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Abstract

Background: Influenza reassortment, a mechanism where influenza viruses exchange their RNA segments by
co-infecting a single cell, has been implicated in several major pandemics since 19th century. Owing to the significant
impact on public health and social stability, great attention has been received on the identification of influenza
reassortment.

Methods: We proposed a novel computational method named HopPER (Host-prediction-based Probability
Estimation of Reassortment), that sturdily estimates reassortment probabilities through host tropism prediction using
147 new features generated from seven physicochemical properties of amino acids. We conducted the experiments
on a range of real and synthetic datasets and compared HopPER with several state-of-the-art methods.

Results: It is shown that 280 out of 318 candidate reassortants have been successfully identified. Additionally, not
only can HopPER be applied to complete genomes but its effectiveness on incomplete genomes is also
demonstrated. The analysis of evolutionary success of avian, human and swine viruses generated through
reassortment across different years using HopPER further revealed the reassortment history of the influenza viruses.

Conclusions: Our study presents a novel method for the prediction of influenza reassortment. We hope this method
could facilitate rapid reassortment detection and provide novel insights into the evolutionary patterns of influenza
viruses.
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Background
Influenza A viruses, as highly infectious respiratory
pathogens, are able to evade host immune responses
and transmit across host species. A complete influenza
genome consists of eight independent gene segments,
where the subtype of influenza is characterized by
the surface glycoproteins hemagglutinin (HA) and neu-
raminidase (NA) [1]. Transcription and replication take
place by the viral RNA-dependent polymerase complex
polymerase acidic protein (PA), polymerase basic pro-
tein 1 (PB1) and polymerase basic protein 2 (PB2) [2].
The rest of the segments encode the nucleoprotein (NP),
matrix protein (M1), ion channel protein (M2) and two
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non-structural proteins (NS1 and NS2). This structure of
the virus allows for the exchange of eight RNA segments
between influenza viruses coinfecting a cell [3]. The pro-
cess of genetic recombination, named reassortment, may
lead to the emergence of novel progeny viruses [4].
It has been well recognized that reassortment is an evo-

lutionary mechanism of segmented viruses that play an
important role in the interspecies transmission and gen-
erating novel strains of influenza. The reassortment could
accelerate the rate of acquiring new genetic markers that
would faster overcome host barriers than the slow pro-
cess of incremental accumulation of mutations [5]. Three
of the four major influenza pandemics occurred since
the 19th century were due to the reassortment that pro-
duced new strains infecting humans [6]. The evidence
indicated that the HA and NA segments of the 1957
Asian pandemic were replaced by gene segments related
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to avian strains. The reassortment of human and avian
strains with an H3 HA gene derived from avian-origin
viruses led to the 1968 H3N2 pandemic [7]. In addition,
reassortment between two different swine influenza
viruses, which themselves contained genes from previous
human, swine and avian influenza strains, caused another
pandemic in 2009 [8]. These pandemics have not only
killed numerous people but also led to enormous eco-
nomic losses. Therefore, early identification of influenza
reassortment and potential reassortant strains are crucial
for the surveillance and prevention of pandemics in the
future.
With the rapid growth of flu data in recent years,

increasing complete influenza genomes are publicly avail-
able [9]. There is little concern about the acquisition
and interpretation of the data. Many efforts have been
made to detect influenza reassortment events using
the influenza genomic data. The common approach of
identifying influenza reassortment is to construct fixed
phylogenetic trees relating each segment of the strains
[10–12]. Two methods were proposed for identifying
reassortment events based on the difference between phy-
logenetic trees or tree subsets [13]. These trees are com-
pared to detect disagreements of different strains, but it
is a laborious and time-consuming process. Moreover, it
provides no guarantee that all reassortments have been
found. To account for the uncertainty in the inferred
phylogenies, a novel computational method named GiRaF
was developed to identify reassortment [14]. In GiRaF,
large collections of Markov chain Monte Carlo sampled
trees were searched for groups of incompatible splits by
a fast biclique enumeration algorithm. This successfully
detected some known reassortments in avian, human and
swine influenza strains. Yurovsky and Moret presented
a fully automated flu reassortment finder called FluRF
that employed a bottom-up search on the reconstructed
phylogenetic trees of full and segment-based genomes
[15]. However, the computational cost of phylogeny laid a
formidable barrier for reassortment detection using phy-
logenetic analysis with a large scale of the dataset. Silva
et al. aimed to solve this problem by formulating a phy-
logeny independent method that only utilized nucleotide
distance matrices as input for reassortment detection
[16]. Furthermore, Rabadan et al. provided a quantita-
tive method to measure the genetic shift from nucleotide
sequence data that did not rely on phylogenetic analysis
for reassortment detection [17]. Villa and Lässig deter-
mined rate and average selective effect of reassortment
process in human influenza H3N2 using a new method
to map reassortment events from joint genealogies of
multiple genome segments [18]. Eng et al. developed
an influenza reassortment simulation tool through host
tropism protein signatures [19]. This program computa-
tionally simulates reassortment between the eight viral

