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a b s t r a c t 

In the case of dry powder inhalation systems (DPIs), the development of carrier- 

free formulations has gained increased attention. Thereby, spray-drying is a promising 

technology and is widely used to produce carrier-free DPIs. Numerous works have been 

published about the co-spray-drying of active ingredients with various solid excipients 

and their effect on the physicochemical characteristics and aerodynamic properties of 

the formulations. However, only a few studies have been reported about the role of the 

solvents used in the stock solutions of spray-dried formulations. In the present work, DPI 

microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying 

in the presence of different ethanol concentrations. The work expresses the roughness, 

depth and width of the dimples for particle size as a novel calculation possibility, and as 

a correlation between the MMAD/D 0.5 ratio and correlating it with cohesion work, these 

new terms and correlations have not been published – to the best of our knowledge –

which has resulted in gap-filling findings. As a result, different proportions of solvent 

mixtures could be interpreted and placed in a new perspective, in which the influence of 

different concentrations of ethanol on the habit of the DPI formulations, and thus on in 

vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro 

aerodynamic results for DPI formulation containing 30% ethanol in the stock solution. 

© 2021 Shenyang Pharmaceutical University. Published by Elsevier B.V. 
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1. Introduction 

Drug administration through the pulmonary route allows
∗ Corresponding author. 
E-mail address: ambrus.rita@szte.hu (R. Ambrus). 
Peer review under responsibility of Shenyang Pharmaceutical Unive

 

https://doi.org/10.1016/j.ajps.2021.04.003 
1818-0876/© 2021 Shenyang Pharmaceutical University. Published by El
( http://creativecommons.org/licenses/by/4.0/ ) 
the treatment of local and systemic diseases [1] . Compared
to oral drug delivery, there are several arguments in favor
of drug delivery through the lungs as it is a non-invasive
procedure [2] . Moreover, the active pharmaceutical ingredient
rsity. 
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API) can reach the C max value within minutes [3] and a 
uch lower average dose of one-tenth of the oral dose is 

ufficient to achieve the same therapeutic effect [4] . These 
an be explained by the fact that the gastrointestinal (GI) tract 
s circumvented, thus, hepatic first-pass metabolism and/or 
nzymatic inactivation along the GI tract do not take place 
5 ,6] . Furthermore, the side effect profile of the applied drug 

ay be more favorable compared to oral administration [7] .
ue to the aforementioned beneficial properties of pulmonary 
rug delivery, a large number of APIs have recently been tested 

 8 ,9 ]. 
With regard to pulmonary drug administration, the 

evelopment of dry powder inhaler (DPI) systems has 
ecently become more focused on internationally compared 

o pressured metered-dose inhalers and nebulizers [10] . In 

he case of DPIs, carrier-based formulations are substantially 
resent on the market (on average, they still have 20% −40% 

ne particle fraction results) [ 11 ,12 ]. There has been a 
reater emphasis on the fabrication of carrier-free DPIs in 

ecent years. In this respect, the use of excipients and 

he application of advanced technological solutions in the 
roduction of formulations ( e.g., spray-drying, spray-freeze- 
rying, and supercritical-fluid technology) make it possible to 
chieve favorable aerodynamic properties, leaving the large 
arrier particles in the formulation [13] . Spray-drying proves 
o be the most favorable manufacturing technique for carrier- 
ree DPIs in terms of the advantages and the disadvantages 
f the above-mentioned technological solutions. It can be 
aid that this method is a stepwise, relatively fast and 

imple, cost-effective, automated, reproducible technology,
hich can affect the morphology, size, and density of the 

amples by changing the applied preparation parameters.
isadvantages include a relatively high temperature during 
ample preparation and amorphization [ 14 ,15 ]. The former 
hould not be a problem if the APIs and excipients 
re carefully selected [16–18] . The amorphous form is 
articularly advantageous for DPIs in terms of aerodynamics 

19] . 
The role of a number of solid excipients in the co- 

pray-drying of DPIs has been investigated. Positive findings 
ith several types of polymers have also been reported 

y the preparation of non-porous and porous carrier-free 
PI formulations. Using PVA (polyvinyl alcohol) and PVP 

polyvinylpyrrolidone), these excipients coat the surface 
f the particles, thereby helping to reduce interparticle 

nteractions, and thus prevent agglomeration [20] . PLGA (poly- 
actic-co-glycolic acid) is mainly applied as a matrix carrier 
 21 ,22 ]. Amino acids are also widely used. For example,
y the production of DPIs, it has been confirmed that 
eucine undergoes structural changes during spray-drying,
oating the drug particles, thereby providing protection 

gainst moisture, reducing interparticle interactions, and 

ncreasing the dispersity of the samples [23–25] . Moreover,
he study of different analogs (D and L-leucine, Trileucine 
nd Isoleucine) could be also found in the literature.
n addition, experiments have been performed with, for 
xample, glycine and alanine [26–28] . Another larger group 

f excipients that could be applied by co-spray-drying are 
ipids. In this case, improvements have been reported by 

atrix-forming or coating properties, and the role of the 
a
bsorption enhancer has already been confirmed. As regards 
ther excipients, mention may be made, about sodium 

tearate, which has a moisture protection role [29] , or 
mmonium carbonate/bicarbonate, which has a pore-forming 
nd density-reducing effect [30–32] . 

