of fatigue during the 
following day[26]. We used 2,4-dinitrophenol (DNP), a molecule that prevents the synthesis of 
ATP, to induce local energy depletion in the basal forebrain. DNP infusions (3-h) induced 
elevations in extracellular concentrations of lactate, pyruvate, and adenosine, as well as increases 
in non-REM sleep during the following night. Sleep was not affected when DNP was 
administered to adjacent brain areas, although the metabolic changes were similar. The amount 
and the timing of the increase in non-REM sleep, as well as in concentrations of lactate, pyruvate, 
and adenosine with 1.0 mM DNP infusion, were comparable to those induced by 3 h of sleep 
deprivation[27]. The use-dependent regulation of sleep propensity, possibly involving stimulus-
activated changes in energy metabolism, has been suggested by observations that local brain 
stimulation (e.g., tactile stimulation on of the hand to stimulate the respective area in the motor 
cortex) during waking evokes changes in subsequent sleep[28,29]. In humans, the normal 
metabolic response to stimulation (increase in extracellular lactate) disappeared in the course of 
prolonged wakefulness[30]. The rapid and temporary increase in lactate on stimulation represents 
the brain’s metabolic response to rapid energy demand with increased neuronal activity. It is thus 
conceivable that while the brain’s energy resources become restricted during prolonged 
wakefulness, the demand of rapid production of energy during neuronal activation will not be 
met. The behavioral effects of prolonged wakefulness may arise from dysfunction of this energy 
production mechanism. 
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Adenosine  

General  

Adenosine (AD) is a ubiquitous molecule, directly associated with energy metabolism (see Fig. 
2), but also functions in cellular communication and regulation of neural activity. 
Pharmacological studies have shown that adenosine and its agonists have sleep-inducing 
effects[31,32]. Furthermore, the well-known stimulants caffeine and theophylline have been 
determined to be antagonists of AD receptors[33]. Acting on the widely distributed A1 receptor, 
AD is generally an inhibitory neuromodulator reducing the activity of neurons in a number of 
brain regions, either by directly hyperpolarizing the postsynaptic membrane, or by acting 
presynaptically to decrease the release of excitatory neurotransmitters (for review see [33,34,35]). 
However, AD may also have an indirect excitatory effect on postsynaptic neurons, via A1-
mediated presynaptic inhibition of inhibitory neurotransmitter release. Although most of the 
physiological effects of AD in the brain are mediated by the A1 receptor, AD action at the A2 
receptor can have neuromodulatory effects that oppose action at A1 receptors (reviewed in 
[33,34]).  

 

FIGURE 2. Schematic of main intra- and extracellular metabolic pathways of adenosine. Adenosine is formed from AMP 
intracellularly by the enzymes ATP-ase, ADP-ase, and 5'-nucleotidase, and extracellularly by the respective ectoenzymes. Adenosine 
kinase converts adenosine to AMP, while adenosine deaminase converts it to inosine. The third enzyme to metabolize adenosine is S-
adenosylhomocysteine hydrolase, which converts adenosine to S-adenosylhomocysteine (SAH). Adenosine concentration between the 
intra- and extracellular spaces is equilibrated by nucleoside transporters. Adenosine's effects on cells are mediated through specific 
receptors. Abbreviations: A1, A1 adenosine receptor subtype; A2, A2 adenosine receptor subtype; ADP, adenosine diphosphate; 
AMP, adenosine 5'-monophosphate: ATP, adenosine triphosphate (modified from [36]).  

Adenosine and Natural Sleep  

Using in vivo microdialysis in cats we collected samples for adenosine analysis during 
spontaneous sleep-waking cycle. Adenosine levels in samples collected during waking 
were higher than during periods of slow wave sleep (SWS) in all brain areas. Adenosine 
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levels during sleep were approximately 75 to 80% of waking values, and similarly 
reduced in all brain regions[36]. Thus, adenosine levels vary with behavioral state, the 
levels being higher during wakefulness than sleep.  
 