segments and then generates a list of all possible reassor-
tant progeny based on the signatures.
Despite the growing data of genomic sequences and

powerful computational capability for constructing var-
ious phylogenies to detect reassortment events, these
approaches are generally applicable in a small scale of the
dataset with well-defined phylogenetic trees. In particular,
none of the existing approaches scale well to large datasets
in detecting all reassortants. In this paper, we develop a
novel approach named HopPER (Host-prediction-based
Probability Estimation of Reassortment) that employs
machine learning techniques to calculate the reassort-
ment probability by predicting the host tropism in a given
collection of genomic sequences. HopPER first gener-
ates the feature vectors by seven physicochemical prop-
erties of amino acids from influenza sequences of three
major hosts (avian, human, swine) with global descrip-
tors CTD (Composition, Transition and Distribution). It
then applies a kernel perspective on host probability esti-
mation by the random forest [20] for a single sequence
and then combines all segments of the genome to pro-
duce an overall estimation of reassortment probability.
We tested HopPER on both real datasets and synthetic
datasets to evaluate the capacity of estimating the reas-
sortment possibility of genomes. HopPER is compared
with some state-of-the-art methods. The results show that
HopPER has successfully identified reassortments with
high precision.Furthermore, HopPER is efficient in
detecting reassortment for even incomplete genomes
(with at least two available genomic segments) and in
analyzing large datasets. We hope HopPER can assist flu
surveillance and prevent future pandemics.

Methods
Problem formulation
The concepts of reassortment are broadly applicable to
other multipartite genomes, most of which have been
studied. Here, our interest is only influenza reassortment.
As far as we know, the reassortant strains are responsi-
ble for the majority of flu pandemics in history and will
continuously threaten public health. While any exchange
of genetic material between different influenza viral RNA
segments can be considered as reassortment. In this
paper, we mainly focus on identifying interspecies reas-
sortments that have occurred across hosts. It is similar
to definitions of host tropism predictors in the literature,
except that here the problem is formulated probabilisti-
cally to enable a quantified estimate of host origin. Hence,
host tropism is modelled by quantifying the reassortant
probabilities. The model can also detect intra-host reas-
sortments, for instance between different viral strains that
have originate from one single host category such as avian.
In themodel, the actual host in which themixing occurred
is disregarded and the focus is mainly on detecting past
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reassortants and the potential evolutionary relationships
that may be inferred. For all practical purposes, we only
use avian, human and swine strains that account for the
overwhelming majority of the existing sequence data. The
following subsections respectively elaborate the dataset
and the structure of the model. Figure 1 presents the
flowchart of HopPER.

Data collection and preprocessing
The amino acid sequences of all segments with avian,
human and swine hosts are downloaded from NCBI
Influenza Virus Resource [21] on 31 Dec 2017. Only full-
length sequences are acquired and duplicate strains are
removed from the collection. The results are presented in

Table 1. We exclude PB1-F2 and PA-X proteins as they are
completely contained in PB1 and PA respectively. It would
be impossible for PB1-F2 and PA-X to have different host
designation to PB1 and PA. Similarly, segment M con-
sists of M1 and M2 proteins and segment NS comprises
NS1 and NS2 proteins. We only select NS1 and M2 pro-
teins as representatives for host tropism prediction. This
is because we could collect many more samples on NS1
and M2 to construct the model. Finally, the data of eight
different proteins is obtained and we label avian sequences
as ’0’, human sequences as ’1’ and swine sequences as ’2’ in
the process of host prediction.
Besides, whole-genome datasets are also collected from

NCBI on the same date and settings. To analyze the global

Fig. 1 Schematic overview of analysis workflow in HopPER. a The general diagram of the host prediction model based on seven physicochemical
properties and reassortment probability estimation in the random forest. b Specific algorithmic steps for estimation probability model on influenza
genome reassortment detection



Yin et al. BMCMedical Genomics            (2020) 13:9 Page 4 of 13

Table 1 The number of influenza sequences for selected
segments on avian, human, swine hosts and combined dataset

Protein
Host type

Avian Human Swine Combined

HA 12248 13607 6257 32112

NA 9452 10107 5734 25293

NP 4841 2659 2292 9792

PA 8428 5498 3059 16985

PB1 7699 4869 2892 15460

PB2 8106 5490 2901 16497

NS1 6115 4133 2662 12910

M2 2237 1404 1534 5175

patterns of reassortment events from the year 1918 to
2017, we end up with 13598, 20614 and 4380 complete
and incomplete genomes of avian, human and swine hosts
respectively after data preprocessing. Further analysis is
performed to illustrate the potential reassortants using
genomic sequences. Also, synthetic genomes are collected
from Global Initiative on Sharing All Influenza Data
(GISAID) [22]. These strains are synthesized from labo-
ratory and labeled as true reassortants that contains 87
complete genomes and 25 incomplete genomes to validate
the performance of our model . The incomplete genomes
have at least two different segments so that we could cal-
culate the probability of host tropism for each segment
and exert statistical probability estimation to identify the
reassortment. Apart from synthetic genomes, we also vali-
date HopPER through real samples studied that have been
tested by some state-of-the-art methods. The annotation
of real and synthetic genomic samples could be found in
Additional file 1: Table S2 and S4.

