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ABSTRACT The past few years have seen a surge of novel applications of the Luria-Delbrück fluctuation
assay protocol in bacterial research. Appropriate analysis of fluctuation assay data often requires compu-
tational methods that are unavailable in the popular web tool FALCOR. This paper introduces an R package
named rSalvador to bring improvements to the field. The paper focuses on rSalvador’s capabilities to
alleviate three kinds of problems found in recent investigations: (i) resorting to partial plating without
properly accounting for the effects of partial plating; (ii) conducting attendant fitness assays without incor-
porating mutants’ relative fitness in subsequent data analysis; and (iii) comparing mutation rates using
methods that are in general inapplicable to fluctuation assay data. In addition, the paper touches on
rSalvador’s capabilities to estimate sample size and the difficulties related to parameter nonidentifiability.
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Nearly 75 yr ago, Luria and Delbrück (1943) proposed an experimental
protocol that today is known variously as the fluctuation test, the
fluctuation experiment, and the fluctuation assay. This innovative
experimental protocol is so far the preferred method for determin-
ing microbial mutation rates in the laboratory. Because computa-
tional methods for inferring mutation rates from fluctuation assay
data seemed complicated to most biologists, for over half a century
the fluctuation experiment had been an investigative tool only
for mathematically minded biologists or biologists who could
find adequate computational assistance. The advent of SALVADOR
(Zheng 2002), a package written in the Wolfram language (Wolfram
Research, Inc. 2016), induced a surge of applications of the fluctuation
experiment by investigators who otherwise would not have consid-
ered the classical protocol. However, because SALVADOR runs in the
proprietary Mathematica (Wolfram Research, Inc. 2016) environ-
ment, it raised a new, albeit lesser, barrier to the widespread use of
the fluctuation experiment. It was Hall et al. (2009) who helped bench
scientists break free from the shackles of proprietary software. Their
web tool, FALCOR, enables investigators to perform basic analysis of
fluctuation assay data in a way no more arduous than calculating the

sample mean and sample SD. Numerous researchers, empowered by
this convenient web tool, used the fluctuation experiment in tandem
with DNA sequencing techniques in their research. As a result, an
astonishing flood of novel applications of the fluctuation experiment
followed. FALCOR was an effective catalyst for a marriage between
the classical fluctuation experiment and modern DNA sequencing
techniques.

With FALCOR’s popularity came a disturbing irony. As noted in a
recent review (Zheng 2015b), FALCOR offers only methods that
were reviewed in 2000 (Rosche and Foster 2000). Many applications
require methods that either were developed after 2000 or are to be
developed. Researchers who acquainted themselves with the analy-
sis of fluctuation assay data via FALCOR were often under the
impression that all fluctuation assay data could be analyzed by a
standardized approach, which Hall et al. (2009) advocated. Owing
to this mistaken perception, investigators in a large fraction of re-
cent studies adopted a common method to analyze their fluctuation
assay data, paying little attention to important features that distin-
guished their experiments. A conscientious practitioner would then
be baffled when Ycart (2013) sounded a note of warning, in stark
contrast to the sanguine views of Hall et al. (2009). The rhetorical
question “Can estimates be trusted?”, sparked by a common math-
ematical assumption about cell life spans, seemed to obliterate
bench scientists’ hopes for a practical way to analyze fluctuation
assay data on their own. Moreover, Hamon and Ycart (2012) voiced
their complaints about the extensive numerical problems that were
supposedly caused by the maximum likelihood method. Besides
clarifying the disquieting confusion prompted by these issues, the
present article uses rSalvador 1.7 (Zheng 2017a) to guide readers in
the analysis of their fluctuation assay data.
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rSalvador was first released in April 2014. It was written as an
R package, but the most compute-intensive parts, as in SALVADOR,
were coded in the C programming language. rSalvador is not merely
an R adaptation of SALVADOR, for it affords new methods de-
veloped after the last release of SALVADOR. This article describes
rSalvador’s capabilities by focusing on three kinds of inadequacies
commonly found in recent analyses of fluctuation assay data. The
three kinds of inadequacies are: (i) resorting to partial plating with-
out properly accounting for the effects of partial plating; (ii) con-
ducting attendant fitness assays without accounting for mutants’
relative fitness when calculating estimates of mutation rates; and
(iii) comparing mutation rates using methods that are in general
inapplicable to fluctuation assay data.

RELEVANT ASSUMPTIONS
The fluctuation experiment is conceptually simple. Although neither
mutations nor mutants are directly observable, a mutant can be made
visible by allowing it to form a colony on a solid culture. As a result,
analysis of fluctuation assay data revolves around inferring the number
ofmutations from thenumberofmutants ina test tube.This challenging
task relies critically onmathematicalmodels that bridge the gapbetween
mutations and mutants. Like mathematical models for any other
purposes, a mathematical model for fluctuation assay data depends
onsimplifyingassumptions.Acquiringasoundunderstandingof thekey
assumptions not only helps experimentalists to better design experi-
ments, but also enables them to analyze their data more confidently.
Major assumptions underlying common mathematical models for
fluctuation assay data include the following.

