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Abstract
Undercarboxylated osteocalcin (ucOCN) has been considered to be an important endocrine factor, especially to regulate bone and energy me-
tabolism. Even with the mounting evidence showing the consistent inverse correlation of ucOCN levels in chronic inflammatory diseases, how-
ever, the mechanism underlying the involvement of ucOCN in the muscular inflammation has not been fully understood. In the present study, 
we explored 1) the endocrine role of ucOCN in the regulation of inflammation in C2C12 myoblasts and primary myoblasts and the underlying 
intracellular signaling mechanisms, and 2) whether G protein–coupled receptor family C group 6 member A (GPRC6A) is the ucOCN-sensing re-
ceptor associated with the ucOCN-mediated anti-inflammatory signaling pathway in myoblasts. ucOCN suppressed the tumor necrosis factor-α 
(TNF-α)–induced expressions of major inflammatory cytokines, including interleukin-1β (IL-1β) and inhibited the TNF-α–stimulated activities of 
transcription factors, including NF-κB, in C2C12 and primary myoblasts. Both knockdown and knockout of GPRC6A, by using siRNA or a CRISPR/
CAS9 system, respectively, did not reverse the effect of ucOCN on IL-1β expression in myoblasts. Interestingly, TNF-α–induced IL-1β expression 
was inhibited by knockdown or deletion of GPRC6A itself, regardless of the ucOCN treatment. ucOCN was rapidly internalized into the cyto-
plasmic region via caveolae-mediated endocytosis, suggesting the presence of new target proteins in the cell membrane and/or in the cyto-
plasm for interaction with ucOCN in myoblasts. Taken together, these findings indicate that ucOCN suppresses the TNF-α–induced inflammatory 
signaling pathway in myoblasts. GPRC6A is not a sensing receptor associated with the ucOCN-mediated anti-inflammatory signaling pathway 
in myoblasts.
Key Words: undercarboxylated osteocalcin, C2C12, anti-inflammation, GPRC6A, sarcopenia, IL-1β
Abbreviations: ATF2, activating transcription factor 2; BSA, bovine serum albumin; cAMP, cyclic adenosine monophosphate; DAPI, 4′,6-diamidino-2-
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interleukin-1β; IL-6, interleukin-6; NFκB, nuclear factor kappa B; OCN, osteocalcin; PBS, phosphate-buffered saline; PCR, polymerase chain reaction; ROS, re-
active oxygen species; siCON, nontargeting control small interfering RNA; siGPRC6A, small interfering RNA targeting GPRC6A; TNF-α, tumor necrosis factor-α; 
ucOCN, undercarboxylated osteocalcin.

Osteocalcin (OCN) is the most abundant noncollagenous 
protein primarily produced by osteoblasts; however, it is 
also produced in smaller amounts by odontoblasts or hyper-
trophic chondrocytes [1, 2]. Osteocalcin is a bone protein con-
taining γ-carboxyglutamic acid (Gla) with a size of 5.6 kDa 
(46 and 49 amino acids in mouse and human, respectively). 
In osteoblasts, the carboxylation process involves the add-
ition of a carboxyl group at glutamic acid (Glu) residues in 
positions 17, 21, and 24, which is completed with vitamin 
K-dependent posttranslational modifications [3]. With these 
3 γ-carboxyglutamic acid residues, osteocalcin binds to hy-
droxyapatite crystals in the bone matrix via a disulfide bond 
formed between cysteine residues [4]. Osteocalcin containing 
one or more “not carboxylated” glutamic acid residues is 

denoted as undercarboxylated osteocalcin (ucOCN) [5]. 
Approximately 40% to 60% of the total osteocalcin released 
into the circulation exists in either a partially or completely 
uncarboxylated form, which exhibits endocrine functions, 
including regulation of energy metabolism, fertilization, and 
cognitive functions [5-13].

Muscle wasting, defined as the loss of skeletal muscle 
tissue, occurs naturally under physiological conditions, such 
as aging [14]. Muscle wasting is a feature associated with 
chronic wasting syndromes, such as AIDS, cancer, and dia-
betes, and neuroinflammatory disorders such as amyotrophic 
lateral sclerosis [15]. It is an independent predictor of mor-
tality. In many such conditions, muscle wasting is associ-
ated with variable degrees of local and/or systemic chronic 
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inflammation, in particular, chronic elevations in circulating in-
flammatory cytokines, including tumor necrosis factor (TNF)-α  
[16-19]. Elevated levels of inflammatory mediators are known 
to trigger muscle wasting events. Carnio et al demonstrated 
that chronic administration of TNF-α or interleukin-1β (IL-
1β) resulted in weight loss due to skeletal muscle wasting in 
rats [20]. Studies using diabetic rat models have reported that 
muscle wasting is closely associated with increased expres-
sion of TNF-α, IL-1β, and IL-6 in skeletal muscle [21]. In a 
cross-sectional clinical study, sarcopenia in older adults is as-
sociated with increased levels of pro-inflammatory mediators 
[22, 23]. In vitro studies have demonstrated that inflammatory 
cytokines play a crucial role in the onset and development 
of muscle wasting. Ye J et al reported that TNF-α inhibited 
the expression of α-actin and myosin heavy chain in primary 
cultures of human myoblasts [24]. TNF-α administration de-
pleted myosin heavy chain in the murine skeletal muscle cell 
line C2C12 and primary cultures of rat skeletal muscle [25].

