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ABSTRACT: Phylogenetic comparative analyses use trees of evolutionary relationships between species to understand their evolution and ecol-
ogy. A phylogenetic tree of n taxa can be algebraically transformed into an n by n squared symmetric phylogenetic covariance matrix C where
each element cij in C represents the affinity between extant species i and extant species j. This matrix C is used internally in several comparative
methods: for example, it is often inverted to compute the likelihood of the data under a model. However, if the matrix is ill-conditioned (ie, if k,
defined by the ratio of the maximum eigenvalue of C to the minimum eigenvalue of C, is too high), this inversion may not be stable, and thus nei-
ther will be the calculation of the likelihood or parameter estimates that are based on optimizing the likelihood. We investigate this potential issue
and propose several methods to attempt to remedy this issue.
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Introduction
A main role for phylogenetic comparative studies is to test evo-

lutionary hypotheses.1 To conduct analyses, phylogenetic com-

parative studies use phylogenetic trees, which represent

evolutionary relationships among, typically, various biological

species. However, a relatively unexamined potential issue is the

condition number of the phylogenetic covariance matrix. To do

so, we use a compilation of empirical trees from the TreeBASE

database2-4 as well as of trees simulated in different ways5 Given

the hierarchical property of phylogenetic tree, C is a positive

definite matrix and the condition number k of a phylogenetic

covariance matrix C is defined as the ratio of the maximum

eigenvalue to the minimum eigenvalue of that matrix:

k(C)=
jmax(C)

jmin(C)
ð1Þ

where jmax(C)= maxfjign
i = 1 and jmin(C)= minfjign

i = 1

and ji is a positive eigenvalue of C that satisfies

det (C � jiI )= 0, i = 1, 2, � � � , n.

The condition number k is essentially a measure of how

stable the matrix is for subsequent operations6 A matrix with

condition number much greater than 1 such as 105 (ie,

log10 k= 5) for a 5 3 5 Hilbert matrix7 is often said to be ill-

conditioned. Matrices with small condition numbers are more

stable matrices, whereas larger condition numbers are less sta-

ble. More stable matrices have less error in downstream alge-

braic operations, using that matrix (or its inverse) such as data

multiplication, projection, linear model prediction, and even

simulating data using that matrix. By contrast, large condition

numbers mean these operations are unstable and more prone

to error propagation. In other work,8 we found evidence of

ill-conditioned C from some actual phylogenetic trees (though

more commonly in phylogenetic networks), and sought to

investigate this, and potential solutions, in more detail. This

has also been explored by Adams and Collyer.9

In phylogenetic comparative studies, the C matrix from a given

rooted ultrametric phylogenetic tree of n extant taxa has element

cij , i, j = 1, 2, . . . , n in C measured by the shared branch length

between a pair of species on the tips of tree. For instance, a phylo-

genetic tree of 5 taxa shown in Figure 1 can be represented as a

phylogenetic covariance matrix C in equation (2). The maximum

and minimum eigenvalues of C are 1:97 and 0:24, respectively.

Hence, the condition number k defined by equation (1) for the C

matrix of the tree in Figure 1 is k= 1:97=0:24= 8:21.
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A
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1:00 0:76 0:00 0:00 0:00

0:76 1:00 0:00 0:00 0:00

0:00 0:00 1:00 0:36 0:36

0:00 0:00 0:36 1:00 0:70

0:00 0:00 0:36 0:70 1:00

0
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CCCCCCA

ð2Þ

Commonly in phylogenetic comparative analysis, the model

used assumes traits evolve along the tree under Brownian

motion (BM).10 Phenotypic values y1, y2, . . . , yn on the tips of

tree of n species are treated as a set of random variables. The

joint distribution for n 3 1 random vector

Y =(y1, y2, . . . , yn)
t of n species is a multivariate normal dis-

tribution with common mean E½Y �= u1=(u, u, . . . , u)t , and

n 3 n variance-covariance matrix s2C . The statistical model is

displayed in equation (3):