Feature transformation
The feature transformation of protein sequences is con-
ducted based on AAindex, a database of amino acid
physicochemical properties, substitution matrices and
statistical protein contact potentials [23]. We perform
the method developed by Dubchak to transform protein
sequences into feature vectors [24]. The transformation is
implemented by using three global descriptors: composi-
tion (C), transition (T) and distribution (D) to calculate
the numerical values for each amino acid properties. The
amino acid physicochemical properties contain polarity,
net charge, hydrophobicity, normalized van der Waals
volume, solvent accessibility, polarizability and secondary
structure [25]. These amino acids are divided into three
different groups based on the physicochemical properties
of amino acid indices [26] (Additional file 1: Table S1). The
equations for three global descriptors are formulated as
follows:

Composition =
(
CG1
N

,
CG2
N

,
CG3
N

)
(1)

Transition =
(
TG1G2
N − 1

,
TG1G3
N − 1

,
TG2G3
N − 1

)
(2)
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(
Di0
N

,
Di25
N

,
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N

,
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N

,
Di100
N

)
(3)

Composition describes the percentage frequency of each
amino acid property groups across the entire protein
sequence. N is the number of amino acids and CGi is
the frequency of amino acid property of group i in the
sequence. Transition characterizes the percentage fre-
quency with which amino acids of a group is followed by
another group denoted as TGiGj. It means the property in
group i is followed by group j or the other way around such
that i, j = 1,2,3 and Gi �= Gj. The third descriptor illus-
trates the distribution of each attribute in the sequence
and Di represents the percentage in these positions of the
amino acid properties in group i. The distribution is based
on the first, 25%, 50%, 75% and 100% of the amino acids for
each attribute [24]. Therefore, 21, 21 and 105 new features
are generated based on seven amino acid physicochem-
ical and structural properties for global CTD descriptor
respectively. In total, 147 amino acid feature vectors have
been used to build the model for host tropism prediction.

Host tropism prediction
We first carry out the experiments on the host tropism
prediction for selected proteins. The effectiveness of host
tropism prediction on influenzaHAproteins and zoonotic
strains prediction has been demonstrated by Eng et al.
[19, 27]. Our previous work supplemented this work on
the host prediction of human-adapted subtypes using
random forest that achieved better results over other clas-
sifiers [28]. By constructing a multitude of decision trees,
it applies the general technique of bootstrap aggregating
to tree learners and then splits leaf nodes in the trees by
random subset of feature space [20]. This comes at the
expense of a small increase in the bias and some loss of
interpretability, but generally greatly boosts the perfor-
mance in the final model [29]. To ensure the robustness
of our models, all the datasets are split into indepen-
dent training dataset and testing dataset with a ratio
of 0.8:0.2. We first apply ten-fold cross validation tech-
nique to develop our models and evaluate the training
process with random forest, and then the independent
testing dataset is used to assess the ability of our model
in predicting the host tropism of new data. The metrics
to evaluate the performance include accuracy, precision,
recall, G-means [30] andMatthew’s correlation coefficient
(MCC) [31].
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Construction of training data
In Fig. 1b, for the given input genomes for reassortment
detection, we split the genome into segments. The host
tropism prediction for each segment is performed by indi-
vidual independent models with random forest. To reduce
the overfitting of our model for host prediction, we intro-
duce an algorithm named Ratcliff-Obershelp [32] and this
method measures the similarity between input sequences
and training sequences using gestalt pattern matching.
It supports a heuristic that automatically treats certain
sequence items as junk and counts how many times each
individual item appears in the sequence. The similarity
between a pair of sequences ranges from 0 to 1.We set the
threshold of 0.99 to filter the sequences from the training
data that are similar to input sequences. The remaining
sequences are used to train the host prediction model and
construct HopPER. Removal of similar sequences estab-
lishes independence of train and test datasets. It ensures
the cross-validated results are a “true reflection” of model
performance. and make our model adaptive to the distinct
input genomes for reassortment detection.

Reassortment probability estimation
In the reassortment probability estimation, we set xia
as influenza sequence and yj is the possible host. The
variable xia represents the influenza protein type a in
genome i. Here, a belongs to one of the selected pro-
teins while the ordered elements in set j = 0,1,2 corre-
spond to avian, human and swine hosts, respectively. To
better calculate the reassortment probability and make
the problem more statistically tractable, it is assumed
that the distribution of pairs of influenza sequences and
its host labels are independent and identical, that is xia
and yj are related according to an unknown conditional
class probability function P(yj|xia). Typical classification
is to discriminate whether P(yj|xia) ≥ 0.5 to predict
the class of a new input sequence as described in the
“Host tropism prediction” section above. However, our
goal is to directly estimate the probability of host tropism
for each protein in a genome.
As far as we know, There is no literature regarding reas-