However, during spray-drying, it is important to study 
he role of solvents in addition to the solid excipients 
pplied. Nevertheless, very few works have been published 

n this topic. Specifically, only the role of ethanol in spray- 
ried DPI formulations has been studied by Belotti et al.

33] , Gilani et al. [34] and Ji et al. [35] . In each case, a
emarkable difference in micrometric properties was found.
elotti et al. applied 0–10% of ethanol concentration and 

arying spray-drying preparation parameters using Central 
omposite Design, and the results were also explained by the 
hange in the Peclet number. Gilani et al. used a 50% −100% 

f ethanol concentration. Ji et al. performed experiments 
n lysozyme using 0–80% of ethanol in the stock solution,
ut the stability of these formulations was also investigated.
everal groups such as Rabbani and Seville [36] and Boraey 
t al. [37] varied the concentration of ethanol and used a 
olid excipient such as leucine in various concentrations,
ut these publications do not only detail the role of 
thanol. The above-mentioned articles regarded ethanol as 
n excipient influencing the physicochemical properties of 
he particles/various parameters of the microcomposites 
ather than as a classical co-solvent [ 33 ,34 ,37 ]. Furthermore,
n several publications, the use of organic solvent for DPI 
ormulations in the spray-drying stock solution can be found,
ut without an explanation of the applied concentration 

38–40] . 
The present research aims to highlight that how different 

roportions of solvent mixtures (distilled water, ethanol),
specially ethanol concentrations, used in the spray- 
ried preparation of DPI samples containing ciprofloxacin 

ydrochloride affect the habit of these powders, thus the in 
itro aerodynamic results. This work seeks to put into new 

erspective the experience published, using new calculated 

erms and contexts, to give new explanations and build up 

he sound basic knowledge on this subject. 

. Materials and methods 

.1. Materials 

icronized ciprofloxacin hydrochloride (CIP) (D50: 5.09 μm) as 
 fluoroquinolone antibiotic drug was kindly supplied by Teva 
harmaceutical Works Ltd. (Debrecen, Hungary). 96% ethanol 
EtOH) was obtained from AppliChem GmbH (Darmstadt,
ermany). Both raw materials used were of pharmacopoeial 
uality. 

.2. Methods 

.2.1. Preparation of the DPI formulations 
PI samples were prepared from aqueous solutions of CIP.
he stock solution of one sample did not contain EtOH, in the 
ther cases, EtOH was used as a liquid excipient at different 
oncentrations (5%, 10%, 20% and 30%, Table 1 ), and the 
pplied temperature was 65 °C. The solubility of CIP was tested 
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Table 1 – Composition of the stock solution – used for spray-drying – of the samples and the yield of these processes. 

Formulations CIP (g) EtOH (g) Distilled water (g) Spray-drying yield (%) 

CIPspd_EtOH_free 3.00 – ad 200.0 71.3 
CIPspd_EtOH_5% 3.00 10.0 ad 200.0 78.3 
CIPspd_EtOH_10% 3.00 20.0 ad 200.0 75.7 
CIPspd_EtOH_20% 3.00 40.0 ad 200.0 76.3 
CIPspd_EtOH_30% 3.00 60.0 ad 200.0 77.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the applied solvent mixtures before preparing the samples.
The solubility values of CIP were 0.094 g/ml in distilled water
and 0.072 g/ml in a 70:30 mixture of distilled water and EtOH
at 65 °C with stirring for 2 h at 200 rpm. The CIP concentration
in the stock solutions was 0.015 g/ml. 

The spray-drying process was implemented with the
Büchi B-191 apparatus (Mini Spray Dryer, Büchi, Switzerland)
and the following parameters were applied: the inlet
heating temperature was 130 °C, the outlet temperature
was approximately 80 °C, the drying air flow rate was 75%,
the sample pump speed was 5%, and the compressed air flow
rate was 600 l/h [ 41 ,42 ]. The yield after the spray-drying was
between 75% and 80% for each DPI formulation, which can
be said to be appropriate by this technique [ 35 ,37 ,43 ]. The
samples were named based on the ethanol concentrations
used in the stock solutions. 

2.2.2. Structural analysis 
The structure of the samples was examined with the
application of the BRUKER D8 Advance X-ray powder
diffractometer (XRPD, Bruker AXS GmbH, Karlsruhe,
Germany). Cu K λI radiation ( λ = 1.5406 Å) was the radiation
source. The investigated formulations were scanned at 40 kV
and 40 mA, the angular range was 3–40 ° 2 θ , at a step time
of 0.1 s/step and a step size of 0.010 ° For the evaluation,
the DIFFRACT plus EVA software (Bruker, Brussels, Belgium)
was used. The XRPD diffractograms were corrected by K α2,
smoothed and evaluated after background removal. 