Y ;N u1,s2C
� �

ð3Þ
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The likelihood function given trait Y and tree T with branch

lengths is a multivariate normal, represented as

L(u,s2jY ,T)= 1

(2p)n=2jCj1=2

1

(s2)
n=2

exp �1
2s2

(Y � u1)t C�1(Y � u1)
� �

ð4Þ

where u is the ancestral status at the root of the phylogeny, s

is the rate of evolution, jCj is the determinant of C and

1=(1, 1, . . . , 1)t is a vector of 1s. In fact, the best solution

for the likelihood function in trait model in equation (4)

depends on the phylogenetic covariance matrix C itself. For

instance, the maximum likelihood estimators (MLEs) for the

u and s2 in BM model in equation (3) are

û=
1t C�1Y

1t C�11
and ŝ2 =

(Y � û1)
t
C�1(Y � û1)

n
ð5Þ

respectively, and they both depend on computing the inverse

of C (ie, C�1).

There is an extensive literature of methods precisely trying

to avoid the actual computation of this inverse C�1, to gain

speed and numerical stability. Starting with Felsenstein’s11

pruning algorithm, there are many extensions in many con-

texts.12-19 These approaches have been implemented in several

popular R packages such as Diversitree,14 phylolm,19

Rphylopars,20 MCMCglmm,21 PhyloNetworks,22

mvMORPH,23 and PCMBase24 where Felsenstein’s pruning

algorithm is extended to support all other Gaussian models

assuming independently evolving branches. Overall, using

these kind of efficient pruning algorithms, the phylogenetic

community indeed have come up with more robust and effi-

cient solutions than the matrix inversion. However, not all

models have pruning or other algorithms that can avoid matrix

inversion; even when there is such an algorithm, not all soft-

ware has implemented it. Manceau et al25 developed models

involving dependent co-evolution between traits on different

branches in the tree; Jhwueng and O’Meara26 developed

model that allows species evolved on the phylogenetic network.

Both works have the models that do not avoid inversion of the

covariance matrix between all tips in the tree/network.

We focus on studying the condition number of C matrices

on its own and explore the impact on subsequent analyses. To

calculate the inverse of the phylogenetic covariance matrix C,

one can use a Moore-Penrose (MP) inverse that makes the

algebra tractable.27 However, the MP inverse fails to give the

exact inverse when the C is an ill-conditioned matrix (see sup-

plemental material MPfail.pdf). On the contrary, the regular

methods such as Cholesky decomposition implemented in R

base package: function solve for solving the inverse of

matrix returns an error when the condition number is large

(k . 1015) for most matrices, but becomes unstable at some

even lower condition numbers.

Considering that the ill-conditioned matrix problem may

impact further analysis in the aspect of parameter estimation

and statistical inference in phylogenetic comparative studies,

we investigate 3 methods to appropriately adjust the phylogeny

when it falls in the area where it is poorly conditioned. Our

first goal is to search on a range of acceptable value of condition

number of phylogeny with n extant species; our next goal is to

find the best, well-conditioned estimate of observed phyloge-

netic covariance matrix, when the observed matrix is ill-condi-

tioned. The ultimate goal is to provide the community with a

series of tree transformations which help ameliorate the issues

produced by ill-conditioned C matrices. Note that these tree

transformations and other potential solutions do not fix the

problem—they involve a loss of data or a modification of the

tree structure, such that the likelihood does not match what it

would be if we were able to invert a matrix with absolute preci-

sion. However, they could result in answers closer to the true

estimate than by ignoring this issue and continuing to invert

very ill-conditioned matrices.

Data collection

For this analysis, we needed a set of empirical trees with branch

lengths to understand the risk of this issue in practice. The R

package datelife28,29 stores a cache of the OpenTree

chronogram,2 pulled in and processed using tools from rotl30

and phylotastic.31 The trees represent trees from TreeBASE3,4

as well as directly from many studies. The sizes of trees in the

cache range from 6 taxa to 48 016 taxa; branch lengths were

normalized so that the root to tip height was one for all trees.