A1. Cells (nonmutants and mutant alike) undergo unimpeded
growth in a liquid culture (contained in a test tube). In other
words, cells are in logarithmic phase (also known as exponen-
tial phase).

A2. When a cell divides, the probability is a constant p that one of
the two daughter cells is a mutant. The probability is 1 2 p that
both daughter cells are nonmutants. Therefore, there is no pos-
sibility of a nonmutant splitting into two daughter mutants.

A3. Mutants grow at the same rate as nonmutants. As a conse-
quence, the relative fitness is unity.

A4. Back mutation is negligible, and hence is not considered.
A5. Cell death is negligible, and hence is not considered. As Kendal

and Frost (1988) rightly asserted, this assumption is not a problem
when dealing with bacterial cells (in contrast to somatic cells). But
there is an important exception. When the Luria-Delbrück protocol
is used to study antibiotic-induced mutations, as in the study of
Cairns et al. (2017), cells must grow in the presence of an antibiotic.
The dose administered should be sufficiently low so as not to cause
considerable death of nonmutants. Otherwise, owing to death
of large numbers of nonmutants, unimpeded growth of antibiotic-
resistant mutants will grossly inflate the mutant frequency. This
caution should not be confused with the use of a lethal dose of an
antibiotic after the cells are plated, as a selective agent.

A6. Every mutant exiting prior to plating is capable of growing into a
colony after the plating process. In other words, the plating
efficiency is perfect.

A7. Cell life span obeys the negative exponential distribution.
A8. The total numbers of nonmutants immediately before plating,

denoted by Nt, are approximately the same across tubes within
an experiment.

A9. Nonmutants die immediately after plating. In other words, se-
lection after plating is so lethal that postplating mutation is

negligible. Note that postplating mutation was of interest to
Lang and Murray (2008), and to Ford et al. (2013).

A10. When a nonmutant undergoes a mutation, the resulting daugh-
ter mutant is capable of immediately manifesting the mutation’s
phenotype. This assumption thus excludes the possibility of
phenotypic delay, a concept that can be traced to Newcombe
(1948).

A11. N0, the number of cells used to seed a test tube, is small enough
to guarantee that the N0 seeding cells contain no mutants.

A useful mutation model yields a so-called mutant distribution,
which describes the probability distribution of the number of mutants,
and which usually involves a parameter customarily denoted bym, the
expected number of mutations per tube. Once an accurate estimate m̂
of m is inferred from fluctuation assay data using an appropriate mu-
tant distribution, the mutation rate is determined by

p ¼ m̂
Nt-N0

� m̂
Nt

: (1)

For a detailed discussion of the mutation rate p, the reader is referred
to Zheng (2017c).

Almost by definition, a simplifying assumption is a deviation from
biological reality. One is doomed to disappointmentwhen checking any
of the above assumptions outside the context of what the fluctuation
experiment aims toachieve.As thepoint of thefluctuation experiment is
to estimate the fundamental parameter m, the validity of the assump-
tions (A1)–(A11) should be assessed by whether they allow acceptable
estimates of m to be extracted from fluctuation assay data. Although
limited research has been conducted in this regard, the assumptions
seem to be less worrisome than originally thought. For example, the
assumption (A7), the most contrived at first glance, was recently found
to be an acceptable assumption.

A peculiar feature of all mutant distributions is a lack of explicit
analytic expressions. A mutant distribution must therefore be iden-
tified by its probability generating function (PGF). If Y denotes the
random number of mutants, the PGF of Y is the function Gð∙Þ de-
fined by G zð Þ ¼ E zY½ �. rSalvador encompasses five mutation distri-
butions. The first mutant distribution is due to Lea and Coulson
(1949). This distribution depends on all the above 11 assumptions,
and its PGF is

G1 z;m; øð Þ ¼ exp
m
ø

1
z
2 1

� �
logð12 øzÞ

� �
: (2)

Here, ø ¼ 12 N0=Nt is strictly less than unity (Zheng 2002). But f is
assumed to be unity by convention. Strictly speaking, the Lea-Coulson
mutant distribution refers to the special case where the PGF is of the
form

G�
1 z;mð Þ ¼ exp m

1
z
2 1

� �
logð12 zÞ

� �
: (3)

Nádas et al. (1996) were the first to suspect that setting ø = 1 could
have adverse effects on the estimation of m. However, in practice,
ø . 0.999 almost always holds true. Under such a condition, the
effects of ø are negligible. rSalvador is the only software tool that
permits the user to specify a value smaller than unity for ø, mainly
for educational purposes.

