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Explaining a series of models by propagating
Shapley values
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Local feature attribution methods are increasingly used to explain complex machine learning
models. However, current methods are limited because they are extremely expensive to
compute or are not capable of explaining a distributed series of models where each model is
owned by a separate institution. The latter is particularly important because it often arises in
finance where explanations are mandated. Here, we present Generalized DeepSHAP (G-
DeepSHAP), a tractable method to propagate local feature attributions through complex
series of models based on a connection to the Shapley value. We evaluate G-DeepSHAP
across biological, health, and financial datasets to show that it provides equally salient
explanations an order of magnitude faster than existing model-agnostic attribution techni-
ques and demonstrate its use in an important distributed series of models setting.
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ith the widespread adoption of machine learning

(ML), a series of models (ie., where the outputs of

predictive models are used as inputs to separate pre-
dictive models) are increasingly common. Examples include
stacked generalization, a widely used technique!~* to improve
generalization performance by ensembling the predictions of
many models (called base-learners) using another model (called a
meta-learner)®, neural network feature extraction, where models
are trained on features extracted using neural networks®’, typi-
cally for structured data®-10, and consumer scores, where pre-
dictive models that describe a specific behavior (e.g., credit
scores!!) are used as inputs to downstream predictive models. For
example, a bank may use a model to predict customers’ loan
eligibility on the basis of their bank statements and their credit
score, which itself is often a predictive model!2.

Explaining a series of models is crucial for debugging and
building trust, even more so because a series of models is inher-
ently harder to explain compared to a single model. One popular
paradigm for explaining models are local feature attributions,
which explain why a model makes a prediction for a single sample
(known as the explicand'3). Existing model-agnostic local feature
attribution methods (e.g., IME!4, LIME!3, KernelSHAP!%) work
regardless of the specific model being explained. They can explain
a series of models, but suffer from two distinct shortcomings: (1)
their sampling-based estimates of feature importance are inher-
ently variable, and (2) they have a high computational cost which
may not be tractable for large pipelines. Alternatively, model-
specific local feature attribution methods (i.e., attribution methods
that work for specific types of models) are often much faster than
model-agnostic approaches, but generally cannot be used to
explain a series of models. Examples include those for (1) deep
models (e.g., DeepLIFT!7, Integrated Gradients!'®) and (2) tree
models (e.g., Gain/Gini Importance!?, TreeSHAP20),

In this paper, we present Generalized DeepSHAP (G-Deep-
SHAP)—a local feature attribution method that is faster than
model-agnostic methods and can explain complex series of
models that preexisting model-specific methods cannot.
G-DeepSHAP is based on connections to the Shapley value, a
concept from game theory that satisfies many desirable axioms.
We make several important contributions:

e We propose a theoretical framework (Methods section Con-
necting DeepLIFT’s rules to the Shapley values) that
connects the rules introduced in ref. 17 to the Shapley value
with an interventional conditional expectation set function
(with a flat causal graph; i.e, a causal graph where arrows
are only drawn between input variables and the output)
(ICE Shapley value) (Methods section The Shapley value).

e We show that the ICE Shapley value decomposes into an
average over single baseline attributions (Methods section
Interventional Shapley values baseline distribution), where
a single baseline attribution explains the model for a single
sample (explicand) by comparing it to a single sample
(baseline).

e We propose a generalized rescale rule to explain a complex
series of models by propagating attributions while enfor-
cing efficiency at each layer (Fig. 1b, Methods section A
generalized rescale rule to explain a series of models). This
framework extends DeepSHAP to explain any series of
models composed of linear, deep, and tree models.

e We propose a group rescale rule to propagate local feature
attributions to groups of features (Methods section Explain-
ing groups of input features). We show that these group
attributions better explain models with many features.

Many feature attribution methods must define the absence of a
feature, often by masking features according to a single baseline

sample (single baseline attribution)!31718, In contrast, we show
that under certain assumptions, the correct approach is to use
many baseline samples instead (Supplementary Method Sec-
tion 1.5.3). Qualitatively, we show that using many baselines
avoids bias that can be introduced by single baseline attributions
(section Baseline distributions avoid bias). Additionally, we show
that the choice of baseline samples is a useful parameter which
changes the question answered by the attributions (Fig. 1c, sec-
tion Natural scientific questions with baseline distributions).

We qualitatively and quantitatively evaluate G-DeepSHAP in
real-world datasets including biological, health, image, and
financial datasets. In the biological datasets21-24, we qualitatively
assess group feature attributions based on gene sets identified in
prior literature (section Group attributions identify meaningful
gene sets). In the health, image, and financial datasets2°~27, we
quantitively show that G-DeepSHAP provides useful explanations
and is drastically faster than model-agnostic approaches using an
ablation test, where we hide features according to their attribution
values (sections Loss attributions provide insights to model
behavior, Explaining deep image feature extractors, and
Explaining distributed proprietary models). We compare extre-
mely popular model-agnostic methods including KernelSHAP
and IME which are unbiased stochastic estimators for the Shapley
value!416:28 (Supplementary Methods Section 1.5.9).

In practice, G-DeepSHAP can use feature attributions to ask
many important scientific questions by explaining different parts of
the series of models (Fig. 1d). When features used by upstream
models are semantically meaningless (deep feature extraction) or
hard to understand (stacked generalization), G-DeepSHAP provides
explanations in terms of the original features which can often be
more intuitive, especially for non-technical consumers. In addition,
G-DeepSHAP enables attributions with respect to different aspects
of model behavior such as predicted risk or even errors the model
makes (loss explanation). Finally, using the group rescale rule
enables users to reduce the dimensionality of highly correlated fea-
tures which makes them easier to understand (group explanation).

In addition, G-DeepSHAP is the only approach we are aware of
that enables explanations of a distributed series of models (where
each model belongs to a separate institution). Model-agnostic
approaches do not work because they need access to every model
in the series, but institutions cannot share models because they
are proprietary. One extremely prevalent example of distributed
models are consumer scores which exist for nearly every Amer-
ican consumer!! (section Explaining distributed proprietary
models). In this setting, transparency is a critical issue, because
opaque scores can hide discrimination or unfair practices.

A preliminary version of this manuscript appeared at a
workshop, entitled “Explaining Models by Propagating Shapley
Values of Local Components™2,

In this paper, we improve upon two previous approaches
(DeepLIFT!7, DeepSHAP!®) that propagate attributions while
maintaining efficiency with respect to a single baseline. We make
two improvements: (1) we compare to a distribution of baselines,
which decreases the reliance of the attributions on any single
baseline (section Baseline distributions avoid bias) and (2) we
generalize the rescale rule so that it applies to a series of mixed
model types, rather than only layers in a deep model.