There were 3 trees from the same study of 4510 taxa32 as well

Figure 1. A phylogenetic tree of 5 taxa with tip labels (A, B, C, D, E) and
internal nodes labels (F, G, H, I). The root to tip tree height is 1. The
corresponding phylogenetic covariance matrix C is displayed in equation
(2). An element cAB = 0:76 in equation (2) is measured by the shared branch
length of tip A and tip B, whereas another element cDE = 0:70 can be
measured by the shared branch lengths (0.36 + 0.34).
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as one tree of 48 016 taxa33 all other trees were 815 taxa or

fewer. We excluded these 4 outlier trees for computational con-

venience. After excluding these trees, the median size of the

remaining 126 trees is 72 taxa and the mean size is 140 taxa.

Preliminary analysis

The left panel of Figure 2 shows the condition numbers k vs

number of taxa for all 126 chronograms in the database.

Overall, k increases with number of taxa. The right panel in

Figure 2 shows the average k calculated from 50 simulations

for each empirical tree, using TreeSim5 where birth rate n

and death rate (n= 20, 100, 150, 500, 800) are estimated from

the associated tree by R package ape function birth-

death34 where some trees with multichotomies issue are

resolved using function multi2di, simulating to have the

same number of extant species as each empirical tree. Note

that, even though the number of taxa are the same between

the simulated and empirical trees, the simulated trees had

worse (higher) k on average.

We next compared condition numbers k vs number of taxa

using trees from more extensive simulations. In Figure 3, there

are 3 lines where each line represents the average of 100 runs of

simulated phylogenies for different number of taxa. The purple

line was obtained from random trees using coalescent trees

method (created using R package: rcoal)35 and the orange

line was obtained from trees simulated by birth-death process

with a given age on a fixed number of extant taxa36 using birth

rate n;U(0:01, 0:3) where larger birth rates are used for larger

taxa, death rate m;U(0, n). The blue line is obtained from

trees under a pure-birth process (birth n= 1, death m= 0).

The root to tip height was one for all trees.

In Figure 3, the coalescent trees (purple lines) have the

highest log10 k values, whereas the birth-death trees (orange

lines) overall have condition numbers slightly higher than the

pure-birth trees (blue lines).

A positive finding from this exploration is that all trees

simulated in this ideal situation as well as the empirical trees

from the literature do not fall into the numerical limit of

approximately k= 1015 where LAPACK37 considers the

matrix singular and thus infeasible for analysis using Cholesky

decomposition. However, there still exist trees with ill-

conditioned matrices that could impact the subsequent analy-

sis. To clarify this situation, consider the trees with 1 or 2

clades with short terminal branch lengths shown in Figure 4.

The matrix condition for the tree in left panel is k= 9434491

( log10 k= 6:97), whereas the matrix condition for the tree in

the right panel is k= 20569270 ( log10 k= 7:31). Both trees

have much larger matrix condition numbers than k= 8:21

( log10 8:21= 0:91) of the tree in Figure 1. They also far

Figure 3. The condition number k vs number of taxa for trees from
simulation. Each dot in the lines represents the average of the log10 k value
for 100 trees. The orange line is for birth-death model, the purple line is for
coalescent model, and the blue line is for pure-birth model.

Figure 2. The 126 log10 condition numbers vs number of taxa for trees from the literature (left panel) and for trees from simulation (right panel). A simple
linear regression yields 2 line equations log10 k = 2:248 + 0:0033taxa for the trees from literature and log10 k = 3:802 + 0:0043taxa for the simulated trees. The 95%
interval for the regression line is shown in gray area. From the plots, the condition of real trees and simulated trees can be viewed via their C matrix, and it
becomes larger as number of taxa increases, but does so somewhat slowly. The simulated trees generally have higher (worse) condition than empirical trees.
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exceed the bound of 105 ( log10 105 = 5) that a Hilbert matrix

of the same size would have which is known to be ill-

conditioned.7

Consider a more extreme case (generated by setting a fairly

short terminal branch ’ 10�19;10�8) where LAPACK con-

siders the corresponding C matrix singular (see supplemental

material solvefail.pdf). Figure 5 shows the proportion of unsol-

vable C matrices vs their condition numbers for 3 types of com-

monly used trees.