 

 
 
 
 
 
FIGURE 3. Adenosine concentrations in different brain areas during sleep deprivation and recovery sleep. Cats were kept awake for 6 
h. Prior to the beginning of the sleep deprivation, samples were collected to obtain baseline wakefulness values for each probe 
(predeprivation value = hour 0; defined as 100%). Two patterns were evident in the sleep deprivation–induced changes in adenosine; 
in the basal forebrain (BF) and cortex adenosine levels could be seen to rise during the sleep deprivation, whereas in the other four 
areas adenosine levels were either stable or declined slowly during the 6 h of sleep deprivation. During recovery, sleep adenosine 
concentrations were significantly higher in the BF than in all other areas. Significant differences in adenosine concentration between 
BF and all other areas are marked with asterisks. Abbreviations: DRN, dorsal raphe nucleus; POA, preoptic hypothalamic area; PPT, 
pedunculopontine tegmental area (modified from [36]. 

Adenosine and Prolonged Wakefulness  

Measured using in vivo microdialysis as described above, adenosine concentrations increased in 
the basal forebrain steadily in the course of 6-h sleep deprivation, reaching at 6 h twice the values 
that were measured in the beginning of the sleep deprivation period[36,37]. During the recovery 
sleep period, adenosine levels in the basal forebrain gradually decreased over the next 2 to 3 h, a 
time when the behavioral state was mainly SWS. However, when samples were collected in 
different brain regions during 6-h total sleep deprivation, we found quite different patterns. The 
rise in adenosine levels in the cortex site paralleled those in the basal forebrain (BF) during the 
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first 5 h, although the rise was not as steep as in the basal forebrain, and started to decline in the 
last hour of deprivation. In the VA/VL (thalamus), dorsal raphe nucleus, pedunculopontine 
tegmental nucleus, and preoptic area adenosine levels did not rise during 6-h sleep deprivation, 
though many of these regions are also known to be active in sleep regulation. Interesting regional 
differences in extracellular adenosine concentrations were also found during the recovery sleep 
that followed sleep deprivation. During the 3-h recovery sleep period, adenosine concentrations in 
the basal forebrain declined slowly, remaining significantly higher than the predeprivation basal 
wakefulness level at 3 h of recovery sleep (Fig. 3). In all other brain areas, the adenosine 
concentrations were either at the level of predeprivation values, or lower throughout the recovery 
sleep period. We have repeated the key experiments in rats, and shown that extracellular 
adenosine concentrations also in this species are lower during sleep, and that adenosine 
accumulates in the basal forebrain of rats during sleep deprivation[38].  

These data indicate that during prolonged wakefulness, extracellular adenosine accumulates 
selectively in the basal forebrain and, also, to a lesser extent, in the cortex. This unique pattern of 
regionally specific rises in adenosine in response to sleep deprivation supports the hypothesis that 
adenosine promotes the transition from wakefulness to SWS by inhibiting the discharge activity 
of wake-active cortically projecting neurons of the basal forebrain, and possibly also by inhibiting 
neurotransmitter release from the cortical terminals of these basal forebrain neurons.  

Effects of Chemically Induced High Brain Extracellular Adenosine 
Levels on Sleep  

NBTI, an inhibitor of nucleoside ENT1 type transporter, was used to locally increase extracellular 
adenosine concentration in the brain. When NBTI was perfused unilaterally to the test areas 
(basal forebrain and thalamus), the extracellular adenosine concentration doubled in both areas, 
reaching the same level that was measured after the 6-h sleep deprivation in the basal forebrain. 
While the increase in extracellular adenosine concentration was similar in both the cholinergic 
basal forebrain area and in the thalamus, the effects of the increased adenosine concentration on 
vigilance state were dramatically different. When perfused to the basal forebrain, NBTI decreased 
waking and increased both SWS and REM sleep, while when perfused to the thalamic VA/VL 
nucleus, the vigilance states remained unchanged[37]. These data indicate that not only the 
increase in extracellular adenosine concentrations but also the sleep-inducing effect of adenosine 
is specific to the basal forebrain.  