More precisely, a closely related method named DeepSHAP
was designed to explain deep models (f: R™ — R)!6, by per-
forming DeepLIFT!” using the average as a baseline!® (Methods
section Differences to previous approaches). However, using a
single average baseline is not the correct approach to explain
nonlinear models based on connections to Shapley values with an
interventional conditional expectation set function and a flat
causal graph (ie., a causal graph where arrows are only drawn
between input variables and the output)3. Instead, we show that
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Fig. 1 G-DeepSHAP estimates Shapley value feature attributions to explain a series of models using a baseline distribution. a Local feature attributions
with G-DeepSHAP require explicands (samples being explained), a baseline distribution (samples being compared to), and a model that is comprised of a
series of models. They can be visualized to understand model behavior (Supplementary Methods Section 1.3). b Theoretical motivation behind
G-DeepSHAP (Methods sections The Shapley value and A generalized rescale rule to explain a series of models). ¢ The baseline distribution is an
important, but often overlooked, a parameter that changes the scientific question implicit in the local feature attributions we obtain. d Explaining a series of
models enables us to explain groups of features, model loss, and complex pipelines of models (deep feature extraction and stacked generalization).

Experimental setups are described in Supplementary Methods Section 1.2.

the correct way to obtain the interventional Shapley value local
feature attributions (denoted as ¢(f,x°) € R™) based on an
explicand (x° € R™), or sample being explained, is to average
over single baseline feature attributions (denoted as
é(f, x°, x*) € R™) where baselines are x* € R" and D is the set
of all baselines (details in Methods section Interventional Shapley
values baseline distribution):

e _L e b
8.6 = 5 5 of. ) 1)

DeepLIFT!7 explains deep models by propagating feature
attributions at each layer of the deep model. Here, we extend
DeepLIFT by generalizing DeepLIFT’s rescale rule to accom-
modate more than neural network layers while guaranteeing
layer-wise efficiency (details in Methods section A generalized
rescale rule to explain a series of models). For a series
of models which can be represented as a composition of
functions  (fi(x) = (hge oh)(x), where h;: R™ — R%,
m;=0;_1Vi€2, -« k, m; =m, and o, = 1) with intermediary
models (fi(x) = (hjo -+ ohp)(x)). In words, m; are the input
dimensions and o; are the output dimensions for each layer i.
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G-DeepSHAP attributions are computed as:

y* = ¢y, %, x") )
v =o(h,x 1) (W @ (F() — fi(x")), i€l k=1
3)

We use Hadamard division to denote an element-wise division

of @ by —b> that accommodates zero division, where, if the
denominator b; is 0, we set a;/b; to 0. The attributions ¢ for a
particular model in the stack are computed utilizing DeepLIFT
with the rescale rule for deep models!?, interventional TreeSHAP
for tree models?’, or exactly for linear models. Each intermediate
attribution y/ serves as feature attribution that satisfies efficiency
for h/s input features, where the attribution in the raw feature
space is given by y!. This approach takes inspiration from the
chain rule applied specifically to deep networks inl7, that we
extend to more general classes of models.

G-DeepSHAP is an approximate method, meaning that it is
biased for the true interventional Shapley values (Supplementary
Notes Section 2.11). However, this bias allows G-DeepSHAP to be
drastically faster than alternative approaches. This strategy of
trading bias for speed is taken by other Shapley value estimators
including L-Shapley3!, C-Shapley®!, Deep Approximate Shapley
Propagation2, and Shapley Explanation Networks3 (Supple-
mentary Methods Section 1.5). To ensure the attributions are
valuable despite this bias, we extensively evaluate G-DeepSHAP
both qualitatively and quantitatively in the following sections.

Results

Baseline distributions avoid bias. We now use G-DeepSHAP to
explain deep models with different choices of baseline distribu-
tions to empirically evaluate our theoretical connections to
interventional conditional expectations. We show that single
baseline attributions are biased in a CNN that achieves 75.56%
test accuracy (hyperparameters in Supplementary Methods Sec-
tion 1.2.1) in the CIFAR10 data set®*. We aim to demonstrate
that single baselines can lead to bias in explanations by com-
paring attributions using either a single baseline (an all-black
image) as in DeepLIFT or a random set of 1000 baselines (ran-
dom training images) as in G-DeepSHAP. Although the black
pixels in the image are qualitatively important, using a single
baseline leads to biased attributions with little attribution mass for
black pixels (Fig. 2). In comparison, averaging over multiple
baselines leads to qualitatively more sensible attributions. Quan-
titatively, we show that despite the prevalence of darker pixels
(pixel distribution plots in Fig. 2), single baseline attributions are
biased to give them low attribution, whereas averaging over many
baselines more sensibly assigns a large amount of credit to dark
pixels (attribution distribution plots in Fig. 2). To generalize this
finding beyond G-DeepSHAP, we replicate this bias for IME and
IG, two popular feature attribution methods that similarly rely on
baseline distributions (Supplementary Notes Section 2.1).

Natural scientific questions with baseline distributions. To
demonstrate the importance of baseline distributions as a para-
meter, we explain an MLP (hyperparameters in Supplementary
Methods Section 1.2.2) with 0.872 ROC AUC for predicting 15-
year mortality in the NHANES I data set. We use G-DeepSHAP
to explain an explicand relative to a baseline distribution drawn
uniformly from all samples (Fig. 3a (top)). This explanation
places substantial emphasis on age and gender because it com-
pares the explicand to a population that includes many younger/
female individuals. However, in practice epidemiologists are
unlikely to compare a 74-year-old male to the general population.
Therefore, we can manually select a baseline distribution of older

males to reveal novel insights, as in Fig. 3a (bottom). The impact
of gender is gone because we compare only to males, and the
impact of age is lower because we compare only to older indi-
viduals. Furthermore, the impact of physical activity is much
higher possibly because physical activity increases active life
expectancy, particularly in older populations®®. This example
illustrates that the baseline distribution is an important parameter
for feature attributions.

To provide a more principled approach to choosing the
baseline distribution parameter, we propose k-means clustering to
select a baseline distribution (detail in Methods section Selecting a
baseline distribution). Previous work analyzed clustering in the
attribution space or contrasting to negatively/positively labeled
samples®®. In Fig. 3b, we show clusters according to age and
gender. Then, we explain many older male explicands using either
a general population or an older male population baseline
distribution (Fig. 3c). When we compare to the older male
baselines, the importance of age is centered around zero, gender is
no longer important, and the importance orderings of remaining
features change. Further, the inquiry we make changes from
“What features are important for older males relative to a general
population?” to “What features are important for older males
relative to other older males?”. To quantitatively evaluate whether
our attributions answer the second inquiry, we can ablate features
in order of their positive/negative importance by masking with
the mean of the older male baseline distribution (Fig. 3d,
(Methods section Ablation tests)). In both plots, lower curves
indicate attributions that better estimated positive and negative
importance. For both tests, attributions with a baseline distribu-
tion chosen by k-means clustering substantially outperforms a
baseline distribution drawn from the general population.