2.2.3. Scanning electron microscopy (SEM) 
To examine the morphology of the samples, SEM was applied
(Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan) at 10 kV.
The raw CIP and the DPI formulations were coated with
the help of a sputter coater (Bio-Rad SC 502, VG Microtech,
Uckfield, UK) – with gold-palladium (90 s), under an argon
atmosphere in a high vacuum evaporator – to induce electrical
conductivity on the surface of the samples. The used air
pressure was 1.3–13.0 MPa. 

2.2.4. Atomic force microscopy (AFM) and the expressed
values 
Prior to AFM-Imaging, the particles were carefully scattered
on a double-sided adhesive tape for fixation during the
measurement. AFM-Imaging was carried out with a FLexAFM
atomic force microscope equipped with C3000 control
software (Nanosurf AG, Liestal, Switzerland). Non-coated TAP-
300-Al-G cantilevers (BudgetSensors, Sofia, Bulgaria) with a
nominal resonant frequency of 300 kHz were used in phase
contrast mode as an extension of the dynamic force mode. The
data were processed and evaluated using the Gwyddion 2.55
software (Czech Metrology Institute, Brno, Czech Republic). 

The calculation of the root means square roughness (R RMS )
was performed based on Eq. 1 . by applying Gwyddion
software. For each formulation, a minimum of five
[44] particles and 0.5 μm × 0.5 μm areas per particle were
examined at a minimum of 3 different locations. 

R RMS = 

√ √ √ √ 

1 
n 

n ∑ 

i =1 

y 2 i (1)

Thereby, n is the number of data points in a topographical
profile and y i is the distance of asperities (i) from the center
line [44] . 

For a given particle, knowing the average R RMS

(R RMS (average) ) and the average diameter (d), which is the
mean of 10 diameters determined in different directions, the
roughness value for the particle size was expressed according
to the following equation: 

Roughness % = 

R RMS ( average ) 

d 
× 100 (2)

Furthermore, with the help of the above-mentioned
software, it was possible to measure only individual
depressions/dimples of the particle surface. For each particle,
at least three dimples were taken as a basis for expressing
the average values (depth and width of the dimples (average) ).
Knowing these values and also the value of d of the given
particle mentioned above, we determined the values of depth
and width of the dimples for the particle size ( Eq. 3 and 4 ). For
each sample, a calculation was performed for a minimum of
five particles. 

Depth of the dimples % 

Dept h o f t he dimpl e s ( average ) 

d 
× 100 (3)

Width of the dimples % 

Widt h o f t he dimpl e s ( average ) 

d 
× 100 (4)

2.2.5. Particle size analysis 
The determination of the D 0.1 , D 0.5 , and D 0.9 values was
carried out with laser diffraction (Malvern Mastersizer
Scirocco 2000; Malvern Instruments Ltd., Worcestershire, UK).
Approximately 0.5 g of the samples were filled into the
feeder tray. The following settings/parameters were applied:
dry analysis method, official refractive index of CIP from
the Malvern database, 2.0 bars dispersion air pressure, 75%
vibration feed, 12 s measuring time. For each sample, three
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arallel investigations were executed. The span value was 
alculated based on the following equation [45] : 

pan = 

D 0 . 9 − D 0 . 1 

D 0 . 5 
(5) 

.2.6. Determination of the bulk and tapped density, Carr 
ndex and Hausner ratio 
or the determination of the densities, the samples were filled 

n the 5 ml tared graduated cylinders and the bulk density 
 ρbulk ) values came from the mass/volume ratios. In the cases 
f tapped density ( ρtap ), the STAV 2003 Stampfvolumeter 

Engelsmann A.G., Luwigshafen, Germany) was applied as 
apping equipment (tapped 1250 times [46] ) and the results 
ere the mass/tapped volume ratios. All formulations were 

nvestigated in triplicate. Furthermore, Carr index and the 
ausner ratio were determined with the equations below [47] : 

arr index = 

[
ρtap − ρbulk 

ρtap 

]
× 100 (6) 

ausner ratio = 

ρtap 

ρbulk 
(7) 

.2.7. Measurement of the residual water content 
he residual water content of the samples was analytically 
etermined with Karl Fischer (KF) volumetric titration.
he investigations were carried out using the TitroLine 
F (SI Analytics, Mainz, Germany) titrator. The DPI sample 

130 mg) was dissolved in water-free methanol prior to 
he analysis. The dissolved sample was injected into 

he reaction cell and titrated with 4.01 mg/ml of Apura®
ombiTitrant 5 one-component reagent for volumetric Karl 
ischer titration (Merck KGaA, Darmstadt, Germany). As a 
tandard, HYDRANAL KF reagent (Honeywell Fluka TM Water 
tandard Oven 220–230 °C, Fisher Scientific, Germany) was 
sed. The residual water content of the formulations was then 

ccessed via endpoint titration. All samples were measured 

n triplicate. 