These type of trees could be unstable statistically when their

C matrix has no exact inverse by LAPACK, and the subse-

quent phylogenetic comparative analyses which use the inverse

of C8,38 could be unstable. This does not just mean that the

likelihood would be impossible to calculate, throwing an

annoying but at least transparent error. At better but still bad

condition, there would be a finite number returned for the

likelihood but it is unstable: a slight change in a parameter

value in the model or to a branch length of the tree could

result in a very different likelihood value due to accumulated

errors in the matrix inversion, not rugosity of the true likeli-

hood surface. A researcher would get a likelihood and para-

meter estimates back rather than an error, but these numbers

are not accurate (see MLE estimator for s2 in BM model in

Figure 14 in supplemental material). These consequences

would be expected to be more acute for multivariate data,

though that remains an area for further investigation. These

issues would affect any method that uses calculation of likeli-

hood: both analyses that use likelihood to optimize parameter

values or Bayesian approaches that sample a space using infor-

mation from priors and likelihoods.

The empirical analyses above suggest that, at least for most

trees biologists have encountered, there are reliable C matrices

(though transformations of these matrices from models to make

variance-covariance matrices that are then inverted can still have

issues, which remain to be investigated). However, there be dra-

gons here: there are trees with poor matrix condition that could

affect PCM calculations, even the simple trees of Figure 4. We

investigate the potential impact on the statistical stability of the

BM model10 in equation (3) when the associated phylogenetic

tree has ill-conditioned covariance matrix C.

Methods
One way of dealing with ill-conditioned matrices is just to

reject matrices, Cs, that are poorly conditioned. However, the

true estimate of the matrix (from the tree and/or from the

Figure 4. Two cases of 5 taxa trees with a pair of short tips (taxa A and
taxa B) (left panel) and with 2 clades of short tips (right panel).

Figure 5. Three types of trees (birth-death tree, coalescent tree, and pure-birth tree) of taxa size 50, 100, 500, and 800 are used. For each taxa size, 100
trees were simulated under each type of tree and are equipped with a short terminal branches ranging from 219 to 28 (in log10 scale). The condition numbers
of their C matrices as well as their inverse (if numerically feasible) by LAPACK are computed. The horizontal axis shows the proportion (using scale of power
of 100 of the raw proportion) of unsolvable C matrices over 100 trees vs their condition numbers shown in the vertical axis.
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transformation of the matrix from a comparative methods

model) can fall in that region, and users would not be happy

to hear that their hard-earned tree cannot be analyzed. That is

far better than quietly returning a wrong result, but still far

from ideal. We propose several possible approaches to remedi-

ate the issue of an ill-conditioned matrix from the tree. Our

goal is to use some of the following methods to estimate the

best version of the observed phylogenetic covariance matrix.

These all involve modifying C from what it should be based

on the tree and model, which of course is not ideal, but given

that the goal is to use this to compute estimates (such as the

rate of BM), we will investigate whether the resulting esti-

mates are better from a modified matrix than from the original

ill-conditioned matrix. Three approaches are examined: (1)

shrinkage matrix regularization: lengthen the tip lengths with

respect to the tree, (2) pruning tips of the tree: removing tips

from the tree, and (3) lengths stretching: lengthen/shorten all

branch lengths of the tree.

Shrinkage matrix regularization

An approach by Schafer and Strimmer39 was developed for

regularizing covariance matrices in molecular biology (includ-

ing some network covariance matrices), later improved and

generalized by Theiler.40 Let 0 ł d ł 1 and

b=(1� d)=(n� 1), define the shrinkage matrix estimator of

C by Sd = nbC + dT where T = diag(C). Let

r = trace(S�1
d C) be an estimate of the mean of the

Mahalanobis distance Y t S�1
d Y by recognizing that Y is gener-

ating from a Gaussian distribution with covariance C (ie,

E½Y t S�1
d Y �=E½trace(Y t S�1

d Y )�= E½trace(S�1
d Y Y t)�= trace

(S�1
d E½Y Y t �)= trace(S�1

d C)= r). Theiler40 showed that the

negative log likelihood function based on the mean

Mahalanobis distance approximation for the shrinkage esti-

mated covariance matrix Sd as a function of the shrinkage

parameter d is

� log L(d)= log (1� rb)+
r

1� rb
+ log jSdj ð6Þ

The best shrinkage estimate is to search the optima

d̂= max0 ł d ł 1 log L(d) and the matrix Ŝd = nb̂C + d̂T is

updated variance-covariance matrix for the next step of the

analysis. Although the shrinkage matrix Sd used here is mathe-

matical equivalent (differs up to a constant multiplier n=n� 1)

to the very broadly used Pagel’s lambda41,42 transformation

Sj = jC +(1� j)I where 0 ł j ł 1 and I is an identity

matrix, the parameters d and j have different meaning. While

j is estimated through the BM likelihood and is used for test-

ing phylogenetic signal, d is estimated through likelihood

function based on the mean Mahalanobis distance approxima-

tion for the shrinkage estimated covariance matrix.