sortment probability estimation in random forest models.
This is probably that virologists would usually check for
reassortment by a homology search or by phylogenetic
analysis of influenza segments. Meanwhile, a previous
study has indicated that random forests are difficult to
calibrate by standard calibration methods [33]. However,
random forest achieves the best performance of estima-
tion among machine learning classifiers after calibration
[34]. Some other researchers have investigated the effect
of utilizing corrected probability estimates in random
forests by Laplace and m-estimates at the nodes have
demonstrated its usefulness [35]. Though there still exists
limited empirical evidence for the effect of random forest

probabilities estimation [36], the framework of kernel
regression in the random forest probability estimation
produces better results [37].
Consisting of a collection of T un-pruned decision

trees, where one tree is built from each bootstrap sample,
random forests allow consistent estimation of individual
probabilities [38]. A tree is constructed by introducing
recursive binary splits to the data based on the covariates
and only a subset of covariates of predefined size mtry is
randomly selected at each node. The randomness in each
tree is represented by a random variable θ ∈ �, which
is an indicator to index the trees in the forest. The class
probability estimates for a terminal node are obtained by
the relative frequency of the class in that terminal node.
For example, the probability estimate of the tree for a new
item is the class probability of the corresponding termi-
nal node. The decision tree will partition the input space
by the terminal nodes that would be denoted in the tree
generated through θ ∈ �, where a point x0 belongs to
Rθ (x0). And the number of the samples in this node will
be represented by Nθ (x0). Under these assumptions, the
probability estimation for a single tree at a point x0 could
be defined as function f (θ , x0) formulated below.

f (θ , x0) =
n∑

i=1

∏
(xi ∈ Rθ (x0))yj

Nθ (x0)
(4)

A random forest is composed of a set of independent
random draws θ1, ..., θt , and the associated trees
f (θ1, ·), ..., f (θt , ·). In the case of host tropism prediction of
influenza sequences, we estimate probabilities by making
the host label for each tree round(f (θt , x0)) and counting
the fraction of trees that vote for its class. The results
are aggregated by averaging the probability estimates
denoted by RFprob(·) for the new input data over all trees
(Fig. 2). Here we define the function that approximates
the conditional class probability P(yj|x0), calculating
the probability of each possible binding host for input
sequence x0, as RFprob(x0).

RFprob(x0) = 1
T

T∑
t=1

round(f (θt , x0)) (5)

The random forest sustains significant basis for host
tropism prediction of influenza sequences but cannot
directly identify reassortment or reassortant strains. To
perform reassortment probability estimation, we need to
know the original host types for all influenza sequences of
the genome. In practice, we a set sequence in genome i as
xia where a ∈ S{HA,NA,NP, PA, PB1, PB2, NS1,M2}. The
probability estimation for certain host of protein is repre-
sented as xias and could be calculated by RFprob(xias), that
is, P(yj|xias ), where yi indicates different host labels and
as is certain protein. For a candidate genome gi contain-
ing n different proteins, we use an to denote the possible
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Fig. 2 The structure of random forest T for probability estimation. θt is an independent random draw and f (θt , x0) stands for the probability estimate
by associated tree t at point x0. P(yj|x0) characterizes the aggregation of conditional probability of all trees for label yi

segments in gi, where as ⊆ an ⊆ S and xias ∈ gi. The
probability estimation of gi being non-reassorted could be
represented as NonREprob(gi) and is formulated below.

NonREprob(gi) = P(yj|gi)

=
an∏

P(yj|xias)
(6)

Taking all the available sequences into the calculation,
the estimate of influenza reassortment probability is given
as REprob(gi) shown in Eq. 7. Algorithm 1 clarifies the
detailed steps of estimating reassortment probability. It
not only allows the estimation of reassortment probabili-
ties in complete genomes but also displays effectiveness in
incomplete genomes. Random forest probability estima-
tion provides a principled way to view the reassortments
in terms of conditional probability functions. Hence,
such a problem formulation motivates the discussion of

estimation function as a fundamental and quantitative
way to predict influenza reassortment. For instance, a pre-
diction that an avian host origin is more likely than human
or swine host can narrow the sequence or homology
search space for a virologist, given a sequence of interest.

REprob(gi) = 1 −
2∑

j=0
NonREprob(gi) (7)

A genome is regarded as a reassortant strain if the
estimated probability is greater than 0.5 by our model,
otherwise, it is a non-reassortant strain. We set the true
positive value (TPV) in equation (8) to measure the abil-
ity of HopPER in reassortant detection. Apart from the
detection of reassortment, HopPER can also predict the
non-reassortant strains with the same principle. However,
as far as we know, the study of non-reassortant strains
attract less attention and it is usually difficult to confirm
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Algorithm 1 Probability estimation for influenza reas-
sortment
Require: Training sequences tk ∈ G, detected genome gi

that contains sequences xia
Ensure: Reassortment probability estimation REprob(gi)
1: n ← Number of sequences in genome gi
2: for s = 1 to n do
3: as ← Certain protein type of input sequences xia
4: if Similarity(xias , tk) <= threshold then
5: G′ ← Remove tk from G
6: feature