Previous studies have demonstrated that serum osteocalcin 
levels decrease with obesity or diabetes, which are associated 
with chronic inflammation [26]. In addition, low serum levels 
of ucOCN have been reported in patients with bone-related 
inflammatory diseases such as rheumatoid arthritis, osteo-
porosis, and ankylosing spondylitis [27-30]. Inspired by the 
consistent inverse correlation of ucOCN levels in chronic in-
flammatory diseases, we hypothesized that ucOCN has an-
other endocrine role in the regulation of inflammation.

G protein–coupled receptor family C group 6 member 
A (GPRC6A) was identified as the ucOCN-sensing receptor 
[31]. GPRC6A-mediated osteocalcin signaling has been dem-
onstrated in various tissues, including adipose, pancreas, 
testes, and skeletal muscle [26, 32, 33]. To probe the structural 
basis of osteocalcin binding to GPRC6A, Pi et al performed 
computational modeling experiments [34]. Predictions based 
on the modeling demonstrated the docking of the C-terminal 
hexapeptide of osteocalcin to the extracellular side of the 
transmembrane domain of GPRC6A. Thereafter, GPRC6A-
mediated osteocalcin signaling has been demonstrated in 
pancreatic β-cells [35] and pancreatic acinar cells [36]. In 
skeletal muscle, fat, and hepatic cells, GPRC6A-mediated 
osteocalcin signaling has also been proposed. Liu et al dem-
onstrated that osteocalcin induces proliferation and promotes 
differentiation via the activation of the GPRC6A-ERK1/2 
pathway in C2C12 myoblast cells [37]. White fat accumula-
tion and glucose intolerance/insulin resistance were observed 
in GPRC6A−/− mice, but not in wild-type mice [26, 32, 38-
42]. Hepatic steatosis, as well as an increase in triglycerides 
and a decrease in glycogen storage/cholesterol levels, were 
observed in GPRC6A−/− mice. Pi et al [43] and De Toni et al 
[44] reported on a GPRC6A-dependent osteocalcin signaling 
pathway in testicular Leydig cells.

This study aimed to investigate 1)  the endocrine role 
of ucOCN in the regulation of inflammation in C2C12 
myoblasts and explore the underlying intracellular signaling 
mechanisms; and 2) whether GPRC6A is the ucOCN-sensing 
receptor associated with the ucOCN-mediated anti-inflam-
matory signaling pathway in C2C12 myoblasts.

Materials and Methods
Cell Culture and Experimental Design
C2C12 cells were cultured in Dulbecco’s Modified Eagle’s 
Medium (DMEM) (Hyclone, MD, USA) supplemented with 

10% fetal bovine serum (FBS), 100 U/mL penicillin, and 
100 µg/mL streptomycin (Hyclone) at 37 °C in a humidified 
atmosphere containing 5% CO2. The cells were pretreated for 
30 minutes by adding mouse ucOCN (0.5, 5, or 50 ng/mL)  
(Bachem, CA, USA) to DMEM containing 5% FBS. 
Subsequently, the cells were incubated with TNF-α (10 ng/mL)  
(Peprotech, NJ, USA) for 8, 24, and 48 hours.

Primary myoblasts were prepared from 4 mice (C57BL/6) 
at 8 weeks of age, as previously published [45, 46]. Skeletal 
muscle from the hindlimbs was isolated for the preparation. 
Muscle tissue was torn gently into small but distinguishable 
pieces (approximately > 0.5  mm2) with sterile scissors and 
transferred into a 50 mL tube with the remaining 2 mL of the 
collagenase-dispase-CaCl2. Tissue was incubated at 37 °C up 
to 30 to 40 minutes, then moved by gently agitating the tube 
every 5 to 10 minutes. Two volumes of proliferation medium 
were added and cells were released from the muscle fiber by 
pipetting up and down several times. The muscle solution was 
filtered using a 70-μm cell strainer and the cells were cen-
trifuged and resuspended. The primary myoblast cells were 
seeded in each well of collagen-coated 6-well plates and cul-
tured in F-12 media (Ham’s F-12 Nutrient Mix), 20% FBS 
(Gibco), 10% horse serum (Gibco) at 37 °C in a humidified 
atmosphere containing 5% CO2. The 5  ×  105 seeded cells 
were pretreated for 30 minutes by adding mouse ucOCN 
(0.5, 5, or 50 ng/mL) (Bachem, CA, USA) to F-12 media con-
taining 2% FBS and 1% horse serum. Subsequently, the cells 
were incubated with TNF-α (10 ng/mL) (Peprotech, NJ, USA) 
for 8 hours.

Real-Time Polymerase Chain Reaction Analysis
Quantitative real-time polymerase chain reaction (PCR) 
was performed to evaluate mRNA expression. Total RNA 
was isolated using easy-BLUE RNA extraction reagents 
(iNtRON Biotechnology, Kyungki-Do, Korea) according to 
the manufacturer’s instructions. Complementary DNA was 
synthesized from 2.5 µg of total RNA using the AccuPower 
RT-PreMix MasterMix (Bioneer, Daejeon, Korea) under the 
following conditions: 42  °C for 60 minutes and 94  °C for 
5 minutes. The sequences were amplified with quantitative 
real-time PCR using a mixture of AccuPower 2X GreenStar 
PCR MasterMix (Bioneer) and primers and were detected 
using Step One Plus Real-Time PCR System (Thermo Fisher 
Scientific, MA, USA) and then analyzed. The sequences of 
PCR primers used for real-time PCR analysis are provided in 
supplementary data (Supplemental Table 1) [47]. The target 
gene expressions were normalized using GAPDH expression.