Figure 6 compares the raw, untransformed tree with trans-

formed tree computed by taking the shrinkage matrix and con-

verting back into a tree using the unweighted pair group

method of arithmetic mean43 by R package: upgma.44 The

transformed tree has much longer tip branch lengths relative

to internal branch lengths relative to the untransformed tree.

Using 5 different numbers of taxa (n= 20, 100, 150,

500, 800), the average of the shrinkage estimator across 100

replicate trees are (d̂= 0:38, 0:20, 0:19, 0:13, 0:12, respec-

tively). It appears that the magnitude of required shrinkage

decreases with the number of taxa.

Pruning tips of the tree

We further investigate what other factors, whether a property

of the tree or parameters of the simulations used to generate it

Figure 6. Tree transformation under shrinkage matrix regularization method. A simulated birth-death tree of 100 taxa is shown in the left panel. The
phylogenetic covariance matrix of the shrunk tree is obtained by setting shrinkage parameter to d = 0:5 such that Ŝd = 0:505C + 0:5T where C is the phylogenetic
covariance matrix of the simulated tree. The shrunk tree is shown in the right panel and compared with the untransformed tree. Both trees are plotted with the
same taxon order.
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(which then, of course, results in trees of particular distribution

of branch lengths), affects the condition of the tree. We con-

sider the tree properties that could affect the condition of the

tree as follows: (1) taxa size n, (2) min branch length i, (3) max

branch length, (4) ratio between max branch length and min

branch length, (5) variance of branch length, (6) median of

branch lengths, (7) min tip length, (8) max tip length, (9) min

internal branch length, (10) max internal branch length, (11)

generating birth rate j, (12) generating death rate m, and (13)

turnover rate 1=(j+m).

We simulated 10, 000 birth-death trees under uniformly

varying number of taxa between size of 10 and 800, birth rate

j between 0:01 and 0:1, death rate m between 0 and 0:1 where

larger tree are simulated with higher value of j. Note that one

can simulate DAICc from uniform distribution with upper

limit j (ie, m;U(0, j). In this case j and m have dependency.

Their log10 condition numbers log10 k are calculated and com-

pared with a variety of measures using multiple linear regres-

sion. The R package: MuMIn45 was used to generate a set of

models to correlate log10 k with combination of parameters or

tree measures in the global model of 13 predictors. The maxi-

mum number of variables is set to 4 accounting for 1093 mod-

els (intercept model: C(13, 0)= 1 model, 1 predictor:

C(13, 1)= 13 models, 2 predictors: C(13, 2)= 78 models, 3

predictors: C(13, 3)= 286 models, 4 predictors:

C(13, 4)= 715 models where C(n, r) is the number of combi-

nation that selects r distinct items from a collection of n

items). Table 1 shows the regression estimates for the covari-

ates for the top 5 models that accounts for majority of weights.

From Table 1, we have several comparisons: (1) condition

number vs min tip length (ie, log10 k vs i), (2) condition num-

ber vs death rate (ie, log10 k vs m), and (3) condition number

vs birth rate (ie, log10 k vs j) are interesting. For (2) and (3), it

is known that the expected waiting time to the next event of

birth-death model is exponential with parameter j+m (so the

regression estimates bj = 10:45 for j and bm ’ 16:74 for m are

both positive values), it remains to see how the birth and death

parameters affect the branch length (and hence C matrix).

For (1), having a larger minimum tip branch length

si . 0, i = 1, 2, . . . , d seems to lead to better (lower) log10 k,

whereas smaller minimum tip may yield worse (higher)

log10 k. This is consistent with Figure 4 above, where short tip

lengths seemed to lead to bad matrix condition. Here, we

focus on exploring the relation between the condition number

and the minimum tip length. Given that smaller trees tend to

have better condition than larger ones, it could be that remov-

ing a taxon at random would improve matrix condition.