(
G′
as

)
← Feature generation on updated

datasets G′ on protein as
7: end if
8: form = 1 to t do
9: θm ← Select independent random draw

10: f (θm, xias) ← Probability estimation for single
tree based on feature

(
G′
as

)
11: end for
12: RFprob(xias) ← Aggregate probabilities of t trees on

protein as
13: P(y|xias ) ← Obtain probabilities for different host

labels y on as through RFprob(xias)
14: end for
15: REprob(gi) ← Calculate the final reassortment prob-

ability of genome gi by taking P(y|as=1,...,n) under
reassortment rules

16: return REprob(gi)

or deny a strain without reassortment. Direct validation of
true negative samples by HopPER poses great challenges.
As an alternative, we intend to sketch the contours of the
distribution of reassortant strains across different years
and analyze the rate variation of evolutionary success of
viruses generated through reassortment by HopPER. We
define the reassortant strain rate (RSR) as the ratio of reas-
sortments that have occurred and the strains reproduced
from the past reassortants to total genomic strains, which

is a measurement of the subsequent evolutionary success
of viruses generated through reassortment. It could be cal-
culated by identifying the reassortant and non-reassortant
strains by HopPER. As a result, we could draw the outline
of RSR variation by year and analyze the potential evo-
lutionary patterns of the avian, human and swine strains.

TPV = number of correct predictions
number of genomes

(8)

Results and Discussion
Performance of individual protein on host tropism
prediction
After data preprocessing and feature generation for all
available sequences from NCBI, prediction models for
individual influenza proteins were built by random forest.
Table 2 presents the performance of predictive models for
individual proteins on independent training and testing
data. It is shown that our constructed models achieved
outstanding performance in both 10-fold cross validation
training data and independent test data. In more details,
the HA model obtained the highest accuracy of 0.966
(G-means = 0.953, MCC = 0.943), whereas the lowest
was M2 model with 0.876 accuracy (G-means = 0.854,
MCC = 0.805) in the training set. Regarding independent
test results, our models showed comparative performance
with accuracy ranging from 0.865 to 0.965 for different
proteins, which further demonstrated the robustness of
our proposedmodels on host tropism prediction. Further-
more, we also reported the predictive performance based
on each class of avian, swine and human to help increase
the confidence of our models (Additional file 1: Table S3).
All the prediction models have demonstrated high

predictive performance, capable of distinguishing avian,
human and swine strains. In the evolutionary history
of influenza, the viruses transmit between different host
species, which allows for the mixture of gene segments
and produces reassortant strains. This might enhance the
pathogenicity of the virus, assisting reassortant strains to

Table 2 Performance of host tropism predictive models for individual proteins on independent training and testing data

Model
Training data Testing data

Accuracy Precision Recall G-means MCC Accuracy Precision Recall G-means MCC

HA 0.966 0.967 0.956 0.953 0.943 0.965 0.969 0.956 0.955 0.947

NA 0.961 0.962 0.953 0.953 0.939 0.957 0.958 0.95 0.949 0.933

NP 0.947 0.944 0.933 0.931 0.912 0.954 0.951 0.944 0.943 0.927

PA 0.929 0.916 0.893 0.89 0.881 0.922 0.906 0.892 0.888 0.875

PB1 0.931 0.927 0.907 0.902 0.887 0.937 0.933 0.914 0.912 0.898

PB2 0.943 0.937 0.912 0.913 0.906 0.945 0.938 0.923 0.921 0.911

NS1 0.934 0.928 0.917 0.916 0.896 0.931 0.93 0.919 0.917 0.896

M2 0.876 0.866 0.856 0.854 0.805 0.865 0.86 0.853 0.848 0.795
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adapt to new host species [39]. However, it is still a chal-
lenge to directly predict the interspecies transmission of
influenza viruses and identify the capability of an avian
strain to cross the species barrier and infect humans.
But the results have proved the effectiveness of all mod-
els in predicting host tropism, which paves the way for
further reassortment probability estimation through host
prediction.

Evaluation on real datasets
To measure the effectiveness of HopPER, we have applied
our model to several independent influenza datasets
detected by alternative methods. Genomic sequences for
18 typical reassorted H1N1, H1N2 and H3N2 genomes
isolated from pigs in North America were studied in
Karasin et al. [40–42]. The datasets of 16 resembled novel
2009 swine-origin isolates, 6 triple reassortant H3N2
strains throughout Canada and 39 reassortment events
in swine influenza strains were constructed from a large-
scale whole-genome sequences [43–45]. More compre-
hensively, 36 well supported candidate reassortants [16],
93 single-taxa and multi-taxa reassortment candidates
[14, 46] were also selected for validation. A brief descrip-
tion of these genome datasets follows below.

1) Karasin et al. investigated the genetic
characterization of H1N1, H1N2 and H3N2 viruses
that circulated in North America from 1997 to 2005.
Due to the occurrence of influenza pandemics in
1957 and 1968, the reassortant human/avian viruses
have circulated in the world and been collected from
pigs in Europe [47]. After that, the wholly avian
H1N1 viruses adapted to the swine population and
spread to North America with classical swine
influenza virus [48–50]. The results obtained by
genetic and phylogenetic trees indicated the evidence
for wholly human and reassortant virus genotypes.