.2.8. Measurement of the residual EtOH content 
he residual EtOH content of the formulations was measured 

y the Mettler Toledo TG 821e thermal analysis system 

TG) connected with a quadrupole mass spectrometer 
MS, Pfeiffer Vacuum, model ThermostarTM GSD 320) and 

nalyzed with the STARe thermal analysis program V9.1 
Mettler Inc., Schwerzenbach, Switzerland). In carrying out 
he measurement, 3–5 mg per formulation was weighed 

nto 40 μ l aluminum pans. The start temperature was 25 °C,
he end temperature was 350 °C, the used heating rate 
as 10 °C/min. The investigation was made in a nitrogen 

tmosphere (constant nitrogen gas flow: 10 ml/min). Contact 
etween the TG and the MS was performed with a silica 
apillary maintained at 120 °C. 

.2.9. Determination of cohesion work 
he determination of cohesion work (W c ) was carried out 
y applying a Dataphysics OCA 20 apparatus (Dataphysics 
nc. GmbH, Germany). In the case of each sample, pastilles 
ere pressed (0.10 g powder and 1 ton compression force) 
ith the hydraulic press (Perkin Elmer, Waltham, USA). For 
ach sample, three pastilles were dropped with distilled 

ater as a polar liquid, and three pastilles were dropped 

ith diiodomethane as a dispersion liquid. At each drop, the 
hange of the contact angle ( �) in a time interval of 1–25 s
as measured by the above-mentioned apparatus and in each 

ase, we applied to the following calculation at the same 
econd determining contact angle values. Surface free energy 
 γ s ) consists of a polar ( γ d 

s ) and a dispersed part ( γ p 
s ), therefore,

 γs = γ d 
s + γ

p 
s ) . It was calculated from the Wu-equation [48] : 

 1 + cos �) γ1 = 

4 
(
γ d 

s γ
d 
1 

)

γ d 
s + γ d 

1 

+ 

4 
(
γ

p 
s γ

p 
1 

)

γ
p 
s + γ

p 
1 

(8) 

here � = contact angle; γ = surface free energy; s = solid 

hase; l = liquid phase; d = dispersion component; p = polar 
omponent 

Since the surface tension of the applied liquids is known in 

he literature ( γ1 = γ d 
1 + γ

p 
1 ) : distilled water γ p = 50.2 mN/m,

d = 22.6 mN/m and diiodomethane γ p = 1.8 mN/m,
d = 49 mN/m [49] . Only the disperse ( γ d 

s ) and the polar
omponent ( γ p 

s ) are unknowns in this equation, these can 

e expressed [48] . Thus, surface free energy ( γ s ) can be 
etermined, the double of which is W c [50] : 

 c = 2 × γs (9) 

.2.10. In vitro test with the Andersen Cascade Impactor 
he in vitro inhalation test was implemented with the 
ndersen Cascade Impactor (ACI) (Copley Scientific 
td., Nottingham, UK). This equipment is appropriate 
or the investigation of the aerodynamic behaviour of 
he DPI formulations since this is authorized by several 
harmacopoeias (European Pharmacopoeia /Method Chapter 
.9.18, United States Pharmacopeia /Test Chapter < 601 > ,
hinese Pharmacopoeia /Chapter < 0951 > ) [51] . The plates of 

he impactor were dipped in a Span® 80 and cyclohexane 
1:99, w/w) mixture then allowed to dry. The applied 

8.3 ± 1 l/min flow rate during the in vitro test, which is a
tandard measurement parameter for ACI [51] , was set by 
 mass flow meter (Flow Meter Model DFM 2000, Copley 
cientific Ltd., Nottingham, UK) on the used vacuum pump 

High-capacity Pump Model HCP5, Critical Flow Controller 
odel TPK, Copley Scientific Ltd., Nottingham, UK). For each 

ample, 10 mg of CIP was filled into the DPI capsules, this 
mount is one-tenth of the oral dose of CIP [42] . During the
CI test, Breezhaler® (Novartis, Basel, Switzerland) DPI device 
as applied with three [52] transparent, size 3 hard gelatin 

apsules (Coni-Snap®, Capsugel, Bornem, Belgium). For each 

apsule, inhalation for 4 s was applied two times. After the in 
itro inhalation test, the Breezhaler®, the used DPI capsules,
he mouthpiece, the throat, the eight plates (0–7) of the 
mpactor, and the applied filter were washed with distilled 

ater and the mass of CIP deposited on these parts was 
etermined using an Ultraviolet-visible spectrophotometer 