We find that our clustering-based approach to selecting a
baseline distribution has a number of advantages. Our recom-
mendation is to choose baseline distributions by clustering
according to non-modifiable, yet meaningful, features like age
and gender. This yields explanations that answer questions
relative to inherently interpretable subpopulations (e.g., older
males). The first advantage is that choosing baseline distributions
in this way decreases variance in the features that determined the
clusters and subsequently reduces their importance to the model.
This is desirable for age and gender because individuals typically
cannot modify their age or gender in order to reduce their
mortality risk. Second, this approach could potentially reduce
model evaluation on off-manifold samples when computing
Shapley values®’3% by considering only baselines within a
reasonable subpopulation. The final advantage is that the
flexibility of choosing a baseline distribution allows feature
attributions to answer natural contrastive scientific questions3®
that improve model comprehensibility, as in Fig. 3c.

DeepSHAP (and DeepLIFT) have been shown to be very fast
and performant explanation methods for explaining deep
models!7-3%40. In the following sections, we instead focus on
evaluating our extension of DeepSHAP (G-DeepSHAP) to
accommodate a series of mixed models (trees, neural networks,
and linear models) and address four impactful applications.

Group attributions identify meaningful gene sets. We explain
two MLPs trained to predict Alzheimer’s disease status and breast
cancer tumor stage from gene expression data with test ROC
AUC of 0.959 and 0.932, respectively. We aim to demonstrate
that our approach to propagating attributions to groups con-
tributes to model interpretability by validating our discoveries
with scientific literature. Gene expression data is often extremely
high dimensional; as such, solutions such as gene set enrichment
analysis (GSEA) are widely used*!. In contrast, we aim to
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Fig. 2 Using a single all-black baseline image (DeepLIFT) leads to biased attributions compared to attributions with a randomly sampled baseline
distribution (G-DeepSHAP). The image is the explicand. The attribution plots are the sum of the absolute value of the feature attributions for the three
channels of the input image. The pixel distribution is the distribution of pixels in terms of their grayscale values. The attribution distribution is the amount of

attribution mass upon a group of pixels binned by their grayscale values.

attribute importance to gene sets while maintaining efficiency by
proposing a group rescale rule (Methods section Explaining
groups of input features). This rule sums attributions for genes
belonging to each group and then normalizes according to excess
attribution mass due to multiple groups containing the same
gene. It generalizes to arbitrary groups of features beyond gene
sets, such as categories of epidemiological features (e.g., labora-
tory measurements, demographic measurements, etc.).

In Fig. 4, we can validate several key genes identified by
G-DeepSHAP. For Alzheimer’s disease, the overexpression of
SERPINA3 has been closely tied to prion diseases*?, and UBTD2
has been connected to frontotemporal dementia—a neurodegen-
erative disorder®. For breast cancer tumor stage, UBE2C was
positively correlated with tumor size and histological grade**. In
addition to understanding gene importance, understanding
higher-level importance can be obtained using gene sets, i.e.,
groups of genes defined by biological pathways or co-expression.
We obtain gene set attributions by grouping genes according to
curated gene sets from the KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway database (https://www.gsea-msigdb.org/
gsea/msigdb/collections.jsp#C2) (additional gene set attributions
in Supplementary Notes Section 2.5)

Next, we verify important gene sets identified by
G-DeepSHAP. For Alzheimer’s disease, the glyoxylate and
dicarboxylate metabolism pathway was independently identified
based on metabolic biomarkers®®; several studies have demon-
strated aberrations in the TCA cycle in Alzheimer’s disease
brain#%; and alterations of purine-related metabolites are known
to occur in early stages of Alzheimer’s disease?”. For breast
cancer, many relevant proteins are involved in ubiquitin-

proteasome pathways*® and purine metabolism was identified
as a major metabolic pathway differentiating a highly metastatic
breast cancer cell line from a slightly metastatic one*’. Identifying
these phenotypically relevant biological pathways demonstrates
that our group rescale rule identifies important pathways.

Loss attributions provide insights to model behavior. We
examine an NHANES (1999-2014) mortality prediction GBT
model (0.868 test set ROC AUC) to show how explaining the
model’s loss (loss explanations) provides important insights dif-
ferent from insights revealed by explaining the model’s output
(output explanations). G-DeepSHAP lets us explain transforma-
tions of the model’s output. For instance, we can explain a binary
classification model in terms of its log-odds predictions, its
probability predictions (often easier for non-technical collabora-
tors to understand; see Supplementary Notes Section 2.4), or its
loss computed based on the prediction. Here, we focus on local
feature attributions that explain per-sample loss.

We train our model on the first five release cycles of the
NHANES data (1999-2008) and evaluate it on a test set of the last
three release cycles (2009-2014) (Fig. 5a). As a motivating
example, we simulate a covariate shift in the weight variable by
re-coding it to be measured in pounds, rather than kilograms, in
release cycles 7 and 8 (Fig. 5b). Then, we ask, “Can we identify the
impact of the covariate shift with feature attributions?” Compar-
ing the train and test output attributions, release cycles 7 and 8
are skewed, but they mimic the same general shape of the training
set attributions. If we did not color by release cycles, it might be
difficult to identify the covariate shift. In contrast, for loss
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Fig. 3 The baseline distribution is an important parameter for model explanation. a Explaining an older male explicand with both a general population
baseline distribution and an older male baseline distribution. Red colors denote positive attributions and blue denotes negative attributions. b Automatically
finding baseline distributions using 8-means clustering on age and gender. Each cluster is shown in a different color. ¢ Explaining the older male
subpopulation (62-75 years old) with either a general population baseline or an older male baseline. d Quantitative evaluation of the feature attributions
via positive and negative ablation tests where we mask with the mean of the older male subpopulation (the negative ablation test reports negative mean
model output so that lower is better). Note that b shows summary plots (Supplementary Methods Section 1.3.3) and ¢ shows dependence plots

(Supplementary Methods Section 1.3.2).

attributions with positive labels, we can identify that the falsely
increased weight leads to many misclassified samples where the
loss weight attribution exceeds the expected loss. Although such
debugging is powerful, it is not perfect. Note that in the negatively
labeled samples, we cannot clearly identify the covariate shift
because higher weights are protective and lead to more confident
negative mortality prediction.

Next, we examine the natural generalization gap induced by
covariate shift over time, which shows a dramatically different loss
in the train and test sets (Fig. 5¢). We can see that output
attributions are similarly shaped between the train and test
distributions; however, the loss attributions in the test set are
much higher than in the training set. We can quantitatively verify
that negative blood lead affects model performance more in the
test set by ablating blood lead for the top 10 samples in the train
and test sets according to their loss distributions. From this, we
can see that blood lead constitutes a substantial covariate shift in
the model’s loss and helps explain the observed generalization gap.