2) Kingsford et al. dataset contained 16 genome
sequences that were similar to swine-origin influenza
viruses (S-OIV) that appeared in Thailand. These
swine-origin isolates only caused one cause of human
infection A/Thailand/271/2005 (H1N1). The
comparison between these earlier resembled S-OIV
reassortant strains and the real S-OIV strains could
facilitate identification of reassortment patterns and
may shed light on the cause of S-OIV.

3) Olsen et al. dataset contained 6 triple reassortant
H3N2 viruses isolated from pigs and turkeys
throughout Canada in 2005. These were human
classical swine/avian reassortants similar to the
viruses in the United States in 1998 except a distinct
human-lineage NA segment, which suggested a fast
and complicated interspecies transmission of
reassortants.

4) Khiabanian et al. dataset was used to explore the
process and patterns of viral reassortment with 39
complete and incomplete genome sets. The analysis
of reassortment phenomena in swine influenza
viruses was performed by several statistical
techniques. The finding indicated that not only the
surface glycoprotein coding proteins (HA and NA)
but also the PB1 segment reassorted more frequently
compared with other segments in swine viruses.

5) de Silva et al. dataset presented 36 well supported
candidate reassortants with strong confidence. The
results indicated that the introduction of novel HA
and/or NA genes into a previous circulating virus led
to the reassortment events. Reassortment patterns of
the identified strains offered new insight that drove
us to draw a more well-rounded picture of the origin
of some previously reported reassorted strains.

6) Nagarajan et al. presented a more comprehensive
reassortment study including human, avian and
S-OIV influenza populations. A novel computational
method GiRaF based on a fast biclique enumeration
algorithm was applied to identify the sets of taxa with
differential phylogenetic placement.

We compared HopPER with the above 6 described
state-of-the-art methods by their ability to detect reas-
sortment on real test datasets. Table 3 shows the results
of the number of reassortants identified by HopPER and
other methods. We set the threshold of 0.5 to classify the
reassorted and non-reassorted strains in HopPER. The
annotation of real test datasets and corresponding reas-
sortment probabilities can be found in Additional file 1:
Table S2. According to the results, our approach easily
picked up reassortants where the strains varied in hosts
across different periods. Overall, 178 out of 208 strains
were successfully detected as reassortants. Looking at out-
comes in each dataset, it is apparent that all the similar
swine-origin H3N2 influenza strains were recognized as
reassortants. Perhaps the number of test genomes on this
dataset was not significant and the TPV was only 0.806 on
de Silva et al. dataset, slightly worse than other datasets.
Some of the reassortant strains identified by Silva et al.
were reported for the first time. This could decrease the
confidence of the candidates as true reassortant strains.
Nevertheless, the evaluation on the real datasets displayed
strong evidence for the characterization of reassortment
by HopPER, e.g. the validation on Nagarajan et al. dataset
achieved TPV of 0.860, which contained larger quantity of
genomes with a diversity of strains.
One of the most critical strains A/California/04/2009,

as the reference strain for the 2009 pandemic H1N1
virus, was estimated to be reassortant with the proba-
bility of 0.885. Of particular interest was the potential
host adaptation for individual segments of the genome.



Yin et al. BMCMedical Genomics            (2020) 13:9 Page 9 of 13

Table 3 The results of reassortant strains identified using HopPER that was validated by alternative methods for reassortment analysis

Datasets Number of genomes Original Methods Identified number by HopPER TPV

Karasin et al. 18 Genetic and phylogenetic analyses with cycle
sequencing and amplification by reverse
transcription-PCR.

16 0.889

Kingsford et al. 16 Enumerating maximal bicliques with a defined
incompatibility graph to detect high-probability
inconsistencies between the distributions of trees.

14 0.875

Olsen et al. 6 Phylogenetic analysis by the method of maximum
parsimony with bootstrap resampling for the genetic
characterization of reassortant H3N2 viruses.

6 1.000

Khiabanian et al. 39 Applying statistical methods such as diversity and
entropy measures of each segment and its
correlations to investigate reassortment partterns.

33 0.846

de Silva et al. 36 Comprehensive analysis based on neighbourhood of
each segment and using only nucleotide distance
matrix as input to formulate the phylogeny.

29 0.806

Niranjan et al. 93 Graph-incompatibility based reassortment finder that
searches large collections of Markov chain Monte
Carlo-sampled trees for groups of incompatible splits
using a graph mining technique.