Western Blot Analysis
The cells were washed with phosphate-buffered saline (PBS) 
and scraped using PRO-PREP Protein Extraction Solution 
(iNtRON Biotechnology). The amount of each sample was 
measured using the Bradford reagent (Sigma-Aldrich) and by 
measuring absorbance at 540  nm using a microplate spec-
trophotometer (BioTek, VT, USA) based on bovine serum al-
bumin (BSA). A  standard curve was obtained based on the 
serial dilutions of BSA. Equal amounts of protein were sub-
jected to SDS-PAGE and subsequently electro-transferred 
onto a nitrocellulose membrane. The membranes were 
washed with 1× Tris-buffered saline containing 0.1% Tween 
20 (1× TBST). The membranes were blocked with 5% 
nonfat dry milk for 1 hour and incubated for 3 hours at 
4 ℃ with 1:1000 diluted anti-IL-1β (SC-520125, Santa Cruz 
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Biotechnology, TX, USA, RRID:AB_629741), anti-IL-6 (SC-
130326, Santa Cruz Biotechnology, RRID:AB_2127596), 
anti-ERK (9102S,Cell Signaling Technology, MA, USA, 
RRID:AB_330744), anti-phospho-ERK (9101S, Cell Signaling 
Technology, RRID:AB_331646), anti-JNK (9252S, Cell 
Signaling Technology, RRID:AB_2250373), anti-phospho-
JNK (9251S, Cell Signaling Technology, RRID:AB_331659), 
anti-p38 MAPK (9212S, Cell Signaling Technology, 
RRID:AB_330713), anti-phospho-p38 MAPK (9211S, Cell 
Signaling Technology, RRID:AB_331641), anti-p65 NF-κB 
(SC-8008, Santa Cruz Biotechnology, RRID:AB_628017), 
and anti-phospho-p65 NF-κB (SC-136548, Santa Cruz 
Biotechnology, RRID:AB_10610391), anti-GPRC6A (SC-
67302, Santa Cruz Biotechnology, RRID:AB_2114007), anti-
Elk-1 (9182S, Cell Signaling Technology, RRID:AB_2277936), 
anti-phospho-Elk-1 (9186S, Cell Signaling Technology, 
RRID:AB_2277933), anti-c-Jun (SC-166540, Santa Cruz 
Biotechnology, RRID:AB_2280720), anti-phospho-c-Jun 
(3270S, Cell Signaling Technology, RRID:AB_2129575), 
anti-ATF2 (35031S, Cell Signaling Technology, 
RRID:AB_2799069), anti-phospho-ATF2 (SC-8398, Santa 
Cruz Biotechnology, RRID:AB_626709), or anti-β-actin-HRP 
(SC-8432, Santa Cruz Biotechnology, RRID:AB_6266030) 
antibodies. This was followed by incubation with horse-
radish peroxidase (HRP)-conjugated secondary antibody for 
1 hour at room temperature. β-Actin was used as a loading 
control. The membranes were washed with 1× Tris-buffered 
saline containing 0.1% Tween 20. Protein bands were visual-
ized using Luminata Forte (Millipore, MA, USA) and detected 
with a ChemiDoc (Bio-Rad, CA, USA). The reproducibility of 
the results was confirmed after repeating at least 3 times, and 
the results of 1 experiment are presented.

Cell Fractionation
Cytoplasmic membrane and nuclear fractions were separ-
ated and extracted using a subcellular protein fractionation 
kit for cultured cells (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. The same amount of protein 
extracted from each site was analyzed by Western blot using 
an anti-ucOCN antibody (Enzo Life Sciences, NY, USA, 
RRID:AB_2064899).

To analyze the anti-Ikkα/β (SC-166231, Santa Cruz 
Biotechnology, RRID:AB_2260487), anti-phospho-Ikkα/β 
(2694S, Cell Signaling Technology, RRID:AB_2122296), anti-
IκB (9242S, Cell Signaling Technology, RRID:AB_331623), 
anti-phospho-IκB (2859S, Cell Signaling Technology, 
RRID:AB_561111), anti-p65 NF-κB (SC-8008, Santa 
Cruz Biotechnology, RRID:AB_628017), and anti-
phospho-p65 NF-κB (SC-136548, Santa Cruz Biotechnology, 
RRID:AB_10610391), cytoplasmic and nuclear fractions 
were extracted from the cells using the NE-PER nuclear and 
cytoplasmic extraction reagents (Thermo Fisher Scientific).

Detection of Intracellular Reactive Oxygen Species
C2C12 cells were seeded in 12-well culture plates at a density of 
1 × 105 cells per well. After 24 hours, the cells were pretreated 
with 0.5  ng/mL ucOCN for 30 minutes and then treated 
with 10 ng/mL TNF-α. After 8 hours of exposure, CellROX 
Orange reagent (Invitrogen) was added to a final concentra-
tion of 5 µM for 30 minutes. Nuclear counterstaining was per-
formed with NucBlue Live ReadyProbes reagent (Invitrogen), 
according to the manufacturer’s instructions. The samples 

were examined using an Axio Imager.A2 microscope (Zeiss, 
Oberkochen, Germany). Fluorescence signals were visual-
ized with EVOS FL Auto Imaging System (Thermo Fisher 
Scientific).