As an extension of the quantitative evaluation in Fig. 5¢, we can
visualize the impact on the model’s loss of ablating by output
attributions compared to ablating by loss attributions (Fig. 5d).
This ablation test (Methods section Ablation tests) asks “What
features are important to the model’s performance (loss)?”
Ablating the positive and negative attributions both increase the
mean model loss by hiding features central to making predictions.
However, ablating by the negative loss attribution directly
increases the loss far more drastically than ablating by the
output. More so, ablating positive loss attributions clearly
decreases the mean loss, which is not achievable by output
attribution ablation. Finally, we compare loss attributions
computed using either a model-agnostic approach or
G-DeepSHAP. In this setting, G-DeepSHAP is two orders of
magnitude faster than model-agnostic approaches (IME, Kernel-
SHAP, and LIME) while showing extremely competitive positive
loss ablation performance and the best negative loss ablation
performance.
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Fig. 4 Propagating attributions to gene sets enables higher-level understanding. a Gene and gene set attributions for predicting Alzheimer's disease
using gene expression data. b Gene and gene set attributions for predicting breast cancer tumor stage using gene expression data. Residuals in the gene set
attributions summarize contributions for genes that are not present in any gene set and describes variations in output not described by the pathways we
analyzed. Note that (a) and (b) show summary plots (Supplementary Methods Section 1.3.3).

Explaining deep image feature extractors. We compare
G-DeepSHAP explanations to a number of model-agnostic
explanations for a series of two models: a CNN feature extrac-
tor fed into a GBT model that classifies MNIST zeros with 0.998
test accuracy. In this example, nonlinear transformations of the
original feature space improve the performance of the down-
stream model (Supplementary Notes Section 2.6) but make
model-specific attributions impossible. Qualitatively, we can see
that G-DeepSHAP and IME are similar, whereas KernelSHAP is
similar for certain explicands but not others (Fig. 6a). Finally,
LIME’s attributions show the shape of the original digit, but there
is a consistent attribution mass around the surrounding parts of
the digit. Qualitatively, we observe that the G-DeepSHAP attri-
butions are sensible. The pixels that constitute the zero digit and
the absence of pixels in the center of the zero are important for a
positive zero classification.

In terms of quantitative evaluations, we report the runtime
and performance of the different approaches in Fig. 6b. We see
that G-DeepSHAP is an order of magnitude faster than model-
agnostic approaches, with KernelSHAP being the second-
fastest. Then, we ablate the top 10% of important positive or
negative pixels to see how the model’s prediction changes. If we
ablate positive pixels, we would expect the model’s predictions
to drop, and vice versa for negative pixels; doing both
showed that G-DeepSHAP outperforms KernelSHAP and
LIME, and performs comparably to IME at a greatly reduced
computational cost.

Explaining distributed proprietary models. We evaluate
G-DeepSHAP explanations for a consumer scoring example that
feeds a simulated GBT fraud score model and a simulated MLP
credit score model into a GBT bank model, which classifies good
risk performance (0.681 test ROC AUC) (Fig. 7). Consumer
scores (e.g., credit scores, fraud scores, health risk scores, etc.)
describe individual behavior with predictive models!l. A vast

industry of data brokers generates consumer scores based on a
plethora of consumer data. For instance, a single data broker in a
2014 FTC study had 3000 data segments on nearly every con-
sumer in the United States, and another broker added three bil-
lion new records to its databases each month®’. As an example of
this, the HELOC data set had an ExternalRiskEstimate feature
that we removed because it was opaque. Unfortunately, explain-
ing the models that use consumer scores can obscure important
features. For instance, explaining the bank model in Fig. 7a will
tell us that fraud and credit scores are important (in Fig. 7c), but
these scores are inherently opaque to consumers!l. The truly
important features may instead be those that these scores use. A
better solution might be model-agnostic methods that explain the
entire pipeline at once. However, the model-agnostic approaches
require access to all models. In Fig. 7a, a single institution would
have to obtain access to fraud, credit, and bank models to use the
standard model-agnostic approaches (Fig. 7b (left)). This may be
fundamentally impractical because each of these models is pro-
prietary. This opacity is concerning given the growing desire for
transparency in artificial intelligence!1->0->1,

G-DeepSHAP naturally addresses this obstacle by enabling
attributions to the original features without forcing companies to
share their proprietary models if each institution in the pipeline
agrees to work together and has a consistent set of baselines.
Furthermore, G-DeepSHAP can combine any other efficiency-
satisfying feature attribution method in an analogous way (e.g.,
integrated/expected gradients'®). Altogether, G-DeepSHAP con-
stitutes an effective way to glue together explanations across
distributed models in the industry. In particular, in Fig. 7a, the
lending institution can explain its bank model in terms of bank
features and fraud and credit scores. The bank then sends fraud
and credit score attributions to their respective companies, who
can use them to generate G-DeepSHAP attributions to the
original fraud and credit features. The fraud and credit
institutions then send the attributions back to the bank, which
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Fig. 5 Explanations of the model's loss rather than the model's prediction yields new insights. a We train on the first five cycles of NHANES
(1999-2008) and test on the last three cycles (2009-2014). (b) We identify a simulated covariate shift in cycles 7-8 (2011-2014) by examining loss
attributions. € Under a natural covariate shift, we identify and quantitatively validate test samples for which blood lead greatly increases the loss in

comparison to training samples. d We ablate output attributions (G-DeepSHAP) and loss attributions (G-DeepSHAP, IME, KernelSHAP, and LIME) to show

their respective impacts on model loss. We compare only to model-agnostic methods for loss attributions because explaining model loss requires
explaining a series of models. Note that (b) and (¢) show dependence plots (Supplementary Methods Section 1.3.2)).
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(a) Explaining a stacked model (CNN->XGB)
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Fig. 6 Explaining a series of models comprised of a convolutional neural network feature extractor and a gradient boosted tree classifier.
a Explanations from G-DeepSHAP and state-of-the-art model-agnostic approaches. b Quantitative evaluation of approaches, including runtime and ablation
of the top 10% of positive and negative features. Error bars are 95% confidence intervals based on 20 iterations of randomly drawing five explicand images,

then computing attributions and ablation results.

can provide explanations in terms of the original, more
interpretable features to their applicants (Fig. 7d).

We first quantitatively verify that the G-DeepSHAP attribu-
tions for this pipeline are comparable to the model-agnostic
approaches in Fig. 7b. We once again see that G-DeepSHAP
attributions are competitive with the best performing attributions
methods for ablating the top five most important positive or
negative features. Furthermore, we see that G-DeepSHAP is
several orders of magnitude faster than the best performing
ablation methods (KernelSHAP and IME) and an order of
magnitude faster and much more performant than LIME.