80 0.860

Selected avian, human and swine genomic strains are
shown in Table 4, indicating the reassortment patterns
based on host tropism and reassortment probabilities.
The results incorporated the most likely host adapta-
tion for each protein. Most of the reassortants displayed
a diversity of host adaptation of influenza sequences
in the genome. Table 4 indicates that more than one
host species exists in all genomes except the strain
A/domestic teal/Hunan/79/2005, which is estimated as
a reassortant with the probability of 0.701, with the
host tropism for each segment being the same. Another
finding was that the reassortment probability of strain
A/domestic teal/Hunan/79/2005 was not high compared
with others. We may infer that interspecies transmission
of influenza viruses had a direct impact on our proba-
bility estimation. Correspondingly, we would obtain more
credible reassortment events if we can demonstrate that

the sequences in the genome stemmed from different
species.
Reassortant strains are implicated in several major pan-

demics in history with reassortments occurring across
different hosts. An example is swine-origin reassortant,
which comprises genes derived from avian, human and
classical swine [8]. More attention is needed for the reas-
sortant strains when the complement of individual protein
sequences are from three or more different host species
detected by HopPER. Besides, the emergence of novel HA
segment in a reassorted genome is crucial for the outbreak
of potential pandemics that has to be considered.
Moreover, we were able to further identify latent

breakdowns in the ancestry of known reassortants
and give insights for interspecies transmission and
evolution of influenza viruses. For example, in A/swine/
Ontario/53518/03, we found that the segment PB1 was

Table 4 Reassortment patterns on host distribution of selected avian (0), human (1) and swine (2) strains and the gap ’-’ denoted the
missing sequence in the genome

Strain Subtype HA M2 NA NP NS1 PA PB1 PB2 REprob

Avian A/domestic teal/Hunan/79/2005 H5N1 0 0 0 0 0 0 0 0 0.701

A/pekin duck/California/P30/2006 H4N2 0 0 0 0 0 2 0 0 0.856

A/mallard/Pennsylvania/454069-12/2006 H5N4 0 0 1 0 0 0 0 0 0.804

A/chicken/Hubei/C1/2007 H9N2 0 2 0 0 2 2 0 0 0.976

Human A/California/05/2009 H1N1 1 1 1 1 - 1 1 1 0.888

A/Texas/05/2009 H1N1 1 2 2 1 1 1 1 1 0.993

A/California/04/2009 H1N1 1 2 1 1 1 1 1 1 0.885

A/New Jersey/1976 H1N1 2 0 1 1 1 1 1 1 0.984

Swine A/Thailand/271/2005 H1N1 1 - 1 0 2 2 2 2 0.995

A/swine/Ontario/00130/97 H3N2 2 1 1 2 2 1 1 2 1

A/swine/Ontario/53518/03 H1N1 2 2 2 2 2 2 1 2 0.959

A/swine/Hong Kong/273/1994 H1N1 1 2 1 1 2 2 1 2 0.999
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derived from human influenza virus lineages while all the
remaining genes were of classical swine lineage [42]. The
H3N2 viruses recovered from Canada in January 1997 like
A/swine/Ontario/00130/97 from Ontario isolates, which
were regarded as wholly human influenza viruses [40]. It
was consistent with our results that four segments M2,
NA, PA and PB1 originated from human influenza viruses,
suggesting strong interspecies transmission of the differ-
ent clades. Similarly, the highly pathogenic avian influenza
(HPAI) H5N1 lineage in Asia has demonstrated various
combinations of its genes to form several generations of
multiple reassortants [51]. The precursor of H5N1 strain
A/Goose/Guangdong/1/96 and the re-emerging strain
A/peregrine falcon/Hong Kong/2142/2008 were reassor-
tants with probabilities 0.748 and 0.546 respectively
(Additional file 1: S2). The complex reassortment mech-
anism and manifold possibility of combination could
adversely affect the host tropism prediction and overes-
timate the probability of reassortment, but HopPER has
manifested the robustness of its capability to identify reas-
sortment and also provided perspectives for evolutionary
patterns.

Evaluation on synthetic datasets
To further verify our model’s ability to identify induced
reassortants and assess performance in a controlled set-
ting, we carried out experiments on lab-synthesized reas-
sortant strains. These synthetic strains were regarded as
the true label on the detection of reassortants. The syn-
thetic dataset was divided into complete and incomplete
genomes that contained 85 and 25 samples respectively.
According to the rules of our model, the data of incom-
plete genomes contained two different sequences at
least. We have summarized the results of reassortment
detection on both complete and incomplete strains by
HopPER in Table 5. HopPER correctly identified 19 out
of 25 reassortants for incomplete genomes and 83 out
of 85 reassortants for complete genomes on synthetic
strains. The probabilities of reassortment can be seen in
Additional file 1: Table S4. Though the incomplete infor-
mation of genomes likely influenced the prediction of
reassortment, the TPV achieved byHopPER on laboratory
dataset (0.927) was more persuasive compared with the
real dataset (0.855). On observation, the false positives

Table 5 The number of predicted reassortant strains identified
by HopPER for complete and incomplete genomes in both real
and synthetic datasets