Immunocytochemistry
C2C12 cells were grown on sterile cover glasses placed in 
24-well culture plates and treated with 0.5 ng/mL of ucOCN 
for 0, 1, 5, 10 and 15 minutes. The cover glass was washed 
thrice with PBS and fixed with 3.7% formaldehyde for 15 
minutes at room temperature. Cells were treated with PBS 
containing 0.1% Triton X-100 for 5 minutes. Nonspecific 
binding sites were blocked with 3% BSA in PBS for 1 hour 
at room temperature. The cells were incubated with an anti-
ucOCN antibody (Enzo Life Sciences, RRID:AB_2064899) 
diluted 1:500 in 1% BSA for overnight at 4  °C. The cells 
were subsequently incubated for 90 minutes with an Alexa 
Fluor 488-conjugated goat anti-mouse IgG H&L anti-
body (Abcam, Cambridge, UK, RRID:AB_2576208) diluted 
1:1000 in 1% BSA at room temperature. Cell nuclei were 
stained with 4′,6-diamidino-2-phenylindole (DAPI) solution 
(Enzo Life Sciences) and ucOCN-stained signal was analyzed 
by confocal microscopy. To identify the ucOCN endocytosis 
pathway, C2C12 cells were incubated with 200 μM genistein 
(caveolae-mediated endocytosis inhibitor) or 20 μM Pitstop2 
(clathrin-mediated endocytosis inhibitor) for 15 minutes 
and then treated with 0.5  ng/mL ucOCN for 15 minutes. 
Immunocytochemical analysis was used for ucOCN local-
ization. To confirm the colocalization of internalized ucOCN 
with caveola, C2C12 cells were grown on sterile cover glasses 
placed in 24-well culture dishes for 16 hours, washed with 
PBS, incubated with DMEM containing 0.1% FBS for 16 
hours, and treated with 0.5 ng/mL of ucOCN for 15 minutes. 
Subcellular localization of ucOCN and Cav-1 (3267S, Cell 
Signaling Technology, RRID:AB_2275453) were analyzed by 
confocal microscopy.

RNA Interference of GPRC6A
siGENOME smartpool mouse GPRC6A siRNA and 
nontargeting control siRNA were purchased from Santa 
Cruz Biotechnology. C2C12 cells were transfected using 
Lipofectamine 2000 (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. C2C12 cells were transfected 
with siRNA targeting GPRC6A (siGPRC6A) or nontargeting 
control siRNA (siCON). C2C12 cells transfected with siCON 
or siGPRC6A were incubated with TNF-α (10 ng/mL) and/or 
ucOCN (0.5 ng/mL) for 8 hours.

GPRC6A Knockout by CRISPR/CAS9 System
To generate the plasmid containing a single guide RNA that 
targets the GPRC6A locus, a pair of oligos (5′-CACCGAAA
CATCCATCGCGGTCTCA-3′ and 5′-AAACTGAGACCGC
GATGGATGTTTC-3′) were annealed and then inserted into 
a BsmBI–digested lentiCRISPRv2 vector. The lentiCRISPRv2 
was a gift from Feng Zhang (Addgene plasmid # 52961; 
http://n2t.net/addgene:52961; RRID: Addgene_52961) [48]. 
To generate GPRC6A-deficient C2C12 cells, the plasmid 
targeting GPRC6A was transfected into C2C12 cells by using 
Lipofectamine 3000 (Thermo Fisher Scientific) according to 
the manufacturer’s instructions. To generate control cells, 
a lentiCRISPRv2 plasmid targeting GFP was introduced to 
the C2C12 cells. To select control and GPRC6A-deficient 
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C2C12 cells, 2  µg/mL puromycin was added at 48 hours 
posttransfection. GPRC6A deficiency was confirmed with 
immunoblotting.

Luciferase Reporter Assays
HEK 293 cells were seeded in a 96-well plate at a density 
of 1 × 104 cells/well and transiently transfected with the re-
porter plasmids using Lipofectamine 2000 (Thermo Fisher 
Scientific). During each transfection, 0.01 µg of the expression 
vector (p65 NF-κB or pGL3) and 0.01 µg Renilla luciferase 
plasmid were used as indicated. After 24 hours, the cells were 
harvested, and luciferase activity was measured using the 
Dual-Luciferase Reporter Assay System (Promega, WI, USA) 
according to the manufacturer’s instructions. The relative 
luciferase activity was calculated after normalizing the trans-
fection efficiency by Renilla luciferase activity.

Statistical Analysis
Statistical significance was determined using Student’s t 
test. For the multiple comparisons, one-way ANOVA was 
performed. In those cases where a significant interaction 
(P < 0.05) was detected, the appropriate post hoc least sig-
nificant difference (LSD) test was performed. Differences or 
changes were considered significant at P < 0.05. Data were 
analyzed by using the SAS program.

Results
ucOCN Mitigates the Expression of TNF-α–induced 
IL-1β in C2C12 Cells
To examine whether ucOCN regulates the expression of TNF-
α-induced inflammatory factors, C2C12 cells were pretreated 
with ucOCN (0.5, 5, or 50 ng/mL) for 30 minutes, followed 
by treatment with TNF-α (10 ng/mL) for 8, 24, and 48 hours. 
C2C12 cells treated with TNF-α for 8, 24, and 48 hours dem-
onstrated significantly increased IL-1β expression at both the 
mRNA and protein levels. TNF-α–induced IL-1β expression 
was significantly decreased upon treatment with 0.5, 5, and 
50 ng/mL ucOCN at both the mRNA and protein levels (Fig. 
1). At 24 hours, TNF-α–induced IL-1β expression was signifi-
cantly increased by treatment with 50 ng/mL ucOCN tempor-
arily; however, this increase was suppressed at 48 hours. In 
addition, the expression of IL-6, COX, and TNF-α was also 
analyzed. Although the level of expression and expression time 
point varies, ucOCN also demonstrated a downregulation of 
the expression of these genes (Supplemental Figure 1)  [47]. 
The ucOCN treatment alone did not induce any regulating 
effect on IL-1β expression at 8 or 24 hours in C2C12 cells 
(Supplemental Figure 2) [47].