We can qualitatively verify the attributions in Fig. 7c, d. In
Fig. 7c, we find that the fraud and credit scores are extremely
important to the final prediction. In addition, bank features include
low revolving balance divided by credit limit (NetFractionRevol-
vingBurden) and a low number of months since inquisitions
(MSinceMostRecentInqExcl7Days) are congruously important to
good risk performance. Then, in Fig. 7d we use the generalized
rescale rule to obtain attributions in the original feature space.
Doing so uncovers important variables hidden by the fraud and
credit scores. In particular, we see that the fraud score heavily relied
on a high number of months since the applicants’ oldest trade
(MSinceOldestTradeOpen), and the credit score relied on a low
number of months since recent delinquency (MSinceMostRecent-
Delq) in order to identify applicants that likely had good risk
performance. Importantly, the pipeline we analyze in Fig. 7a also
constitutes a stacked generalization ensemble, which we analyze
more generally in Supplementary Notes Section 2.7.

Discussion

In this manuscript, we presented examples where explaining a
series of models is critical. Series of models are prevalent in a
variety of applications (health, finance, environmental science,
etc.), where understanding model behavior contributes important
insights. Furthermore, having a fast approach to explain these
complex pipelines may be a major desiderata for a diagnostic tool
to debug ML models.

The practical applications we focus on in this paper include
gene set attribution, where the number of features far surpasses
the number of samples. In this case, we provide a rule that
aggregates group attributions to higher-level groups of features
while maintaining efficiency. Second, we demonstrate the utility
of explaining transformations of a model’s default output (Sup-
plementary Notes Section 2.4). Explaining the probability output
rather than the log-odds output of a logistic model yields more
naturally interpretable feature attributions. Furthermore,
explaining the loss of a logistic model enables debugging model
performance and identification of covariate shift. A third appli-
cation is neural network feature extraction, where pipelines may
include transformations of the original features fed into a dif-
ferent model. In this setting, we demonstrate the computational
tractability of G-DeepSHAP compared to model-agnostic
approaches. Finally, because our approach propagates feature
attributions through a series of models while satisfying efficiency
at each step (Methods section Efficiency for intermediate attri-
butions), the intermediary attributions at each part of the network
can be interpreted as well. We use this to understand the
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Fig. 7 Explaining a stacked generalization pipeline of models for the HELOC data set (details in Supplementary Methods Section 1.1.7). a A simulated
model pipeline in the financial services industry. We partition the original set of features into fraud, credit, and bank features. We train a model to predict
risk using fraud data and a model to predict risk using credit data. Then, we use the outputs of the fraud and credit models as scores alongside additional
bank features to predict the final customer risk. b Ablation tests (ablating top five positive/negative features out of a total 22 features) comparing model-
agnostic approaches (LIME, KernelSHAP, IME), which require access to all models in the pipeline, and G-DeepSHAP, which allows institutions to keep their
proprietary models private. € Summary plot of the top six features the bank model uses to predict risk (TreeSHAP). d Summary plot of the top six features
the entire pipeline uses to explain risk (G-DeepSHAP). The green features originate from the fraud data and the yellow features from the credit data. We
explain 1000 randomly sampled explicands using 100 randomly sampled baselines for all attribution methods. Note that (¢) and (d) show summary plots

(Supplementary Methods Section 1.3.3).

importance of both consumer scores and the original features
used by the consumer scores.

In consumer scoring, distributed proprietary models (ie.,
models that exist in different institutions) have historically been
an obstacle to transparency. This lack of transparency is parti-
cularly concerning given the prevalence of consumer scores, with
some data brokers having thousands of data segments on nearly
every American consumer®’. In addition, many new consumer
scores fall outside the scope of previous regulations (e.g., the Fair
Credit Reporting Act and the Equal Credit Opportunity Act)!!. In
fact, these new consumer scores that depend on features corre-
lated with protected factors (e.g., race) can reintroduce dis-
crimination hidden behind proprietary models, which is an issue
that has historically been a concern in credit scores (the oldest
existing example of a consumer score)!!. G-DeepSHAP naturally
enables feature attributions in this setting and takes a significant
and practical step toward increasing the transparency of con-
sumer scores and provides a tool to help safeguard against hidden
discrimination.

10

It should be noted that we focus specifically on evaluating
G-DeepSHAP for a series of mixed model types. Previous work
evaluates the rescale rule for explaining deep models, specifically.
The original presentation of the rescale rule!” demonstrates its
applicability to deep networks in explaining digit classification and
regulatory DNA classification. Ref. 3 show that for explaining deep
networks, G-DeepSHAP, which uses multiple baselines, is a very fast
yet performant approach in terms of an ablation test for explaining
MNIST and CIFAR images. Although their approach, CXPlain, is
comparably fast at attribution time, it has the added cost of training
a separate explanation model. Finally, ref. 40 shows that many
modified back propagation feature attribution techniques are inde-
pendent of the parameters of later layers, with the exception of
DeepLIFT. This particularly significant finding suggests that com-
pared to most fastback propagation-based deep feature attribution
approaches, approaches based on the rescale rule are not ignorant of
later layers in the network.

Although G-DeepSHAP works very well for explaining a series
of mixed model types in practice, an inherent limitation is that it
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is not guaranteed to satisfy the desirable axioms (e.g., imple-
mentation invariance) that other feature attribution approaches
satisfy (assuming exact solutions to their intractable problem
formulations)!41618_ This suggests that G-DeepSHAP may be
more appropriate for model debugging or for identifying scien-
tific insights that warrant deeper investigation, particularly in
settings where models or the input dimension is huge and
tractability is a major concern. However, for applications where
high-stakes decision-making is important, it may be more
appropriate to run axiomatic approaches to completion or use
interpretable models®2. Furthermore, in many real-world cir-
cumstances, such as distributed proprietary models based on
credit risk scores, exact axiomatic approaches, and interpretable
models are not feasible. In these cases, G-DeepSHAP represents a
promising direction that allows multiple agents to collaboratively
build explanations while maintaining the separation of model
ownership.

Methods

We include detailed descriptions of datasets in Supplementary Methods Sec-
tion 1.1, experimental setups in Supplementary Methods Section 1.2, and feature
attribution plots in Supplementary Methods Section 1.3.