The secondmutantdistribution resulted fromanattempt to relax the
assumption (A3) by Mandelbrot (1974). Because Koch (1982) made a
similar attempt to allow for differential growth rates between non-
mutants and mutants, the mutant distribution is usually called the
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Mandelbrot-Koch distribution. The following PGF is a generalization
of the PGF G�

1ðz;mÞ:

G2 z;m;wð Þ ¼ exp 2mþm
w

XN

k¼1
B k; 1þ w21� �

zk
!
:

 
(4)

Here B denotes the usual beta function. The parameter w is relative
fitness, that is, the ratio of the growth rate of mutants to that of
nonmutants.

The thirdmutant distribution can be traced toArmitage (1952), who
was the first to attempt to relax the assumption (A6). The resulting
mutant distribution was further studied by Stewart et al. (1990). The
PGF of that distribution is

G3 z;m; eð Þ ¼ exp mj
ð12zÞlog e ð12zÞ½ �

1þ jz

� �
: (5)

Here, j = e / (12 e). The parameter e is called the plating efficiency,
which denotes the portion of culture plated or the probability that a
mutant forms a visible colony after the plating process.

The fourth mutant distribution is a special case of the relatively new
B0 distribution (Zheng 2010). The B0 distribution has two parameters,
A and k, and is denoted by B0ðA; kÞ: The PGF of a B0ðA; kÞ variable is

G4 z;A; kð Þ ¼ 1
12A z2121ð Þlogð12zÞ
� �k

: (6)

The B0 distribution’s usefulness lies in its ability to relax the assump-
tion (A8).

The lastmutantdistributionderives fromHaldane’smutationmodel
(Zheng 2005). Because cell growth is synchronous in the Haldane
model, cell life spans are nonrandom. This is in violation of the as-
sumption (A7). The Haldane mutant distribution is indexed by the
mutation rate p and the number of elapsed cell generations g. rSalvador
includes the Haldane model mainly for educational purposes, and it
relies on algorithms developed by Zheng (2007).

CLASSICAL ANALYSIS
In most published applications of the fluctuation experiment, inference
aboutm relied on the Lea-Coulsonmutant distribution (Lea andCoulson
1949) defined by the PGF G�

1ðz;mÞ given in Equation (3). The Lea-
Coulson distribution owes its popularity partly to the work by Ma
et al. (1992). SALVADOR 1.0 (Zheng 2002) was the first publicly
available software package allowing the user to calculate maximum
likelihood (ML) estimates of m under the Lea-Coulson model. The
web tool FALCOR (Hall et al. 2009) rendered this capability more
easily accessible to bench scientists. But FALCOR does not automate
the process of computing confidence intervals (C.I.s) form. As a result,
the user is forced to compute C.I.s outside FALCOR by following
instructions given on FALCOR’s website.

rSalvador has a unique advantage. Since SALVADOR 2.0 (Zheng
2005), the expected Fisher information has been replaced by the
observed Fisher information in all algorithms for computing point
and interval estimates of m. As a consequence, all C.I.s produced by
SALVADOR (or rSalvador) are based on the likelihood ratio method.
Efron and Hinkley (1978) were among the first to observe that likeli-
hood ratio C.I.s are preferable to the commonly used Wald-type C.I.s.
Raue et al. (2009) referred to likelihood ratio C.I.s as finite sample C.I.s,

to underscore the superiority of likelihood ratio C.I.s over Wald-type
C.I.s. rSalvador (including SALVADOR) is so far the only fluctuation
assay tool that advocates likelihood ratio C.I.s. One distinctive feature of
the likelihood ratio C.I. for m is that it is usually asymmetric about the
ML estimate of m. As an example, consider the well-known Demerec
data (Demerec 1945). The ML point estimate of m is

. newton.LD(demerec.data)
[1] 10.84383
But a 95% likelihood ratio C.I. for m is
. confint.LD(demerec.data)
[1] 8.650538 13.194765
The center of this C.I. is at 10.92, not 10.84—the ML estimate ofm.

Unlike the Wald-type C.I.s, a likelihood ratio C.I. requires iterative
computing. The user can view the iterative process by setting the option
show.iter = T in the above command.

As an educational feature, rSalvador allows the user to specify an
arbitrary value between 0 and 1 for the parameter f given in Equation
(2). In the Demerec experiment, N0 = 90 and Nt = 1.9 · 108 (Zheng
2002). However, if the experiment were terminated prematurely atNt =
900, one would have f = 1 2 90/900 = 0.9. A noticeably different
estimate of m would result, as predicted by Nádas et al. (1996).