Genomes Integrity of genome Predicted reassortants/total number

Real Complete 154/173

Incomplete 24/35

Synthetic Complete 83/85

Incomplete 19/25

reported by our model were dominated by incomplete
samples. We have found that all these false positives only
contain HA and NA proteins while most of the rest of
incomplete genomes have more than two different seg-
ments (Additional file 1: Table S5). In general, we can infer
that the number of available segments in a genome is a
critical factor impacting the reliable estimation of reas-
sortment probability. Despite this, the false positive rate
was still less than 0.1 on synthetic datasets.
It is usually hard or impossible to detect the reas-

sortment by either our model or other methods if the
input genome is incomplete. It also poses great chal-
lenges for any other computational tools to identify reas-
sortment events with lots of missing information in the
genome. We are able to explore the reassortant strains
in synthetic genomes by estimating the probabilities
without constraining the integrity of genomes. Though
the reassortment analysis on incomplete genomes brings
uncertainty of probability estimation and increases the
difficulty of identifying reassortment, the results are not
greatly affected using HopPER.We have successfully iden-
tified 24 out of 35 and 19 out of 25 incomplete strains in
real and synthetic datasets respectively. The TPVs of reas-
sortment detection on incomplete strains has achieved
noteworthy performance in comparison to complete ones.
However, a look into the unsuccessful cases of incomplete
strains finds most of the failures in genomes with only 2
segments. We also list the predicted reassortant strains by
the number of available sequences in the genome (Additional
file 1: Table S6). It demonstrates the effectiveness of
HopPER in predicting reassortment of incomplete strains.

Analysis on reassortment history
Since the emergence of 1918 Spanish pandemic, influenza
A viruses have circulated and caused substantial mor-
bidity and mortality in humans [52]. Despite the long-
term existence of the influenza virus, the influence of the
reassortment in the expected transmission properties of
influenza viruses is still an area of active research. A study
on 71 representative complete genomes sampled between
1918 to 2006 showed reassortment occurred frequently
throughout the evolutionary history of the virus [53].
Though some reassortment events would not cause severe
infections or lead to outbreaks, reassortment still plays an
important role in the process of evolution and epidemi-
ology for influenza viruses, particularly when considering
transmission from avian or swine host populations into
human populations. For example, pigs have been known
as a mixing vessel with multiple reassortment events
occurring. While most of the cases were mild to humans,
three out of four pandemics are related to the reassorted
swine strains. It is clear that the reassortment between
influenza viruses from different host species can generate
novel pandemic-potential strains. These antigenic and
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Fig. 3 The RSR of three distinct host species of influenza strains across different years detected by HopPER. a The RSR of avian species from 1988 to
2017. b The RSR of human species from 1975 to 2017. c The RSR of swine species from 2000 to 2017

genetic novel strains are usually not well matched to the
contemporaneous vaccines, and so existing vaccines offer
little protection [10]. Detecting reassortment frequency
among influenza viruses is also a crucial aspect to capture
evolutionary history [54].
We applied HopPER to investigate the reassortment

history on avian, human and swine species respectively.
We utilize the RSR to illustrate the variety of reassortant
strains. Figure 3 presents the RSR of influenza strains on
three distinct species across different years. The exper-
iments are conducted on the years with more than 20
genomes. The results reflect the complex reassortment
histories and suggest the reliability compared with the
actual evolutionary patterns. In Fig. 3a, the RSR sustains
a relative low level until 2004, when the highly pathogenic
avian influenza (HPAI) virus of the H5N1 subtype has
re-emerged [55]. The HPAI H5N1 virus results from its
ability to transmit throughbothhuman and bird hosts, lead-
ing to novel reassortant strains [56]. The human species
describes the different situations in which RSR reaches the
local peaks around the pandemic years. The RSR starts
to decrease after the outbreak of 1976 pandemic when a
new H1N1 strain predominated. After that, another pan-
demic occurred in 2009 caused by a triple reassortant
swine-origin human strain during the time there is a rapid
increase of RSR in Fig. 3b. The RSR of swine species
varies differently from avian and human and it gains high
value, except in 2008. We infer that the swine species,
as the mixing vessel, more frequently participates in the
reassortment process with both avian and human strains.
According to Fig. 3, the RSR remains at relatively
high level after 2009. This is because the progeny
strains of these 2009 strains are still circulating around
the world. Haemagglutination inhibition (HI) tests
with post-infection ferret antisera indicates that the
majority of A(H1N1)pdm09 viruses are antigenically
homogeneous and closely related to the vaccine virus

A/California/7/2009 [57]. It is noteworthy as a possible
indication for the resurgence of another potential pan-
demic or epidemic after the current reassortant strains
have been in circulation.

Conclusions
We have developed a novel method HopPER for proba-
bility estimation of influenza reassortment based on host
prediction. While the development of HopPER mainly
focuses on influenza datasets, the model could also be
helpful for the research of other viral datasets that con-
tain different host species. We have demonstrated our
model by different real and synthetic datasets and vali-
dated the results by comparison with alternative methods.
HopPER can also be leveraged to detect any known com-
plete or incomplete strains for reassortment identification
and reassortant strains with robustness. So it is possi-
ble to build an automatic surveillance system to monitor
the transmission and reassortment for influenza viruses.
We believe this model would facilitate rapid reassortment
detection and provide perspectives for the evolutionary
patterns of emergent new influenza strains.
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