The Shapley value. The Shapley value is a solution concept for allocating credit
among players (M = 1,---, m) in an m-person game. The game is fully described by
a set function ¥(S) : P(S) — R! that maps the power set of players SC M to a
scalar value. The Shapley value for player i is the average marginal contribution of
that player for all possible permutations of remaining players:

LS (v ui) = v(S). @

m!pez, ", ()

¢l’(v) =

We denote the finite symmetric group 3,,_,(M), which is the set of all possible
permutations, and S to be the set of players before player i in the permutation P.
The Shapley value is a provably unique solution under a set of axioms (Supple-
mentary Methods Section 1.4). One axiom that we focus on in this paper is effi-
ciency:

20,0 = vM) v, 5)

Adapting the Shapley value for feature attribution of ML models. Unfortunately, the
Shapley value cannot assign credit for an ML model (f(x) : R" — R') directly
because most models require inputs with values for every feature, rather than a
subset of features. Accordingly, feature attribution approaches based on the
Shapley value define a new set function (S) that is a lift of the original model®3. In
this paper, we focus on local feature attributions, which describe a model’s behavior
for a single sample, called an explicand (x¢). A lift is defined as:

y(f,xg,S) :R"x 2" — RL. 6)
One common lift is the observational conditional expectation, where the lift is

the conditional expectation of the model’s output holding features in § fixed to x§
and X is a multivariate random variable with joint distribution D:

Hp'(f 5, 8) = Ep [fOOIXs = x5]. @
Another common lift is the interventional conditional expectation with a flat
causal graph, where we “intervene" on features by breaking the dependence
between features in Xg and the remaining features using the causal inference do-
operator30:

up'(f ", 8) = Ep [ f(X0)ldo (Xg = x5)]. ®)
Both approaches have tradeoffs that have been described elsewhere!336-38:54,
Here, we focus on the interventional approach for two primary reasons:

1. Observational Shapley values will spread credit among correlated features>.
Although this can be desirable, it can lead to counterintuitive attributions. In
particular, features that the model literally does not use to calculate its
predictions will have non-zero attribution simply if they are correlated with
features the model heavily depends on ref. 13. Instead, the interventional
Shapley values do a better job of identifying the features the models
algebraically depend on ref. >*. As such, the interventional Shapley values
are useful for debugging bad models and drawing insights from good
models. In contrast, although observational Shapley values give a view of the
information content each feature has with regard to the output for optimal
models®>, this is not the case for bad models. Furthermore, it can be hard to
use observational Shapley values to debug bad models because it is unclear
whether a feature is important because it is explicitly depended on by the

model or because it is correlated with the features the model explicitly
depends on. Finally, if it is really important to spread credit using correlated
features, it is possible to modify the model fitting using regularization or
ensembles which will cause interventional Shapley values to naturally spread
credit>.

2. Estimating the observational conditional expectation is drastically harder
than the interventional conditional expectation. This is reflected in a wide
disagreement about how to estimate the observational conditional
expectation®,  with  approaches including empirical!®,  cohort
refinement!3°6:57 parametric assumptions®>7, generative model®8, surro-
gate model®3, missingness during training®>, and separate models*$-¢0. On
the other hand, the interventional conditional expectation has one agreed-
upon empirical estimation strategy!>20. This difficulty also reflects in the
model-specific approaches, where there are exact algorithms to calculate
interventional Shapley values for linear and tree models (LinearSHAP># and
TreeSHAP2). In particular, TreeSHAP and G-DeepSHAP are both based
on the useful property that interventional Shapley values decompose into an
average of baseline Shapley values (section Interventional Shapley values
baseline distribution). This benefit is crucial to the design of the generalized
rescale rule.

Note that a third approach, named causal Shapley values, uses causal inference’s
interventional conditional expectation, but does not assume a flat causal graph®l.
Causal Shapley values require knowledge of a causal graph relating the input
variables and the output. However, in general, this graph is unknown or requires
substantial domain expertise. In addition, causal Shapley values are hard to
estimate because they require estimating many interventional probabilities. In
contrast, interventional Shapley values are a tractable way to understand model
behavior.

The Shapley values computed for any lift will satisfy efficiency in terms of the
lift 4. However, for the interventional and observational lift described above, the
Shapley value will also satisfy efficiency in terms of the model’s prediction:

Zx;(bf"(fvxe) =f(x°) = Ep[f(X)]. )

This means that attributions can naturally be understood to be in the scale of the
model’s predictions (e.g., log-odds or probability for binary classification).

Interventional Shapley values baseline distribution. We can define a single
baseline lift

/‘j::*t (f7xev S) = E(xb) [f(X)ldo(XS = X%)} = Xs)

where §S is a spliced sample and y’ = x¢ if i €S, else x5 = x%.

Then, we can decompose the Shapley value ¢,(f, x) for the interventional
conditional expectation lift (eq. (8)) (henceforth referred to as the interventional
Shapley value) into an average of Shapley values with single baseline lifts (proof in
Supplementary Methods Section 1.6):

(10)

1 1 P Ui >
i 7xe‘l) - Z . S Uiy _ N
¢, D) |D| yoep m!pez,,,,,(M)f(X )=10) (11)
Shapley value for single baseline lift
= L5 (., 40). 12)
[D]siep ™" )7

Here, D is an empirical distribution with equal probability for each sample in a
baseline data set. An analogous result exists for the observational conditional
distribution lift using an input distribution3®. The attributions for these single
baseline games are also analogous to baseline Shapley in ref. 13.

In the original DeepLIFT paper,!” recommends two heuristic approaches to
define baseline distributions: (1) choosing a sensible single baseline and (2)
averaging over multiple baselines. In addition, DeepSHAP, as previously described
in ref. 16, created attributions with respect to a single baseline equal to the expected
value of the inputs (Methods section Differences to previous approaches). In this
paper, we show that from the perspective of Shapley values with an interventional
conditional expectation lift, averaging over feature attributions computed with
single baselines drawn from an empirical distribution is the correct approach. One
exception to this are linear models, where taking the average as the baseline is
equivalent to averaging over many single baseline feature attributions.

Interventional Shapley values computed with a single baseline satisfy efficiency
in terms of the model’s prediction:

S0 (f. ) = F65) = (). a3)

Selecting a baseline distribution. As in the previous section, we define a baseline
distribution D over which we compute Shapley values with single baseline lifts.
This baseline distribution is naturally chosen to be a distribution over the training
data X', where each sample ¥’ € R" has equal probability. The interpretation of
this distribution is that the explicand is compared to each baseline in D. This
means that the interventional Shapley values implicitly create attributions that
explain the model’s output relative to a baseline distribution.
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Although the entire training distribution is a natural and interpretable choice of
baseline distribution, it may be desirable to use others. To automate the process of
choosing such an interpretable baseline distribution, we turn to unsupervised

clustering. We utilize k-means clustering on a reduced version of the training data
trai

X n) comprised of ¥ = [x’,:‘v'i € M,] with a reduced set of features (M,). The
output of the k-means clustering are clusters Cy,-, C, with means p,--+, g that
minimize the following objective on the reduced training data:

k
argming o 2 X | & —pl (14
i=1xeC,
Then, the cluster selected as a baseline distribution explaining an explicand x¢ is
chosen based on:

argmin, || £ — ;| (15)

Note that in practice, it is common to use a large subsample of the full baseline

distribution. The number of baseline samples can be an important parameter that
can be validated by running explanations for multiple replicates and confirming

consistency. We evaluate convergence in Supplementary Notes Section 2.3 and find
that 1000 baselines lead to consistent attributions.