Subsequent experiments were conducted focusing on 
IL-1β, whose expression was most inhibited, and the expres-
sion inhibition was maintained consistently by ucOCN. These 
results suggest that ucOCN significantly mitigated the expres-
sion of TNF-α–induced inflammatory cytokines.

We also examined whether ucOCN regulates the expres-
sion of TNF-α–induced inflammatory factors in primary 
myoblasts. Primary Myoblasts were pretreated with ucOCN 
(0.5, 5, or 50 ng/mL) for 30 minutes, followed by treatment 
with TNF-α (10  ng/mL) for 8 hours. Primary myoblasts 
treated with TNF-α for 8 hours demonstrated significantly 
increased IL-1β expression at both the mRNA and protein 
levels. TNF-α–induced IL-1β expression was significantly 

decreased upon treatment with 0.5, 5, and 50 ng/mL ucOCN 
at both the mRNA and protein levels (Fig. 1J- 1K).

In addition, we compared the effect of carboxylated 
osteocalcin (OCN) and ucOCN on TNF-α induced IL-1β 
expressions in C2C12. The OCN did not exhibit regula-
tory effects on TNF-α–induced IL-1β expression in C2C12 
(Supplemental Figure 3) [47].

ucOCN Inhibits the Phosphorylation of TNF-α–
Mediated Transcription Factors in C2C12 Cells
We then explored whether the effect of ucOCN on pro-
inflammatory cytokine expression was mediated via the 
inhibition of the nuclear factor kappa B (NFκB) pathway. 
In the canonical NFκB activation pathway, a cytoplasmic 
IKKα/β complex is phosphorylated, thereby leading to IκB 
phosphorylation and degradation and subsequent nuclear 
translocation of NFκB. TNF-α-stimulated C2C12 cells dem-
onstrated enhanced phosphorylation of p65 NF-κB, which 
was markedly inhibited by treatment with ucOCN at 1, 
10, and 30 minutes (Fig. 2A). TNF-α-stimulated primary 
myoblasts also demonstrated enhanced phosphorylation of 
p65 NF-κB, which was markedly inhibited by treatment with 
ucOCN (Supplemental Figure 4)  [47]. In addition, the ex-
pression of phosphorylated p65 NF-κB increased by TNF-α 
stimulation in cytoplasmic and nuclear fractions was inves-
tigated during ucOCN treatment. TNF-α–stimulated C2C12 
cells demonstrated nuclear translocation and the phosphor-
ylation of p65 NFκB, which was markedly inhibited by treat-
ment with ucOCN at 3 and 30 minutes (Fig. 2B). We used 
the luciferase reporter assay to investigate whether ucOCN 
treatment transactivates the p65 NF-κB promoter. The re-
sults showed that TNF-α–induced transcriptional activation 
of p65 NF-κB was blocked by a dose-dependent increase in 
ucOCN (Fig. 2C).

Additionally, the phosphorylation of ERK, p38 MAPK, 
and JNK, as well as the phosphorylation of Elk-1, ATF2, 
and c-Jun, which are pivotal mediators of the ERK, p38 
MAPK, and JNK signaling pathways, respectively, were in-
vestigated. As shown in Fig. 3, among the MAPKs signaling 
pathways, p38 MAPK activation was the most prominently 
suppressed by ucOCN treatment (Fig. 3A-3C). The phos-
phorylation of p38 MAPK by TNF-α stimulation was re-
duced by ucOCN treatment at 1 and 10 minutes (Fig. 3B). 
ERK activation by ucOCN treatment was mostly observed 
only at 1 minute (Fig. 3A-3C). The phosphorylation of Elk-1, 
ATF2, and c-Jun transcription factors was also investigated 
(Supplemental Figure 5) [47]. The results of this study sug-
gest that ucOCN downregulates IL-1β expression via the 
inhibition of the TNF-α–mediated downstream signaling 
pathway in C2C12 cells.

ucOCN Mitigates the TNF-α–Induced Production of 
Reactive Oxygen Species
TNF-α not only mediates the inflammatory response by regu-
lating associated signaling pathways, including MAPK and 
NF-κB, but also functions as a regulator of the generation of 
reactive oxygen species (ROS), which may result in a vicious 
cycle, with aggravation of the inflammatory response. Thus, 
we investigated whether ucOCN regulates TNF-α–induced 
ROS production.

As shown in Fig. 4, TNF-α treatment enhanced ROS pro-
duction, which was inhibited by ucOCN (Fig. 4).
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GPRC6A Does Not Mediate ucOCN Signal in C2C12 
Cells During the Regulation of Inflammation
Next, we performed experiments to verify a receptor trans-
ducing OCN signaling that mediates anti-inflammatory 
signaling in C2C12 cells. GPRC6A, a G-protein–coupled re-
ceptor, has been demonstrated as an osteocalcin-sensing re-
ceptor in various tissues [31-33, 49]. To determine whether 

this receptor plays a role in myoblast cell biology, we first 
tested GPRC6A expression in C2C12 cells. As shown in Fig. 
5A, GPRC6A is expressed in C2C12 cells. GPRC6A expres-
sion is relatively high in skeletal tissue [41]. To further verify 
the role of GPRC6A in mediating OCN signaling, we knocked 
down GPRC6A expression in C2C12 cells using siRNA. 
GPRC6A levels were efficiently reduced by GPRC6A-specific 
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Figure 1. ucOCN mitigates the expression of TNF-α-induced IL-1β in C2C12 cells. C2C12 cells were pretreated with ucOCN (0.5, 5, or 50 ng/mL) for 
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siRNA. However, the knockdown of GPRC6A did not reverse 
the anti-inflammatory effect of ucOCN on IL-1β expression 
at either the mRNA or protein level (Fig. 5B and C).