ATI-UNICAM UV/VIS Spectrophotometer, Cambridge, UK) at 
 wavelength of 276 nm. The calculation of the amount of 
PI in the washed elements was possible in the knowledge 
f the applied volume of the flasks, the used dilution, the 
alue of the absorbance and the slope of the calibration 

urve of CIP in the distilled water. So earlier we determined 
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Fig. 1 – The process for determining the aerodynamic 
properties (with the help of the KaleidaGraph 4.0 software). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 – XRPD pattern of the CIP-HCl_raw and the 
spray-dried formulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the linearity of the CIP calibration curve in this medium
at 276 nm, it was: y = 0.0736x. The unit of the slope was
mL/μg. Knowing the data detailed so far, it became possible
to manually calculate the values which characterize the in
vitro aerodynamic behaviour of the samples. The emitted
fraction (EF) was expressed as the percentage ratio of the
drug amount found in the ACI parts (from the mouthpiece
to the filter) which otherwise corresponds to the emitted
dose (ED) to the total mass of the drug recovered (from the
DPI device to the filter) [53] . With the help of KaleidaGraph
4.0 (Synergy Software, Reading, PA, USA), the cumulative
percentage less than the size range versus the effective cut-off
diameter (ACI, 28.3 l/min flow rate [51] ) was plotted on the log
probability scale. Knowing the abscissa data for the 5 μm and
3 μm ordinate values, the amounts with a diameter of less
than 5 μm and 3 μm can be expressed. The percentage ratios
of these masses to the ED mean the FPF < 5 μm and the FPF
< 3 μm [54] . The expression of the latter is even less common,
however, it has already been published in several publications
[ 28 ,55 ] since in the deep lung – in the sub-tracheal area –
especially the particles below 3 μm are deposited [56] . The
mass median aerodynamic diameter (MMAD) is defined as
the diameter at which 50% of the particles of an aerosol by
mass are larger and 50% are smaller [57] . This is obtained
as the ordinate value for the 50% abscissa value. It should
be noted that calculations are necessary to correlate it with
the number of the applied DPI capsules, since the values for
a dose will be obtained then. The GSD value was calculated
from the equation shown in Fig. 1 , where x is the aerodynamic
diameter at 84.13% cumulative mass and y is the aerodynamic
diameter at 15.87% cumulative mass [58] . 

2.2.11. Statistical analyses 
The statistical analyses were carried out with the application
of the Social Science Statistics – available online [59] . The t -
test calculations were made at the 0.05 significance level and
with a one-tailed hypothesis. All reported data are means ±
SD of three parallel investigations ( n = 3). 

3. Results and discussion 

3.1. Structure of the samples 

The XRPD provides an opportunity to study the raw CIP
(CIP-HCl_raw) and the structure of the prepared formulations
( Fig. 2 ). The structure of the samples affects their morphology,
thereby it can modify, for example, the interparticle
interactions. Based on the XRPD patterns, characteristic
peaks of the raw CIP are determined at 8.23, 9.25, 19.22,
26.39, and 29.16 2-Theta degree, which refers to a crystalline
structure. In the case of the spray-dried samples, it is clearly
visible that the characteristic peaks are present only at very
low intensities, which predicts that the amorphous property
predominates in these samples. 

3.2. Morphological characterization of the samples 

However, the different EtOH concentrations of the spray-
drying stock solution caused remarkable morphological
differences. By increasing the EtOH concentration, the
depressions in the surface of the particles increase, and
cracking occurs already at 30% EtOH content – in the stock
solution –. This is due to the fact that water and EtOH have
different evaporation rates. At higher EtOH concentrations,
higher internal pressures can cause more swollen or exploded
particles [33] . Thus, the mixtures of these solvents in different
proportions in the stock solution lead to the formation of
different morphologies during the drying process under
the same conditions. The Peclet number (Pe), which is a
dimensionless value, is also linked here in an explanatory
way [60] . Its calculation is based on the evaporation rate of the
solvent (k, also known as convection) and the diffusion rate
(D) of each dissolved molecule (Pe = k /8D) [61] . The diffusion
coefficient may vary during spray-drying, depending on the
concentration of the applied drug and the composition of
the solvent, so the Pe number is not a constant value for a
given material [14] . For DPIs, their exact determination is
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Fig. 3 – SEM recordings of the formulations. 

Fig. 4 – Individual particle recordings with AFM for each formulation. 

Table 2 – Roughness, depth and width of the dimples with respect to particle size. 

CIPspd_EtOH_free CIPspd_EtOH_5% CIPspd_EtOH_10% CIPspd_EtOH_20% CIPspd_EtOH_30% 

Roughness (%) 0.85 ± 0.09 2.37 ± 0.11 2.66 ± 0.16 4.10 ± 0.18 4.46 ± 0.36 
Depth of the dimples (%) 0.83 ± 0.04 2.81 ± 0.19 2.93 ± 0.21 5.73 ± 0.51 8.36 ± 0.71 
Width of the dimples (%) 4.04 ± 0.17 22.56 ± 1.52 22.85 ± 1.54 25.94 ± 2.08 28.34 ± 2.32 
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ot typical in publications [ 60 ,62 ]. Based on observations, it 
an be said that if Pe < 1, a compact particle with a uniform
nternal structure is formed. In formulations where Pe > 1, the 
iffusion of the solute at the center of the drop is slower than 

he evaporation of the solvent, which leads to wavy surface 
articles [14] . Based on these data and SEM ( Fig. 3 ), AFM
 Fig. 4 ) recordings, as well as the results reported in Table 2 ,
t can be assumed that Pe also increases with increasing 
tOH concentration. Furthermore, the above-mentioned may 
redict different density values of the formulations. 