A generalized rescale rule to explain a series of models. We define a gen-
eralized rescale rule to explain an arbitrary series of models that propagates
approximate Shapley values with an interventional conditional expectation lift for
each model in the series. To describe the approach, we define a series of models to
be a composition of functions fi(x) = (hge -+ oh;)(x), and we define intermediary
models fi(x) = (hje -+ ohy)(x), i=1, ---, k. We define the domain and codomain of
each model in the series as h;(x) : R™ — R. Then, we can define the propa-
gation for a single baseline recursively:

wk = &(hk,xe,xb) (16)

V= ¢(h, % x") (v o (F,() —£,(xY))), iel, - k—1. 17)
We use Hadamard division to denote an element-wise division of @ by D that
accommodates zero division, where if the denominator b; is 0, we set a;/b; to 0.
Additionally, ¢ are an appropriate feature attribution technique that approximates
interventional Shapley values while crucially satisfying efficiency for the model A; it
is explaining. In this paper, we utilize DeepLIFT (rescale) for deep models,
TreeSHAP for tree models, and exact interventional Shapley values for linear
models. We define efficiency as 1, m, d(h;, x¢, x) = f(x*) — f(x?) where 1, is a
matrix of ones with shape a x b and the approximate Shapley value functions ¢
return matrices in R %) The final attributions in the original feature space are:

9:(fi,2") = ;.-

Furthermore, this approach yields intermediate attributions that serve as
meaningful feature attributions. In particular, ¥/ can be interpreted as the
importance of the inputs to the model (he --+ oh;), where the new explicand and
baseline are (h;_jo -+ oh;)(x¢) and (h;_yo -+ ohy)(x), respectively. This approach
takes inspiration from the chain rule applied specifically for deep networks in
ref. 17, but we extend it to more general classes of models.

(18)

Efficiency for intermediate attributions. As one might expect, each intermediate
attribution y/ satisfies efficiency:

Theorem 1: Each attribution ' € R™,Vi € 1, , k satisfies efficiency and
sums up to fi(x¢) — fk(xh).

Proof: We will prove by induction that

LoomV' =fie) = fi (), Vie 1,k (19)
For simplicity of notation, denote (Z)i = g])(h', x°,x0).
Assumption: Each ¢ satisfies efficiency
ilxml(;ﬁi =fi(x%) —fi(xb)- (20)
Base Case: By our assumption,
ilxmkv/k = fi(x) *fk(xb) (21)
Induction Step:A 1//1: _ %(wi+i ®_(f"(xe) —f, (xb))) (22)
o' = L 90 © (766~ £,(4))) (23)
= (i) =£,()) (v @ (i) = £,(+))) 24
=1,y (25)
=i, ¥ (26)
=fi&) = fi(+")- 27)

Conclusion: By the principle of induction, each intermediate attribution satisfies
efficiency (eq. (19)).

Then, because the interventional Shapley value with a baseline distribution is
the average of many single baseline attributions, it satisfies a related notion of

efficiency:
;gbi(fk,x@) :;XED@(fwxﬂxb) (28)
= ED;@ (o %%, 2") (29)
= T 56 —fi) (30)
1
=fi(x) *ﬁngfk (xb)' Gy

This can be naturally interpreted as the difference between the explicand’s
prediction and the expected value of the function across the baseline distribution.

An additional property of the generalized rescale rule is that although it is an
approximation to the interventional Shapley values in the general case, if every
model in the composition is linear (h;(x) = Bx), then this propagation exactly yields
the interventional Shapley values (Supplementary Methods Section 1.7).

Connecting DeepLIFT's rules to the Shapley values. Now we can connect the
Shapley values to DeepLIFT’s Rescale and RevealCancel rules. Both rules aim to
satisfy an efficiency axiom (what they call summation to delta) and can be con-
nected to an interventional conditional expectation lift with a single baseline (as in
section Selecting a baseline distribution). Note that although the Rescale rule does
not explicitly account for interaction effects, they can be captured in deep models,
which we visualize in Supplementary Notes Section 2.8.

In fact, multi-layer perceptrons are a special case where the models in the series
are nonlinearities applied to linear functions. We first represent deep models as a
composition of functions (ke -+ ohy)(x). The Rescale and RevealCancel rules
canonically apply to a specific class of function: h(x) = (feg)(x), where fis a
nonlinear function and g is a linear function parameterized by f € R™. We can
interpret both rules as an approximation to interventional Shapley values based on
the following definition.

Definition 1. A k-partition approximation to the Shapley values splits the features
inx € R™ into K disjoint sets. Then, it exactly computes the Shapley value for each
set and propagates it linearly to each component of the set.

The Rescale rule can be described as a one-partition approximation to the
Interventional Shapley values for h;(x), while the RevealCancel rule can be
described as a two-partition approximation that splits according to whether x; > t,
where the threshold ¢ = 0. This k-partition approximation lets us consider
alternative variants of the Rescale and RevealCancel rules that incur exponentially
larger costs in terms of K and for different choices of thresholds.

Explaining groups of input features. Here, we further generalize the Rescale rule
to support groupings of features in the input space. Having such a method can be
particularly useful when explaining models with very large numbers of features that
are more understandable in higher-level groups. One natural example is gene
expression data, where the number of features is often extremely large.

We introduce a group rescale rule that facilitates higher-level understanding of
feature attributions. It provides a natural way to impose sparsity when explaining
sets of correlated features. Sparsity can be desirable when explaining a large
number of features®2. We can define a set of groups Gy, -+, G, whose members are
the input features x;. If each group is disjoint and covers the full set of features, then
a natural group attribution that satisfies efficiency is the sum:

0 e e
‘/’Gj(fvx)—iezcj‘ﬁi(fvx)' (32)
If the groups are not disjoint or do not cover all input features, then the above
attributions do not satisfy efficiency. To address this, we define a residual group Gr
that covers all input features not covered by the remaining groups. Then, the new
attributions are a rescaled version of eq. (32)

b, (f:x)
x0) = % (f, x°) x =2
(1) = 46, (1) g
We can naturally extend this approach to accommodate nonuniform weighting
of group elements, although we do not experiment with this in our paper.

(33)

Differences to previous approaches. In the original SHAP paper!©, they aim to
calculate observational Shapley values. However, due to the difficulty in estimating
observational conditional expectations, they actually calculate what is later
described as interventional Shapley values®0:34,

DeepSHAP was originally introduced as an adaptation of DeepLIFT in the
original SHAP paper!© designed to make DeepLIFT closer to the interventional
Shapley values. However, it is briefly and informally introduced, making it difficult
to know exactly what the method entails and how it differs from DeepLIFT.
DeepSHAP is the same as DeepLIFT, but with the reference (baseline) values set to
the average of the baseline samples. Similar to DeepLIFT, using an average baseline
also leads to bias (Supplementary Section 2.2). In comparison, DeepLIFT typically
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sets the baseline to uninformative values and sets them to zeros for image data (an
all-black image).