. newton.LD(demerec.data,phi = 0.9)
[1] 18.92394
The simple Lea-Coulson model relies on each of the assumptions

(A1)–(A11), which may belie the model’s practical usefulness. One
source of skepticism is the assumption (A7), as cell life spans do not
obey the negative exponential distribution. It was this assumption that
triggered the rhetorical question “Can estimates be trusted?” In a study
of the Haldanemodel, Zheng (2007) compared the Lea-Coulson model
with the Haldane model and found that the two models produced
comparable estimates of mutation rates. This finding suggests that
the assumption (A7) is acceptable, because the two models assume
drastically different cell life distributions. A simulation study by Ycart
(2013) reached essentially the same conclusion. Still, Ycart (2013) sug-
gested using a cell life distribution derived from a particular yeast study
as a universal cell life distribution. In response to Ycart’s suggestion,
Gillet-Markowska et al. (2015) emphasize that “there is no universal
cellular division time model as it depends on experimental conditions
like the strain or the media.”

ACCOUNTING FOR RELATIVE FITNESS
Classical analysis of fluctuation assay data excludes the possibility
of differential growth rates between mutants and nonmutants.
Recognition of the importance of allowing for this possibility can
be traced to Lieb (1951), who highlighted the P0 method of Luria and
Delbrück (1943) for its capability to accommodate differential
growth rates. Using the mutant distribution defined by the PGF in
Equation (4), Zheng (2002) developed algorithms for computing
ML estimates of m and w. These algorithms rely on the expected
Fisher information that must be computed by truncating infinite
series. Because computing infinite series could be prohibitively ex-
pensive in practice, Zheng (2005) improved these algorithms by
replacing the expected Fisher information with the observed Fisher
information, which not only obviated the problem of infinite series
but also made possible the computation of likelihood ratio C.I.s. A
comparison between Equations (32) and (46) in Zheng (2005) clar-
ifies the distinction between the expected and the observed Fisher
information. The elegant work of Efron and Hinkley (1978) pro-
vides helpful information on this topic.

However, Hamon and Ycart (2012) drew renewed attention to the
Mandelbrot-Koch model by making the following observation.
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Indeed, the likelihood and its derivatives can be computed by
iterative algorithms: theoretically at least, the problem could be
considered solved. This is not so in practice, mainly because the
multiple sums that must be computed by the optimization algo-
rithmmake it quite unstable. According to the numerous tests that
we have made, the ML estimates cannot be reliably computed for
samples whose maximum exceeds 1000.

Such a disastrous outcome is unreproducible, as it was an artifact of
the computer code of Hamon and Ycart. The improved algorithms for
computing ML estimates given by Zheng (2005) had been thoroughly
tested using simulated fluctuation experiments in which the maximum
mutant counts far exceeded 5000. A diagnostic clue to the enigma is on
p. 1258 of Hamon and Ycart (2012) below an expression for the
expected Fisher information, denoted by I (a, r).

Fortunately the partial sums increase, so that when computing
the inverse I21(a, r) the sum of the first m terms yields conserva-
tive confidence intervals; yet we do not consider it satisfactory.

Unaware of the advantages of using the observedFisher information,
Hamon and Ycart (2012) still used algorithms reliant on the expected
Fisher information to computeML estimates. This then-outdated prac-
tice led to an exaggerated sense of disaster, so Hamon and Ycart rec-
ommended the generating function (GF) method as a remedy. They
envisioned future experiments in which cultures would contain enor-
mous numbers of mutants to allow the experimentalist to harness the
GF method’s potential. This would imply the abandonment of the
Luria-Delbrück protocol, as large numbers of mutants must be directly
counted, without the aid of plating. Such views caused confusion. For
example, a simulation study of the GF method led Gillet-Markowska
et al. (2015) to emphasize the importance of avoiding exceedingly large
mutant counts.

[T]he precision on the estimation ofm (and by consequence the
estimation of m) is higher for the smallest values of m. Therefore,
users should not outgrow the cultures in order to limit the number
of mutants that grow on selective plates.

The exploration of the GF method by Hamon and Ycart (2012)
offers valuable lessons, which I here illustrate using the experimental
data given in Table 3 of Rosche and Foster (2000). Eight of the 60 mu-
tant counts were excluded in the analysis by Hamon and Ycart (2012),
but I shall use the intact data. One reason for choosing this data set is
that it contains the largest mutant count ever reported—3000. At least
three versions of the GFmethod are available: that given byHamon and
Ycart (2012) via the R code attendant to their paper, that given by the
web tool bz-rates (Gillet-Markowska et al. 2015), and that given by the
R package flan (Mazoyer et al. 2017). ML estimates of m and w, along
with estimates produced by the three versions of the GF method, are
displayed in Figure 1. Judging by the contours of the log-likelihood
function, the ML method outperforms all three versions of the GF
method. The large mutant count did not derail theMLmethod, contra-
dicting the observation of Hamon and Ycart (2012).