The particle morphology from the SEM recordings ( Fig. 3 ) 
as correlated with the AFM studies. AFM imaging was used 

o provide more details on the topography and roughness of 
he single particles ( Fig. 4 ). While the surface structure of both 

maging techniques correlates very well, the quantification 

f the morphological differences between the samples could 

nly be evaluated via AFM analysis ( Table 2 ). Percentages of 
he roughness, depth and width of the dimples for particle 
ize were determined as described in Section 2.2.4 . To the 
est of our knowledge, this adapted evaluation has not 
een applied in the literature yet. The calculation carried 

ut allows realistic comparability between samples as it 
onsiders the ratio between the individual particle size and 

he roughness or the depth of the dimples. Our results showed 

hat the roughness and the depth of the dimples increase 
n direct proportion to the EtOH concentration used in the 
tock solution. Regarding the width of the dimples, it can 

e seen that the presence of EtOH has already resulted in 
ery wide dimples, which increased somewhat with higher 
tOH content. Overall, increased concentration of EtOH in the 
tock solutions compared to the almost uniform surface of 
IPspd_EtOH_free resulted in deepening/nearly equal average 
idth dimples relative to the particle size. However, in the 

ase of higher EtOH concentration, the standard deviation of 
he mentioned test values also increased, which indicates the 
resence of more varied shaped particles in the formulations.
he explanation for these observations is that the solid shell is 

ess and less able to follow the thermal movement of the still- 
rying interior using the increased EtOH concentration in the 
tarting solution, so that the uneven surface becomes more 
nd more pronounced. 

.3. Particle size distribution and Span values 

he particle size distribution of the samples is shown in 

able 3 . For DPIs, the average particle size (D0.5) and particle 
ize distribution are very important factors to achieve an 

ffective aerodynamic result of the formulations [63] . Even 

 very small D 0.5 deviation as well as a wider range of 
article size distributions can have a remarkable effect 
n the therapeutic efficacy of the microcomposites [ 63 ,64 ].
ccording to the international literature, D 0.5 values of 1–
 μm [ 65 ,66 ] and in some publications already 1–10 μm [ 67 ,68 ]
re recommended for pulmonary drug administration. All 
ormulations tested corresponded to these recommendations 
nd the particle size distribution also ranged from 1 to 10 μm 
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Table 3 – Particle size distribution of the samples. 

Formulations D 0.1 (μm) D 0.5 (μm) D 0.9 (μm) Span 

CIPspd_EtOH_free 1.683 ± 0.08 3.168 ± 0.06 6.131 ± 0.12 1.339 
CIPspd_EtOH_5% 2.177 ± 0.12 4.197 ± 0.08 7.966 ± 0.21 1.379 
CIPspd_EtOH_10% 1.635 ± 0.06 3.521 ± 0.04 7.102 ± 0.07 1.553 
CIPspd_EtOH_20% 1.979 ± 0.04 3.753 ± 0.09 6.846 ± 0.15 1.297 
CIPspd_EtOH_30% 2.334 ± 0.13 4.317 ± 0.11 7.495 ± 0.08 1.182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on the D 0.1 and D 0.9 results. As already noted in Section
3.2 , the presence of EtOH in the stock solution results in more
swollen, even cracked particles, which was supported by the
D 0.5 results, which can be explained by the fact that water
and EtOH have different evaporation rates [33] . Although
EtOH can have a remarkably reducing effect on the surface
tension of stock solutions [69] , which has a positive effect
on atomization [70] and can result in a smaller droplet size
[71] . However, in the present case, the evaporation rate of the
solvent/solvent mixtures proves to be a more notable factor in
terms of particle size. After all, it can be clearly seen that the
lowest value was in the case of the CIPspd_EtOH_free sample
(solid, shrunken as explained in Section 3.2 ) (D 0.5 : 3.168 μm).
Samples containing EtOH in the stock solution ranged from
3.521 to 4.317. In the case of the CIPspd_EtOH_5% sample,
a slightly outstanding value can be seen in terms of D 0.5 ,
this phenomenon has already been observed by others when
applying a small amount of organic solvent during spray-
drying [33] . Then, after some decline, the D 0.5 value increased
in direct proportion to the EtOH concentration. In terms of
these results and the observations reported by Ji et al. [35] and
Belotti, et al. [33] it can be concluded that the use of an
organic solvent (even in proportions) instead of water during
spray drying does not always result in a reduction in particle
size, as previously assumed [ 71 ,72 ]. The Span values of the
samples were expressed based on Eq. (5) . The lowest value was
obtained for the CIPspd_EtOH_30% formulation, which shows
that it is less polydisperse compared to the other samples [73] .