Long-Term Effects of High Adenosine Levels  

While many of the somnogenic effects of adenosine may represent direct receptor-mediated 
actions, sleep deprivation has long-duration effects with a time course that suggests that they are 
likely to be mediated through effects on transcription. For example, in humans successive nights 
of sleep restriction have a cumulative effect on neurobehavioral alertness[39] and the effects of 
prolonged sleep deprivation in animals are not recovered during a single night of recovery 
sleep[40]. The extracellular levels of adenosine start to decrease as soon as sleep is initiated. The 
extension of the effects of prolonged wakefulness over several days suggests that intracellular 
events, including protein synthesis, may be activated. We have shown that adenosine 
administration increases A1 receptor mRNA[41] and the DNA-binding activity of the 
transcription factor NF-kB in response to prolonged wakefulness[42] in the basal forebrain, 
implying initiation of an A1 receptor–mediated protein synthesis in this area.  
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BASAL FOREBRAIN AND SLEEP  

Several experiments suggest that the basal forebrain has a specific role in adenosine-mediated 
sleep induction. The elevation of adenosine, lactate, and pyruvate during prolonged wakefulness 
occurs only in the basal forebrain[27,36]. Also the sleep-inducing effects of NBTI-induced 
elevation of adenosine level and experimentally induced energy depletion are restricted to the 
basal forebrain[37]. Increases in A1 receptor mRNA[41] and in the DNA-binding activity of the 
transcription factor NF-kB in response to prolonged wakefulness[42] are also specific to the basal 
forebrain. Moreover, A1 receptors activate a Ca2+-mediated intracellular signal transduction 
pathway specifically in the cholinergic cells[43], offering a potential mechanism that could 
explain the site-specific effects of adenosine. Taken together, these data strongly suggest a 
specific role for the basal forebrain in the adenosine-mediated regulation of vigilance states. As 
experimentally induced energy depletion elevated the extracellular concentrations of adenosine, 
lactate, and pyruvate in all brain areas, while sleep deprivation did so only in the basal forebrain, 
it may be argued that prolonged wakefulness generates energy depletion more easily in the basal 
forebrain than in other brain areas. The wakefulness-promoting cells in the cholinergic basal 
forebrain could therefore act as energy level sensors, or as fuses to protect the rest of the brain 
from the injurious effects of energy depletion.  

One-third of the cortically projecting magnocellular basal forebrain neurons are cholinergic, 
one-third GABA-ergic, while one-third are unidentified[44]. The cholinergic cortical and 
thalamic projections are thought to be essential for the induction of cortical EEG arousal[45]. We 
have previously suggested that these projections could be central to the effects of adenosine on 
vigilance states[37]. Adenosine inhibits virtually all neurons via A1 receptors, but the inhibitory 
action is more prominent on excitatory cells, so that the net effect in most brain areas is a 
reduction in neural activity[46]. To induce a decrease in the cellular activity of cortical neurons, 
adenosine should act on the excitatory neurons in the basal forebrain. In vivo measurements in 
freely behaving animals show that adenosine inhibits the waking-active neurons in the basal 
forebrain[47]. As cholinergic neurons are effectively inhibited by adenosine[48], they appear to 
be the most obvious targets for adenosine. However, it is possible that the modulation of the 
activity of other projection neurons could also be of importance in mediation of the sleep-
inducing effects of adenosine.  

CONCLUSIONS  

The continuous activity of the wakefulness-promoting cells in the basal forebrain imposes a 
burden on the mitochondrial energy production capacity during wakefulness. When wakefulness 
is prolonged, these cells start to suffer from an energy deficit, resulting in increased glycolysis 
and elevations in extracellular concentrations of lactate, pyruvate, and adenosine. The enhanced 
extracellular concentration of adenosine contributes to the increased sleep propensity and 
promotes the transition from wakefulness to sleep. Adenosine may affect sleep through several 
mechanisms; the immediate effect, the decrease in neural activity, may promote the transition 
from wakefulness to sleep[37,48], while intracellular events, mediated through A1 receptors, may 
be of importance in the induction of sleep propensity[41,42].  

The increase in lactate on stimulation represents the brain’s metabolic response to rapid 
energy demand with increased neuronal activity. It is thus conceivable that while the brain’s 
energy resources become restricted during prolonged wakefulness, the demand of rapid 
production of energy during neuronal activation will not be met. The symptoms of prolonged 
wakefulness could arise from malfunctioning or absence of this mechanism: neurons could still 
function, but more slowly and less effectively.  
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