. newton.joint.MK(cairns.foster.data)
[1] 1.3027909 0.7281044
Likelihood ratio C.I.s for m and w can be computed separately as

follows.
. confint.profile.m(cairns.foster.data)
[1] 0.9855115 1.6749828
. confint.profile.w(cairns.foster.data)
[1] 0.5209636 1.0298620
The exploration of the GF method drew attention to the issue of

parameter identifiability. Only recently did investigators in systems
biology and related fields recognize practical identifiability as a problem

distinct from the better-known problem of structural identifiability
(Raue et al. 2009). Practical identifiability considers the effects of the
amount and quality of data. Computational difficulties encountered
with the Mandelbrot-Koch mutant distribution may also be viewed
as practical nonidentifiability. The inability to estimate w in the exam-
ples given by Mazoyer et al. (2017) is indicative of practical nonidenti-
fiability. In addition, the C.I.s that extend to zero in these examples are a
symptom of the same problem. No multi-parameter mutant distribu-
tion seems to be immune to practical nonidentifiability. Angerer (2001)
was perhaps the first to document computational difficulties that were
due to practical nonidentifiability. In my own simulation explora-
tion of the mutant distribution used by Lang andMurray (2008) and
by Ford et al. (2013), I also found practical nonidentifiability a
stubborn problem.

A motivation for studying the GF method was to improve the
estimation of the fitness parameter w. Simulation suggests that it is
uneconomical (in terms of sample size) to use the Luria-Delbrück pro-
tocol as a tool for measuring bacterial fitness. The traditional fitness
assay (also known as the competition assay) is a more efficient tool,
which has been increasingly conducted in tandem with fluctuation
assays in recent studies (Scanlan et al. 2015). The Mandelbrot-Koch
mutant distribution enables the investigator to incorporate information
on w in the analysis of fluctuation assay data. For instance, if a fitness
assay yields an estimatedw of 0.73 in the above example, one obtains an
estimate of m by

. newton.MK(cairns.foster.data,w = 0.73)
[1] 1.30215
In the absence of attendant fitness assays, the investigator may use

joint ML estimation cautiously as a tool to obtain an estimate of m
adjusted for the nuisance parameter w. In doing so, the issue of param-
eter identifiability should be kept in mind. While the ML approach is
unsuitable for unrealistically largemutant counts, it remains themethod

Figure 1 Contours of the log-likelihood function for the data given in
Table 3 of Rosche and Foster (2000). The four colored dots represent
estimates of m and w. The green dot indicates the ML estimates, the
blue dot indicates the GF estimates via flan, the purple dot indicates
the GF estimates via bz-rates, and the red dot indicates the GF esti-
mates by an earlier implementation of the GF method.
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of choice for real-world applications. An experimentalist is rarely able
to count 500 mutant colonies per culture (Boe et al. 1994), let alone
5000mutant colonies per culture. The experimentalist resorts to partial
plating if a poorly designed experiment yields unwieldy mutant counts.

ACCOUNTING FOR PLATING EFFICIENCY
Whenanexperimentalistplatesonly aportionof eachculture,werefer to
the actually plated proportion as the experiment’s plating efficiency,
often denoted by e. A culture before plating is densely populated by
cells, but mutants constitute only a minute fraction of the cell popula-
tion. As a result, mutants are sparsely and randomly dispersed in the
culture. If 10% (i.e., e ¼ 0:1) of a culture is plated, in general, the
experimentalist does not transfer exactly 10% of the mutants onto a
selective culture—the actual number of mutants transferred is a ran-
dom number. Although a liquid culture resides in a three-dimensional
tube, the randomness induced by partial plating is more easily under-
stood by analogy with a slice of raisin bread, as illustrated by Figure 2.

Partial plating is common, as it is a practical measure to circumvent
overwhelmingly large mutant counts. For example, except for one
experiment, all experiments reported by Luria and Delbrück (1943)
had a plating efficiency smaller than unity. Their experiment 16 is
perhaps the best known by biology students. In that experiment a
portion of 0.08 ml was plated from each of the twenty 0.2-ml cultures.
Hence, the plating efficiency was e ¼ 0:4. The popular genetics text-
book of Griffiths et al. (2000, p. 481)missed the partial plating feature of
that experiment. A recent tutorial (Meneely 2016, p. 373) also mistak-
enly omitted the partial plating feature of the same experiment. Because
11 of the 20 cultures had no mutants, the tutorial argues by the P0
method that the mean number of mutations per culture is m � 0.6.

Why is the above claim incorrect? There is a crucial distinction
between thenumberof zeromutantcountsandthenumberof actualnull

cultures—cultures having no mutants prior to plating. Suppose a cul-
ture contains one mutant prior to plating. When 40% of that culture is
plated, the mutant has a 60% chance of not being counted. Thus, a zero
mutant count may result from a nonnull culture. In other words, the
experimentalist is uncertain about the number of actual null cultures. To
account for this additional source of uncertainty, one can apply a mod-
ified P0 method, which was proposed by Stewart et al. (1990, p. 184).