3.4. Bulk density, tap density, Carr index and Hausner 
factor of the samples 

For DPIs, the value of 0.3 g/cm 

3 can be considered as a
limit, because experimental results prove that above this
good aerodynamic results e.g. high respirable fraction difficult
to obtain [74] . In the case of bulk density, Simon et al.
[28] mention it as a goal to be achieved during development,
and Zhou et al. [75] state for tapped density that the
formulation is suitable for pulmonary use only below this
value. In terms of results ( Table 4 ), both bulk and tapped
density values meet these reporting requirements. It is clear
that CIPspd_EtOH_free has slightly higher density values than
the others. Even a small increase in density can have a large
effect on in vitro aerodynamic properties [76] . With regard to
the Carr index and the Hausner ratio, it can be stated that
there is no remarkable difference between the values; their
flowability property should be classified into the very poor
category [77] . These are not conspicuous phenomena for DPIs,
and such CI and HF values have been reported in several
publications [ 47 ,78 ,79 ]. It is also highly dependent on the raw
active ingredient. Of course, these values can also be improved
during co-spray-drying with various excipients, but here the
aim was merely to study the ability of EtOH to influence the
habit of the samples. 

3.5. Residual water and EtOH content values 

The residual water content of the samples was between
(3.5% and 4.1%). In the case of spray-dried DPIs, for example,
values ranging from 0.24% [80] to 9.02% [33] are reported in
the literature. Thus, the values obtained can be considered
adequate. The low water content is necessary for DPI
formulations to be able to aerosolize and disperse and reach
the lungs properly [81] . For samples containing EtOH in the
stock solution, the residual EtOH content was below 0.4% in
all cases. This is appropriate as it can be a maximum of 0.5%
according to ICH Q3C(R6) guideline [82] . 

3.6. Cohesion work results 

Regarding the W c of the samples, we can see that the
value obtained for CIPspd_EtOH_free is relatively high, which
can be explained by the spherical particles with almost no
depressions on the surface (see Table 5 ). For CIPspd_EtOH_5%
and CIPspd_EtOH_10%, the W c value increased, representing
approximately the same value. The explanation for this
can also be interpreted based on the schematic diagram,
since the particles can come into contact with a larger area
due to the wavy surface and the almost identical surface
morphology (including the degree of the roughness, depth
and width of dimples). This relationship can also be found
in the publication of Lechanteur and Evrard [61] . However, for
the CIPspd_EtOH_20% and CIPspd_EtOH_30% formulations,
we see a remarkable decrease in W c , which may be explained
by the fact that the SEM images show a difference in the
morphology of the individual particles, as shown by the
higher deviation of AFM dimples, as a result of which the
connection of the particles is more difficult could result
in a decrease in interparticle interactions (W c ). Basically,
the presence of dimples is described as positive in the
literature for aerodynamic results [44] , however, they allow
greater connection for particles with the same morphology.
Thus, presumably, larger dimples (wide and deep), a slightly
different morphology per particle, and more favorable W c

values predict relatively favorable aerodynamic results for the
CIPspd_EtOH_20% and CIPspd_EtOH_30% samples. 
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Table 4 – Density values of the samples and expressions calculated from them. 

Formulations Bulk density (g/cm 

3 ) Tapped density (g/cm 

3 ) Carr index Hausner ratio 

CIPspd_EtOH_free 0.188 ± 0.02 0.294 ± 0.02 36.00 1.56 
CIPspd_EtOH_5% 0.171 ± 0.01 0.269 ± 0.03 36.37 1.57 
CIPspd_EtOH_10% 0.167 ± 0.03 0.255 ± 0.05 34.61 1.53 
CIPspd_EtOH_20% 0.172 ± 0.02 0.270 ± 0.03 36.30 1.57 
CIPspd_EtOH_30% 0.170 ± 0.01 0.264 ± 0.04 35.61 1.55 

Table 5 – Morphological properties of the samples. 

CIPspd_EtOH_free CIPspd_EtOH_5% CIPspd_EtOH_10% CIPspd_EtOH_20% CIPspd_EtOH_30% 

W c 

[mN/m] 
149.68 156.64 155.40 135.72 128.34 

Schematic 
pictures 

Table 6 – Aerodynamic properties of the formulations. 

Formulations FPF < 5 μm(%) FPF < 3 μm (%) MMAD (μm) EF (%) GSD 

CIPspd_EtOH_free 23.58 ± 0.73 9.53 ± 0.11 7.62 ± 0.13 86.26 ± 0.44 2.26 ± 0.04 
CIPspd_EtOH_5% 11.96 ± 0.16 4.85 ± 0.23 12.03 ± 0.08 89.57 ± 0.31 2.72 ± 0.11 
CIPspd_EtOH_10% 13.05 ± 0.25 5.85 ± 0.17 10.18 ± 0.16 78.13 ± 0.83 2.37 ± 0.06 
CIPspd_EtOH_20% 28.51 ± 0.43 12.27 ± 0.33 5.83 ± 0.03 75.80 ± 0.65 2.06 ± 0.01 
CIPspd_EtOH_30% 34.39 ± 0.54 15.18 ± 0.42 5.21 ± 0.11 87.12 ± 0.39 2.01 ± 0.03 
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.7. In vitro aerodynamic properties 

he in vitro inhalation test with ACI was performed at 
8.3 ± 1 l/min, which is indicated as a standard parameter 
n pharmacopoeias [58] . As a result of the testing, the FPF 
 5 μm, FPF < 3 μm, MMAD, ET and GSD values ( Table 6 ) were
xpressed based on the calculations detailed in Section 2.2.10 .
t can be clearly seen that the FPF values changed in direct 
roportion to the MMAD values. As a result, the FPF < 5 μm, FPF 
 3 μm values were remarkably lower for CIPspd_EtOH_5% and 