CRISPR/CAS9-mediated deletion of GPRC6A in C2C12 
showed the same result. We performed GPRC6A gene editing 
using the CRISPR/Cas9 system in order to knockout GPRC6A 
expression in C2C12 (Fig. 6A). To confirm the efficiency of 
intracellular GPRC6A receptor knockout, Western blot ana-
lysis was performed using an anti-GPRC6A antibody (Fig. 
6B). The deletion of GPRC6A did not reverse the anti-inflam-
matory effect of ucOCN on IL-1β expression at either the 

mRNA or protein level (Fig. 6C). These data suggest that the 
GPRC6A receptor does not transduce the OCN signal during 
inflammatory signaling in C2C12 cells (Fig. 6A). Interestingly, 
GPRC6A itself seemed to regulate TNF-α–induced IL-1β 
expression, regardless of the treatment with ucOCN. TNF-
α–induced IL-1β expression was inhibited by knockdown 
or deletion of GPRC6A itself (Figs. 5B-5C and 6C).  
The anti-inflammatory effect of ucOCN was not significantly 
affected by the presence of GPRC6A, as observed when com-
paring the results in GPRC knockdown only or knockout 
only group and GPRC knockdown or knockout with ucOCN 
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Figure 2. ucOCN inhibits the phosphorylation of TNF-α-mediated transcription factors. (A) C2C12 cells were treated with 10 ng/mL TNF-α and/or  
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treatment group. Taken together, the GPRC6A receptor pre-
sent in the C2C12 cells is not involved in the role of ucOCN-
mediated inflammation regulation.

ucOCN Is Localized to the Cytoplasmic Region in 
C2C12 Cells
We investigated the subcellular localization of ucOCN protein 
over time in C2C12 cells using an anti-ucOCN antibody. As 
shown in Figs. 7A and 7B, ucOCN cytoplasmic localization 
started at 5 minutes after ucOCN treatment and was main-
tained by 15 minutes. Cells were incubated with genistein 
(caveolae-mediated endocytosis inhibitor) or Pitstop2 
(clathrin-mediated endocytosis inhibitor) for 15 minutes to 
identify the ucOCN endocytosis pathway. As shown in Fig. 
7C, Pitstop2 pretreated cells were localized inside the cyto-
plasm, which is the same as untreated cells. However, the 
ucOCN cytoplasmic localization was obviously inhibited by 
genistein. Colocalization of caveolae and ucOCN were ob-
served under the stimulation of ucOCN treatment (Fig. 7D).

These results suggest that ucOCN was internalized and 
acted as an anti-inflammatory regulator when present in the 
cytoplasmic region. In addition, data indicate that ucOCN 
cytoplasmic localization is involved with caveolae-mediated 
endocytosis and is independent of the clathrin-mediated 
endocytic pathway.

Discussion
Our primary hypotheses that undercarboxylated osteocalcin 
(ucOCN) suppresses TNF-α-induced inflammatory responses 
and that GPRC6A mediates this inflammation regulatory 
function of ucOCN were set based on the following rea-
soning: 1) several clinical and animal studies show an inverse 
relationship between the serum level of ucOCN and chronic 
inflammation [26-30, 50, 51]; 2) GPRC6A is mainly expressed 

in myocytes; and 3) GPRC6A-mediated ucOCN signaling has 
been demonstrated in skeletal muscles as well as adipose, pan-
creas, and testes [52-54]

We demonstrated that ucOCN inhibits TNF-α–induced ex-
pression of pro-inflammatory cytokines, including IL-1β, in 
an NFκB-and MAPK-dependent manner in myoblasts. Our 
data revealed that GPRC6A is not the receptor that transduces 
OCN signaling that mediates anti-inflammatory signaling in 
C2C12 cells. To our knowledge, this is the first study to dem-
onstrate the regulatory role of osteocalcin in the inflamma-
tory response in myoblastic cells and investigating the sensing 
receptor that transduces OCN signaling during inflammatory 
signaling in C2C12 cells.

In the present study, we explored the intracellular 
anti-inflammatory signaling mechanisms of ucOCN in TNF- 
α-stimulated C2C12 cells. ucOCN suppressed the activ-
ities of multiple TNF-α-stimulated transcriptional effectors, 
including NF-κB and MAPKs such as p38.