. p0.LD.plating(luria.16.data,e = 0.4)
[1] 0.9786801
Hence, the mean number of mutations per culture ism � 0:98; not

0.60. Luria and Delbrück reported that each culture contained 5.6 · 108

bacteria. Is this the number of cells in the plated portion or in the whole
culture? To remove the ambiguity, note that Luria and Delbrück also
reported an average mutant count of 28.4 mutants per culture. Because
the mean number of the observed mutants in the plated portion was
11.35, the meaning of “per culture” is now clear. There must be 5.6 ·
108 cells in the whole culture. That is, Nt = 5.6 · 108. Therefore, the
mutation rate is p = 0.98/Nt = 1.75 · 1029 mutations per cell division,
according to Equation (1).

rSalvador relies on the mutant distribution defined by the PGF
G3ðz;m; eÞ in Equation (5) to compute ML estimates and likelihood
ratio C.I.s for the fundamental parameterm. It employs the algorithms
developed by Zheng (2008). For example, an ML estimate of m for
Luria and Delbrück’s experiment 16 is

. newton.LD.plating(luria.16.data,e = 0.4)
[1] 1.18636
and an LR-based 95% C.I. for m is
. confint.LD.plating(luria.16.data,e = 0.4)
[1] 0.5803079 2.0908012
Many recent investigators were unappreciative toward the effects of

partial plating. For example, in the reanalysis of the experiments of Luria
and Delbrück (1943), Hamon and Ycart (2012, Table 1) and Ycart
(2013, Table 3) ignored the effects of partial plating. In the reanalysis
of data from David (1970) and from Werngren and Hoffner (2003),
Ycart and Veziris (2014) also disregarded the effects of partial plating.
Moreover, unusual care may be required to determine the plating
efficiency of an experiment that involves sophisticated procedures such
as culture condensation. For instance, the plating efficiency in the study
by Werngren and Hoffner (2003) was 0.4, as explained in Zheng
(2016a, p. 357). But at first glance the plating efficiency may seem to
be 0.2, as was assumed by Mazoyer et al. (2017).

Investigators who were aware of the effects of partial plating often
relied on an adjustment due to Stewart et al. (1990), as this was the only
approach recommended on the FALCOR web site. To apply the Stew-
art approach, the experimentalist first computes an initial estimate m�

of m by assuming perfect plating efficiency.
. newton.LD(recent.expt)
[1] 15.36162
Because the adjustment factor is A5 ðe2 1Þ=ðelogðeÞÞ5 21:50, an

estimate ofm isbm � ·A= 15.36 · 21.5 = 330.24. Note that this estimate
ofm is ~56% of the correspondingML estimate (593.6). The reason for
this inadequacy of the Stewart approach was given by Zheng (2015b).
The above discussion is limited to cases wherew = 1. Gillet-Markowska
et al. (2015) proposed applying the Stewart method also to cases where
w 6¼ 1, which is inappropriate in view of the above example. rSalvador
currently is unable to deal with such cases.

COMPARING MUTATION RATES
Rarely did a researcher perform fluctuation experiments solely to
estimate mutation rates. The researcher’s task is often to compare
mutation rates across strains or under distinct experimental conditions.

Figure 2 This diagram draws an analogy between a three-dimensional
liquid culture and a slice of raisin bread, to help explain the randomness
induced by partial plating. The green points, each symbolizing a mutant,
are randomly dispersed in the square area. The two circles indicate two
possible ways of sampling (plating) an equal portion of the square area
that represents a three-dimensional liquid culture.
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Early investigators applied a modified t-test to accomplish this task.
This practice can lead to misleading p-values (Zheng 2015a). Recent
investigators turned to theMann-Whitney test (Ford et al. 2013), which
also is inappropriate. When applying the Mann-Whitney test to fluc-
tuation assay data, the investigator actually compares the mean num-
bers of mutations (m) between two experiments, not the two mutation
rates that need comparing. To compare mutation rates, the investigator
must take into consideration the final cell numbers Nt. It is a common
feature thatNt values are consistent within each group (e.g., a strain or a
particular experimental condition), but they differ noticeably between
groups.

rSalvador provides two approaches to mutation rate comparison.
The recommended approach is the likelihood ratio test (LRT) for
fluctuation assay data, developed by Zheng (2016a). The second is
purely empirical; it tests for equality of two mutation rates by checking
whether two 84% C.I.s for the mutation rates overlap. If the two 84%
C.I.s overlap, the test is not significant at the 5% level. Empirical evi-
dence supporting the latter approach can be found in Zheng (2015a).
Consider now the following two experiments from the study of Kra�sovec
et al. (2014) (data were kindly provided by R. Kra�sovec).