IPspd_EtOH_10% samples, approximately half of the results 
btained for the CIPspd_EtOH_free formulation. Compared 

o these, FPF values show a substantial improvement 
n lung deposition results at CIPspd_EtOH_20% and 

IPspd_EtOH_30%. The last one achieved the best results 
FPF < 5 μm (34.39%) and FPF < 3 μm (15.18%). In terms of 

F, the in vitro aerodynamic particle size distribution (APSD) 
esting requires this value to be between 85% and 115% 

83] . In the case of the examined microcomposites, the 
IPspd_EtOH_free, CIPspd_EtOH_5% and CIPspd_EtOH_30% 

amples met this requirement. In respect of GSD, the values 
bove 1.2 are considered polydisperse in the literature [84] .
hus, all formulations produced have a heterogeneous 
article distribution. For aerosols, GSD < 2 is desirable 

85] , however, most therapeutic aerosols have GSD values 
etween 2 and 3 [86] . Based on these, it can be said about
he formulations reported in the publication that their GSD 

alues, which are also between 2 and 3, are acceptable, but 
he most favorable value is calculated at CIPspd_EtOH_30%,
hich may be related to the fact that this sample also had 

he smallest Span value. 
An actual explanation of the aerodynamic results is given 

n Fig. 5 . The study of the habit of the particles has already
etailed how the different EtOH concentrations modify the 
 0.5 values and what morphological changes they result in,

he latter influencing the W c results. Fig. 5 . highlights the 
orrelation between the trends of W c and MMAD/D 0.5 values.
hus, it was confirmed how many times the MMAD value of 

he D 0.5 result per formulation became a function of the W c 

alues. As a result, it is understandable that the D 0.5 values 
id not correlate directly with the FPF results, however, for 
xample, the relatively low D 0.5 value (3.168 μm) and high 

 c value (149.68 mN/m) of CIPspd_EtOH_free resulted in an 

MAD of 7.62 μm (2.41 time the D 0.5 value), even in the 
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Fig. 5 – Correlation between W c and MMAD/D 0.5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

case of CIPspd_EtOH_5% a higher D 0.5 value (4.197 μm) and
also a high W c value (156.64 mN/m) were shown in the
higher MMAD result (12.03 μm). Furthermore, in the case of
CIPspd_EtOH_30%, we can see that although it has the highest
D 0.5 value (4.317 μm) of the examined formulations, due to
the substantially lower W c value (128.34 mN/m), the MMAD
result was the most favorable (only 1.21 time the D 0.5 value). To
the best of our knowledge, the above-mentioned relationship
between W c and MMAD/D 0.5 has not been reported in this
form in the international literature. From the MMAD value, the
FPF values followed in direct proportion. 

4. Conclusion 

A comprehensive study was introduced from the field
of DPI formulations containing various concentrations of
EtOH using CIP as an antibiotic agent. The results clearly
show that mainly formally different particles were produced
during the preparation process. By using water for sample
preparation and subsequently applying the spray-drying
process, (CIPspd_EtOH_free), small shrunk particles were
formed that showed a slightly higher density compared to the
samples prepared with EtOH. From the morphological point of
view, the particles were spherical without substantial surface
depressions, resulting in a high W c value. As a result, an FPF
< 5 μm of 23.58% was obtained. Using low EtOH concentrations
(5%, 10%), higher D 0.5 (the particles are already swollen)
and W c (due to their morphological properties) values were
achieved, which together resulted in a remarkable relapse
in the aerodynamic results (MMAD, FPF). The formulations
produced with 20% and 30% EtOH resulted in high D 0.5 values,
however, due to the varied morphology, substantially lower
W c values could be measured, not favouring the aggregation
of the particles, so the MMAD results and consequently the
FPF values were already more favourable. For CIP, the use of
30% EtOH in stock solution resulted in the most favourable
in vitro aerodynamic results, matching the requirements and
guideline values for DPIs. 

This study was not intended to illustrate the development
of a final DPI formulation (therefore, we did not use
solid excipients for co-spray drying), but highlighted the
influence of the composition of the solvent mixture on
the properties of carrier-free formulations prepared via
spray-drying. Therefore, differences in FPF values were
obtained in vitro aerodynamic tests, which draws attention
to the need to prioritize e.g. for the effect of the applied
solvent concentrations during the development of DPIs. The
results reported are supported for CIP, but the effect of
solvents/solvent mixtures on DPI formulations requires prior
investigation for each active ingredient. Furthermore, the
new approaches detailed in the present work, i.e. monitoring
the MMAD/D 0.5 ratio and correlating it with W c , moreover,
the expression of the roughness, depth and width of the
dimples for particle size values may be proposed for all
carrier-free DPIs, which may point to new correlations during
development. 
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