In C2C12 cells, TNF-α–induced increase in IL-1β expres-
sion was significantly mitigated by ucOCN (Fig. 1). Upon 
stimulation by inflammatory cytokines such as TNF-α, the 
NF-κB signaling pathway is activated [55]. Therefore, as a 
result of confirming the p65 NF-κB pathway in the cyto-
plasmic and nuclear site, it was determined that ucOCN 
inhibits nuclear translocation of p65 NF-κB (Fig. 2). Elk-1 
is a downstream transcription factor that is activated by 
ERK-dependent phosphorylation and causes transcriptional 
activation of target genes in the nucleus [56]. p38 MAPK 
activates its downstream effector, the activating transcrip-
tion factor 2 (ATF2). ATF2 transcriptional activity can be 
regulated in response to various stimuli, such as genotoxic 
agents, serum, and ionizing radiation, via phosphorylation 
of Thr69 and Thr71 residues by p38 MAPK and JNK [57, 
58]. Activation of JNK induces the phosphorylation of c-Jun 
at residues Ser63 and Ser73 and inhibits ubiquitination and 
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Figure 3. ucOCN inhibits the phosphorylation of TNF-α–mediated transcription factors. (A-C) C2C12 cells were treated with 10 ng/mL TNF-α and/or 
0.5 ng/mL ucOCN for 1, 10, and 30 minutes. The extracted whole lysate was subjected to Western blot and analyzed using the anti-ERK antibody, anti-
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stripped and re-probed to visualize different proteins. (D) Quantification of the Western blot bands.
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degradation of c-Jun [59-62]. As shown in Fig. 3, ucOCN 
blocked ERK, MAPK, and JNK phosphorylation: among the 
MAPK signaling pathways, p38 MAPK activation was most 
prominently suppressed by ucOCN treatment (Fig 3). ucOCN 
also blocked the phosphorylation of Elk-1, ATF2, and c-Jun 
that mediate their anti-inflammatory effects. Although the 
ERK, p38, JNK, and NF-κB signals were partially regulated 
by ucOCN, further studies are needed to determine the time 
difference required for the regulation of each inflammatory 
factor or the degree of suppression.

Accumulating studies have demonstrated the osteocalcin 
signaling pathway and its transcriptional effector in 
various cell types. Zhou et  al reported the p65-NFκB-
dependent osteocalcin signaling pathway in vascular tissues, 

demonstrating that osteocalcin reverses obesity-induced 
endoplasmic reticulum stress and autophagic dysfunc-
tion [63]. The ERK (Gq pathway)-dependent osteocalcin 
signaling pathway was implicated in a GPRC6A trans-
fected HEK 293 study conducted by Pi et  al [64]. In con-
trast, Jacobsen et al showed that osteocalcin does not induce 
the activation of the ERK signaling pathway or any of the 
other G-protein signaling pathways that were tested in the 
GPRC6A-transfected Chinese hamster ovary cell line [65]. 
The Karsenty group has reported that osteocalcin does not 
induce the activation of the ERK pathway in TM3 Leydig 
cells. Rather, they showed that osteocalcin leads to cyclic 
AMP (cAMP) accumulation (Gs coupling) in TM3 Leydig 
cells [66]. The Quarles group also reported that 4 GPRC6A 
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agonists (osteocalcin, testosterone, L-arginine, and divalent 
cations) can induce G coupling by showing cAMP accumu-
lation in GPRC6A-transfected HEK 293 cells [49, 67]. Our 
laboratory [36] demonstrated that ucOCN downregulates 
pancreatic lipase expression in a cAMP/PKA/ATF4- de-
pendent pathway, indicating Gs coupling in pancreatic acinar 
cells. In myofibers, the CREB pathway has been reported as a 
mediator of osteocalcin signaling: CREB phosphorylation in 
myotubes is weaker after exercise, which was demonstrated 
using muscle-specific GPRC6A knockout mice [68]. In the 
present study, we demonstrated that ucOCN simultaneously 
remarkably inhibited the activities of TNF-α-stimulated mul-
tiple inflammatory regulators, including NF-κB, MAPKs such 
as JNK, p38, and ERK. Furthermore, ucOCN significantly 
suppressed ROS production, which implies that it may play 
a role in cellular antioxidant defense. These observations es-
tablish that osteoblasts and muscle cells are closely connected 
in various ways to regulate inflammatory reactions. Although 
ucOCN can exert effects on multiple pathways, the direct tar-
gets of ucOCN should be explored further in the future. In 
the present study, we explored the intracellular anti-inflam-
matory signaling mechanisms of OCN in conjunction with 

the TNF-α-induced signaling pathway in C2C12 cells. Thus, 
further studies are also needed to explore the direct targets of 
ucOCN, regardless of TNF-α stimulation.

Interestingly, TNF-α–induced IL-1β expression was signifi-
cantly increased by treatment with 50 ng/mL ucOCN tem-
porarily at 24 hours; however, this increase was suppressed 
at 48 hours (Fig 1). We conducted this experiment several 
times to confirm the reproducibility and the aspect of high 
ucOCN (50 ng) regulation on lL-1β mRNA expression at 24 
hours seemed somewhat inconsistent. In most of the data, 
TNF-α–induced IL-1β mRNA expression was significantly 
suppressed with ucOCN 50 ng treatment, as shown in 8-hour 
and 48-hour time points, but sometimes an expression incre-
ment (or no suppression) was observed (25% out of total ex-
periment cases to test reproducibility). It is conjectured that 
high concentration (50  ng) ucOCN does show oscillation 
in regulating TNF-α–induced IL-1  β mRNA expression in 
C2C12 cells.

Our results showed that ucOCN suppressed TNF-α–in-
duced pro-inflammatory cytokine expressions. However, 
both knockdown and knockout of GPRC6A receptor did 
not reverse the anti-inflammatory effect of ucOCN on IL-1β 
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expression at either the mRNA or protein level, suggesting 
that the GPRC6A receptor present in the C2C12 cells is not 
involved in the role of ucOCN-induced inflammation regula-
tion. In addition, as shown in Fig. 7, ucOCN localized to the 
cytoplasm in caveolae-mediated endocytic pathway. These re-
sults suggest that ucOCN was internalized in an intact form 
or as a bound form and also propose the possibility of the 
presence of new target proteins in the cell membranes and/or 
in the cytoplasm for interaction with ucOCN in C2C12 cells.