expt1 = c(0, 2, 0, 3, 0, 15, 21, 0, 1, 0, 0,
4, 4, 1, 3, 2, 1, 0, 0, 0, 1, 0, 9, 0)
expt2 = c(8, 2, 4, 3, 6, 11, 2, 2, 0, 13, 6, 8)
The investigators measured the relative fitness in both experiments

and obtained w1 = 1.47 and w2 = 1.45. They also measured the two Nt

values: Nt,1 = 2.27 · 108 and Nt,2 = 5.15 · 108. A Mann-Whitney test
would yield a p-value of 0.01. But this p-value is misleading, as cells in
the second population underwent about twice as many cell divisions as
cells in the first population (the precise ratio is R = Nt,2 / Nt,1 = 2.29).
The LRT approach gives a likelihood ratio statistic of 0.19, correspond-
ing to an approximate p-value of 0.66.

. LRT.MK(expt1,expt2,w1 = 1.47,w2 = 1.45,R = 2.29)
[1] 0.1924875 0.6608543
Not surprisingly, the 84% C.I.s for the two mutation rates overlap.
. confint.MK(expt1,w = 1.47)/2.27e8
[1] 1.798407e–09 5.244954e–09
. confint.MK(expt2,w = 1.45)/5.15e8
[1] 2.155918e–09 6.105526e–09
Both approaches are applicable to cases where partial plating is

adopted.Considermutant count data from thefirst (strainsH37Rv) and
third (strain E 729/94) experiments in the study of Werngren and
Hoffner (2003). The plating efficiencies in both experiments were 0.4.
The final cell density for the H37Rv strain was 2.3 · 108 cells perml and
that for the E 729/94 strain was 1.3 · 108 cells per ml. Because cultures
in both experiments were of the same size (5ml), the ratio of the twoNt

values is therefore R = 1.3/2.3. An LRT gives a p-value of 0.62.

. LRT.LD.plating(wh.data[[1]], wh.data[[3]], e1 = 0.4,
e2 = 0.4, R = 1.3/2.3)
[1] 0.2435538 0.6216511
Mazoyer et al. (2017) proposed a new method based on asymptotic

normality of estimated mutation rates. The following simulation study
compares statistical power of the three methods. Seven groups of
20-culture fluctuation experiments were simulated using the Lea-Coulson
mutant distribution. Each group comprises 10,000 experiments. In
the baseline group, Nt = 2 · 108 and the mutation rate is 1.0 · 1028 .
In the other groups,Nt = 1 · 108 and the mutation rates are k · 1028

for k ¼ 1:25; 1:5; 1:75; 2:0; 2:5 and 3.0. In all groups, N0 = 50. Each
experiment in the baseline group is compared with the correspond-
ing experiments (i.e., experiments having the same serial number)
in all other six groups. Table 1 shows statistical power of the three
methods at the 5% significance level. The LRT method and the
method of checking overlapping of 84% C.I.s performed almost equally
well, but the asymptotic normality method was less powerful.

ACCOUNTING FOR VARIABILITY IN Nt

There was deep concern that variability in Nt among cultures could
interfere with the analysis of fluctuation assay data (Rosche and Foster
2000). However, findings in a recent study (Zheng 2016b) have some-
what lessened worries about that issue. In practice, the experimentalist
can use a few cultures to gauge the variability in Nt by calculating the
coefficient of variation (CV) for Nt. The new study found that a CV of
0.2 or smaller has a negligible effect on the estimation of mutation rates.
More importantly, larger CVs for Nt were rarely encountered in prac-
tice. Therefore, if the experimentalist is facing a more critical issue, e.g.,
partial plating, consideration of variability in Nt should give way to
addressing the more critical issue.

Severalmethods to account for variability inNtwere reviewed inZheng
(2016b). For example, FALCOR refers to a method that requires the
experimentalist to measureNt for all cultures, which often is too laborious
to be practical. rSalvador offers a method based on the B0 distribution
defined by the PGF G4ðz;A; kÞ in Equation (6). The B0 method assumes
that the expected number of mutations in a culture is proportional to the
Nt of that culture. It further assumes that, conditional on a culture’s Nt ,
the number of mutants in that culture obeys a Lea-Coulson distribution.
If the CV for Nt in an experiment is C, then, under additional mild
assumptions, the unconditional distribution of the number of mutants
is a B0ðC2m0;Cð22ÞÞ distribution (Zheng 2016b). Here,m0 is regarded as
the overall mean number of mutations per culture, and one can use
rSalvador tomake inferences about the parameterm0. If m̂0 is an estimate
ofm0, then an estimate of themutation rate is p̂ ¼ m̂0 =N

�
t , whereN

�
t is

the mean of Nt of all cultures in the experiment.
As an example, suppose that the CV for Nt in the Demerec exper-

iment (Demerec 1945) is 0.15. Point and interval estimates of m0 are
obtained as follows.