However, interventional Shapley values are equivalent to an average of baseline
Shapley values, but not to baseline Shapley values with the average as a baseline.
Due to this interpretation (section Interventional Shapley values baseline
distribution), it is more natural to calculate G-DeepSHAP as the average of many
attributions for different baselines. This in turn allows us to formulate a generalized
rescale rule which allows us to propagate attributions through pipelines of a linear,
tree, and deep models for which baseline Shapley values are easy to calculate.

In order to clarify the differences, we explicitly define DeepSHAP as it was
originally briefly proposed in'® and the current version we are proposing.
DeepSHAP used the rescale rule with an average baseline. G-DeepSHAP uses the
generalized rescale rule and group rescale rule with multiple baselines. In terms of
applications, DeepSHAP only applies to deep models, whereas G-DeepSHAP
applies to pipelines of a linear, tree, and deep models. Finally, the group rescale rule
gives us a natural approach to group large numbers of features and thus generate
attributions for a much smaller number of groups. This type of sparsity is often

helpful for helping humans understand model explanations®2.

Evaluation of explanations. The evaluation of explanations is the topic of many
papers2%:63-66_ Although there is unlikely to be a single perfect approach to evaluate
local feature attributions, we can roughly separate them into two categories: qua-
litative and quantitative, which typically correspond to plausibility of explanations
and fidelity to model behavior respectively.

Qualitative evaluations aim to ensure that relationships between features and
the outcome identified by the feature attributions are correct. In general, this
requires a priori knowledge of the underlying data generating mechanism. One
setting in which this is possible are synthetic evaluations, where the data generating
mechanism is fully known. This can be unappealing because methods that work for
synthetic data may not work for real data. Instead, another approach is to
externally validate with prior literature. In this case, qualitative evaluations aim to
capture some underlying truth about the world that has been independently
verified in diverse studies. This type of evaluation simultaneously validates the
combination of the model fitting and the feature attribution itself to see whether
explanations are plausible. One downside of this approach is that it can be hard to
rigorously compare different explanation techniques because the evaluation is
inherently qualitative. Furthermore, if the explanations find a previously
unobserved relationship it can be hard to verify. For this reason, our qualitative
evaluations take place in well-studied domains: mortality epidemiology,
Alzheimer’s and breast cancer biology, and financial risk assessment.

Then, quantitative evaluations typically aim to ensure that the feature
attributions are representative of model behavior. These evaluations are dominated
by feature ablation tests which aim to modify the samples in a way that should
produce an expected response in the model’s output. Since most local feature
attributions aim to explain the model’s output, it is a natural aspect of model
behavior to measure. In contrast to the qualitative evaluations, quantitative
evaluations are typically aimed exclusively at the feature attribution and are
somewhat independent of the model being explained. These evaluations, while
useful, are also imperfect, because a method that succeeds at describing model
behavior perfectly will likely be far too complex to provide an explanation that
humans can understand®’.

Therefore, we found it important to balance these two types of evaluations
within our paper. We provide qualitative assessments for all-cause mortality,
Alzheimer’s, breast cancer, and loan risk performance. We additionally provide
quantitative assessments for all-cause mortality, digits classification, and the loan
risk performance data.

Ablation tests. We quantitatively evaluate our feature attribution methods with
ablation tests2%63, In particular, we rely on a simple yet intuitive ablation test. For a
matrix of explicands X° € R"™, we can get attributions ¢(f, X°) € R"™". The
ablation test is defined by three parameters: (1) the feature ordering, (2) an
imputation sample x” € R™, and (3) an evaluation metric. Then, the ablation test
replaces features one at a time with the baseline’s feature value based on the feature
attributions to assess the impact on the evaluation metric. We can iteratively define
the ablation test based on modified versions of the original explicands:

X0 = x¢ (34)

X*=X0L@)+X" 0 (1-1(¢) Vkel, - m. (35)
T
2 15 1(9) = I(@(f, X)) = arg max iy (9(f, X)),
n,elements

where arg max; ,,;_;(G) returns an indicator matrix of the same size as G, 1 indicates
that the element was in the maximum k elements across a particular axis, and ©@
signifies a Hadamard product.

Then, the ablation test measures the mean model output (e.g., the predicted log-
odds, predicted probability, the loss, etc.) if we ablate k features to be the average

Note that X? :=[ «b- ..
e

over the predictions for each ablated explicand:

Lo k.

Ny iel,

(36)

Note that for our ablation tests we focus on either the positive or the negative
elements of ¢, since the expected change in model output is clear if we ablate only
by positive or negative attributions. Since each sample is ablated independently
based on their attributions, this ablation test can be considered a summary of local
ablations (Supplementary Notes Section 2.10) for many different explicands.

Ablation tests are a natural approach to test whether feature attributions are
correct for a set of explicands. For feature attributions that explain the predicted
log-0dds, a natural choice of model output for the ablation test is the mean of the
log-odds predictions. Then, as we ablate increasing numbers of features, we expect
to see the model’s output change. When we ablate the most positive features
(according to their attributions), the mean model output should decrease
substantially. As we ablate additional features, the mean model output should still
decrease, but less drastically so. This implies that, for positive ablations, lower
curves imply attributions that better described the model’s behavior. In contrast,
for negative ablations, as we ablate the most negative features, better attributions
will cause the mean model output to increase rapidly and lead to higher curves. As
a final note, we demonstrate that estimates of interventional Shapley values for
random tree and deep models based on TreeSHAP and G-DeepSHAP respectively
perform well on ablation tests (Supplementary Notes Section 2.9). This implies that
our attributions closely describe the model behavior regardless of its predictive
performance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The NHANES I, NHANES 1999-2014 data are publicly available: https://wwwn.cdc.gov/
nchs/nhanes/Default.aspx. The CIFAR data is publicly available: https://www.cs.toronto.
edu/~kriz/cifar.html. The MNIST data is publicly available: http://yann.lecun.com/exdb/
mnist/. The HELOC data set can be obtained by accepting the data set usage license:
(https://community.fico.com/s/explainable-machine-learning-challenge?tabset-3158a=
a4c37). METABRIC data access is restricted and requires getting an approval through the
Sage Bionetworks Synapse website: https://www.synapse.org/\#\!Synapse:syn1688369 and
https://www.synapse.org/#!Synapse:syn1688370. ROSMAP data access is restricted and
requires getting approval through Sage Bionetworks Synapse website: https://www.
synapse.org/#!Synapse:syn3219045 and is available as part of the AD Knowledge Portal®8.
Results corresponding to the figures are provided as source data with this paper. Source
data are provided with this paper.

Code availability
The code for the experiments is available here: https://github.com/suinleelab/DeepSHAP
(archived at https://doi.org/10.5281/zenodo.6585445).
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