However, another possibility is that it is just the presence of

very small terminal branches: these are less likely on a smaller

tree, but we could just try to remove the short branches directly

by removing one of the taxa with the shortest terminal branch.

Taxon removal does tend to help matrix condition, but remov-

ing the taxon with the shortest branch helps far more in

Figure 7. This points to a potential solution: dropping one of

the tips with the shortest branch length as a quick run suggests

a much bigger improvement than dropping a tip at random.

mvMORPH23 and PCMBase24 allow pruning tips with tiny or

zero lengths, allowing this to be done easily by users.

We found that, in fact, the problem of having ill-

conditioned matrix is highly related to terminal branch lengths

of taxon. To illustrate this issue, a simple example of 2 taxa is

shown in Figure 8 (right panel). The corresponding phyloge-

netic C matrix is

X Y

C =
X

Y

1 1� e

1� e 1

� � ð7Þ

Note that C has 2 eigenvalues e and 2� e. The condition

number of C defined by the ratio of the largest eigenvalues to

the smallest eigenvalues: k=(2� e)=e= � 1+ 2=e=

Figure 7. The condition numbers for dropping the shortest tip vs the
condition numbers for the raw tree. 100 birth-death trees are generated
with random size ranging from 100 to 800 with birth rate l;U(0, 1) and
death rate m;U(0, l). The horizontal axis is the condition number for raw
trees, whereas the condition numbers for the removing a tip tree are shown
in the vertical axis. The vertical lines connect points corresponding to that
given tree, but with one taxon removed: the blue square is removing a
taxon at random, and the red dot removing the taxon with the shortest
branch tip length.

Figure 8. A 3-taxa tree (left panel) and a 2-taxa tree (right panel) for
illustration.
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O(e�1) where O( � ) is the big O notation that describes the

limit behavior of a function. When tree has tiny tips (very small

e), the value of k will be fairly large and the matrix is more

likely to be ill-conditioned. For instance, with e= 0:1 the con-

dition number k= 19, whereas with e= 0:001, k= 1999.

The problem becomes serious as e is very close to zero where C

matrix has 2 almost identical columns/rows which makes C a

singular matrix with k=‘. In general, for a tree with a clade

of very short tips relatively to the tree height from the root to

the tips, the corresponding C matrix is more ill-conditioned.

Moreover, the phylogenetic covariance matrix C has a

nested structure and possess some special matrix properties.

Ané46 determined eigenvalues of the covariance matrix for

symmetric trees for the purpose of studying the behavior of the

estimator. Here, we show that the shortest tip of a ultrametric

tree is equal to the smallest eigenvalue of the C matrix. We

start using a 3-taxa example in Figure 8 (left panel) where the

tip lengths for species X , Y and Z are b, b and a + b, respec-

tively. The shortest terminal branch length is b. The phyloge-

netic C matrix for the tree in Figure 8 is shown in equation

(8).

X Y Z

C =

X

Y

Z

a + b a 0

a a + b 0

0 0 a + b

0
B@

1
CA: ð8Þ

Let pC(j)= det(C�jI )=(a+b�j)((a+b�j)2� a2)

be the characteristic polynomial of C where I is a 3 by 3 iden-

tity matrix. As the roots of pC are the eigenvalues of C, solving

and simplifying pC =0 yield j=2a+b,a+b,b. As a,b are

both positive numbers, the smallest eigenvalue for C is b which

is the shortest tip length on the tree in Figure 8 left panel. For

a general case, a property of ultrametric tree is provided in

Lemma 1.

Lemma 1. The shortest tip length of an ultrametric phyloge-

netic tree is the smallest eigenvalue of C, ie,

minjfdet (C � jI )= 0g= b where b is the smallest tip length

and I is an n by n identity matrix.