. newton.B0(demerec.data,cv = 0.15)
[1] 11.09696
. confint.B0(demerec.data,cv = 0.15)
[1] 8.765365 13.665749

DETERMINING SAMPLE SIZE
The question of “Howmany cultures are needed”must have been asked
by investigators countless times, but it has received little attention in the
literature. Investigators often choose a sample size on the basis of a
published example in which the sample size was determined intuitively.
There were no guidelines for determining sample size until recently
(Zheng 2017b).

n Table 1 Statistical power (Lea-Coulson model)

p · 108 1.25 1.5 1.75 2.0 2.5 3.0

LR test 11.0 25.1 45.2 62.8 88.8 97.6
C.I. overlap 10.5 24.7 44.9 62.4 88.7 97.5
Normality 7.93 18.9 35.6 52.8 80.8 93.9

Six groups of simulated experiments were compared with a baseline group. The
mutation rate in the baseline group 1.0 · 1028 is smaller than the mutation rates
in the six other groups. The final cell population size Nt in the baseline group is
twice as large as in the other groups. Three comparison methods, namely, the
LRT, the method of checking C.I. overlapping, and the asymptotic normality
method, were used to test for equality of mutation rates between experiments
in the baseline group and experiments from one of the other six groups. Each
entry in the table is the percentage of tests that are significant at the 0.05 level.
Hence, each entry is an estimate of statistical power at the 0.05 level.
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In planning an experiment, the investigator may form a preliminary
idea about the magnitude of m. A large mmay reduce the sample size,
but it may result in cultures containing more mutants than the inves-
tigator is able to count. Zheng (2017b) proposed the following h500

index to guide experimental design:

h500 ¼ Prob ða culture having more than 500 mutantsÞ: (7)

As a rule of thumb, the experimentalist may chooseh500, 0.01. Thus,
the experimentalist allows no .1% of the cultures to have .500
mutants per culture. As an illustration, assume that the mutation rate
to be determined is in the neighborhood of 2 · 1027 mutations per
cell division. Assume further that the mutants have a relative fitness of
0.75. If the investigator plans to allow the final number of cells per
culture to reach 2 · 107, thenm would be�4.0 according to Equation
(1). Therefore, the h500 index is

. 1 – sum(prob.MK(m = 4,w = 0.75, n = 500))
[1] 0.001243678
But if the mutants have a relative fitness of 1.2, the h500 index will be

larger.
. 1 – sum(prob.MK(m = 4,w = 1.2, n = 500))
[1] 0.02221585
If the anticipated value of m meets the h500 criterion, the experi-

mentalist determines a required sample size by choosing an appropriate
c score. The c score was introduced by Zheng (2017b) as a convenient
yardstick for judging the quality of C.I.s. The c score is defined by

c ¼ half width of a 95% C:I: for m
anticipated magnitude of m

: (8)

Consider a case where w ¼ 0:75 has been determined via a fitness
assay. The experimentalist further believes that m � 4:0: Choosing a
c score of 0.25 would lead to an estimated sample size of 31.

. samp.size.MK(m = 4,w = 0.75,psi = 0.25)
[1] 31
If an anticipated value of m is large enough to lead to an unaccept-

able h500 index, the experimentalist may resort to partial plating. For
example, in the case where m ¼ 50 and w ¼ 1:0; the h500 index is

. 1 – sum(prob.MK(m = 50,w = 1,n = 500))
[1] 0.1894214
However, byplating10%of each culture, the experimentalist reduces

h500 to
. 1 – sum(prob.LD.plating(m = 50,e = 0.1,n = 500))
[1] 0.01086645
And the corresponding sample size is
. samp.size.LD.plating(m = 50,e = 0.1)
[1] 15

Conclusions
Methodological advances made in the past 74 yr have presented the
experimentalist with a bewildering array of methods to analyze fluctu-
ation assay data. By providing concrete examples, this article helps the
reader make an informed decision about which method is the most
appropriate for a given experiment. All discussed methods are approx-
imate, as the underlying mathematical models inevitably depend on
simplifying assumptions. Further research will no doubt lead to more
flexible methods by relaxing or dropping one or other of these assump-
tions, e.g., the assumptions (A1)–(A11). However, it is impossible to
construct a comprehensive mathematical model by discarding all the
11 assumptions. Even if this herculean feat were accomplished some-

day, the resultant model would possess these two characteristics: it
would still be an approximation to the infinitely complex biological
reality, and it would be too cumbersome to be useful in practice. Re-
searchers investigating a challenging biological problem should also
play an active part in choosing an appropriate method to analyze their
fluctuation assay data, treating the task as an existing, integral part of
their research endeavor, not merely as an inescapable, tedious last leg of
a long scientific journey.
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