The endocrine paradigm implying that OCN activates a 
widely expressed G protein–coupled receptor, GPRC6A to 
exert its endocrine function is supported by recent reports 
[34]. Although class  C GPCRs, also called “nutrient recep-
tors,” are activated by numerous ligands, some studies do not 
show consistency in osteocalcin activation by class C GPCRs, 
including GPRC6A. In Chinese hamster ovary (CHO) cells, 
osteocalcin did not activate the GPRC6A-mediated signaling 
pathway [65]. Jacobsen et  al demonstrated the internaliza-
tion and constitutive recycling of GPRC6A in CHO cells; 
however, these events were not directly associated with the 
ligand-mediated signaling pathway. In addition, Oury et  al 
[66] reported that osteocalcin signaling is not specifically me-
diated by GPRC6A in Leydig cells. Importantly, previous re-
sults obtained with GPRC6A-deficient mouse models are not 
consistent with respect to GPRC6A mediated signaling in glu-
cose homeostasis [32, 69]. In addition to GPRC6A, an orphan 
class C G protein–coupled receptor (GPCR) Gpr158, which 
is expressed in the neurons of the hippocampal CA3 region, 
has been introduced as another osteocalcin-sensing receptor. 
Khrimian et al [70] reported that Gpr158 mediates ucOCN-
based regulation of cognitive function and memory. We also 
conducted studies to identify the ucOCN binding target 
protein concerning anti-inflammatory effect in myoblasts 
using biotin tag and liquid chromatography–tandem mass 
spectrometry (LC-MS/MS) methodology and found that 
GPR158 also is not an ucOCN-sensing receptor in myoblast 
(data not shown here). Further studies are required to iden-
tify additional osteocalcin-sensing receptors recognized by 
various cell types.

Interestingly, GPRC6A itself seems to regulate TNF-α–in-
duced IL-1β expression, regardless of ucOCN treatment. TNF-
α–induced IL-1β expression was inhibited by knockdown or 
deletion of GPRC6A.

Quandt et al have reported a significant decrease in Alum-
induced IL-1β expression in GPRC6A−/− mice, suggesting that 
GPRC6A itself may mediate inflammatory signaling. However, 
the levels of IL-6 and TNF-α were not significantly affected, as 
demonstrated by ELISA [71]. Rossol et al demonstrated that 
extracellular Ca2+ acts as a signal that activates the NLRP3 
inflammasome via GPRC6A. They also showed that under in 
vivo conditions, increased calcium concentrations can amplify 
the inflammatory response in a mouse model of carrageenan-
induced footpad swelling. This effect was inhibited in 
GPRC6A−/− mice [72]. In the present study, the increase in TNF-
α induced IL-1β expression was observed in the siGPRC6A 
group; however, the increment was not as high as that in the 
siCON group (5.8-fold vs 25.5-fold) (Fig. 5B). Moreover, in 
the group with GPRC6A receptor deficiency or deletion, a sig-
nificant increase in TNF-α–induced IL-1β expression was not 
detected at the protein level. Since ucOCN (0.5 ng/mL) reduced 
the TNF-α-induced IL-1β expression to the control group 
baseline level, we could not confirm the additive or synergistic 
effect of GPRC6A in the ucOCN treatment group (Figs. 5C 

and 6C). Beyond our results showing that GPRC6A is not the 
ucOCN-sensing receptor with respect to the ucOCN-mediated 
anti-inflammatory signaling pathway in C2C12 cells, further 
studies investigating the role of GPRA6A itself as an inflam-
matory mediator and the inhibition of GPRC6A as another 
anti-inflammatory mechanism is justified.

Besides the endocrine role of OCN in regulating glucose 
and energy metabolism and male fertility, ucOCN signaling 
also correlates with cognitive function and anxiety regula-
tion in the brain. Previous studies have shown that ucOCN−/− 
adult mice frequently show a spatial cognitive decline, 
memory deficits, and anxiety behavior. The hippocampal 
area is smaller and the corpus islet area is often missing in 
ucOCN−/− adult mice. In addition, the acquisition of cogni-
tive function and brain development of offspring is affected 
by maternal ucOCN [53, 54]. In ucOCN−/− mice, reduced ac-
cumulation of dopamine, norepinephrine, and serotonin and 
increased accumulation of γ-aminobutyric acid have been 
observed in both the midbrain and brainstem [52]. With re-
spect to ucOCN-mediated regulation of glucose and energy 
metabolism in muscles, Mera et  al reported that chronic-
ally administered ucOCN improves the exercise capacity 
of young mice (3-month-old mice) and restores the exer-
cise capacity in older mice (15-month-old mice) compared 
with that of young mice [68]. These results demonstrate that 
ucOCN plays a role in the muscle fibers, promoting the up-
take and utilization of glucose and fatty acids, which con-
tribute to muscle adaptation during exercise. Beyond this 
regulatory role in muscle energy metabolism, our study pro-
vides insights into the role of ucOCN in the inflammatory 
response in myoblastic cells.

In summary, circulating ucOCN suppressed inflammatory 
factor expression via the inhibition of the TNF-α–mediated 
downstream signaling pathway. GPRC6A did not mediate 
the ucOCN inflammation-regulating signaling pathway in 
C2C12 cells. This result is indicative of another endocrine 
and physiological role of the skeletal system. The results of 
the present study could be applied for the development of 
novel, bio-derived molecule-based drugs that mitigate the ex-
pression of various musculoskeletal inflammatory factors.
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