The general proof in Lemma 1 shows up the pruning

approach from a theoretical perspective. Researchers may

object to losing a taxon in their analysis: getting data for a spe-

cies to put it on a tree and include trait information may have

entailed a significant effort. They may also worry about biased

estimates that come from such pruning. Below, we show that

such pruning does improve matrix condition substantially and

later show that this can provide reliable parameter estimates

with sufficient remaining taxa. The following lemma shows

that the new tree obtained from dropping the shortest tip of

the original tree has a better (lower) k.

Lemma 2. Let C be the n by n strictly ultrametric matrix from

the tree and k be the condition number of C. Let C1 be the

n� 1 by n� 1 matrix obtained by dropping the shortest tip

from the tree and ith be the condition number of C1. Then,

k ø k1.

Remark. Above 2 lemmas have a link with the result obtained

in Ané46 where the whole spectrum of the matrix C is derived

for the special case of a symmetric tree and has been extended

in Ho and Ané47 for an Ornstein-Uhlenbeck (OU) model.48

Table 1. Regression estimates, log likelihood, AICc, DAICc, and Akaike weights for the top 5 multiple linear regression models (M1-
M5) out of the 1093 models.

Model M1 M2 M3 M4 M5

min tip i 20.19 20.19 20.24 20.24 20.24

death rate m 17.77 17.77 16.05 16.06 16.05

birth rate l 10.45

brlen median 20.02 20.02

max brlen 3.6e25 3.8e25 3.8e25

max internal 3.6e25 3.8e25

Ntip 1.2e23 1.2e23

logLik 211 879.64 211 879.81 211 882.73 211 882.99 211 883.92

AICc 23 771.29 23 771.62 23 777.48 23 777.99 23 779.84

DAICc 0.00 0.33 6.19 6.70 8.55

weight 0.51 0.43 0.02 0.02 0.01

Abbreviation: AIC, Akaike information criterion.
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It would be interesting to explore whole spectrum for arbitrary

ultrametric tree for generalization, but that remains as future

work.

Length stretching

Another possible solution is adopting the method in

Jhwueng38,49 which stretches the branch lengths of the raw

tree without changing its topology. For an ultrametric tree, let

s be the tree height from the root to the tip. Without loss of

generality, s is scaled into a unit and is decomposed into d

components. That is, 1= s= s1 + s2 + � � � + sd where

si . 0, i = 1, 2, . . . , d represents the length between the ith

and (i + 1)th speciation events. For instance, s1 is the length

from the root to the first speciation event since the root and sd

is the minimum tip length for the species evolved from

its most recent common ancestor. Next, consider the matrix

C obtained from the raw tree. Let the (d + 1)-tuple

elements c1, c2, . . . , cd , cdþ1 be the distinct entries in C satisfy-

ing 1= cd + 1 . cd . cd�1 . � � � . c1 = 0. The relation

between si and ci can be represented as

X Y Z X Y Z

C =

X

Y

Z

a + b a 0

a a + b 0

0 0 a + b

0
B@

1
CA =

X

Y

Z

1 0:4 0

0:4 1 0

0 0 1

0
B@

1
CA .

The following lemma describes the relationship between

fsigd
i = 1 and C.

Lemma 3. The set fsigd
i = 1 where si is the length between the

m and the m speciation event has d elements if and only if the

number of distinct elements in C of an ultrametric tree is

d + 1.

For example, in Figure 8 (left panel), if setting

s1 = a = 0:4 and s2 = b= 0:6, then the C matrix is

X Y Z X Y Z

C =

X

Y

Z

a + b a 0

a a + b 0

0 0 a + b

0
B@

1
CA =

X

Y

Z

1 0:4 0

0:4 1 0

0 0 1

0
B@

1
CA

and has 3 distinct elements c3 = 1, c2 = 0:4, and c1 = 0. The

2 lengths s1 and s2 can be determined accordingly by

s1 = c2 � c1 = 0:4, and c3 � c2 = 0:6= s2.

To stretch the lengths but retain the topology of the raw

tree, as si . 0 and S
d
i = 1si = 1, we can treat (u,s)= (10, 5) as

a d-dimensional random vector from a Dirichlet distribution.

Then, u= 10 can be generated by first drawing d independent

gamma random variables, log10 each with different shape para-

meters d= 1,b=(1� d)=(n� 1)= 0 and rate parameter 1

where m is an arbitrary but positive constant. Then, the d-tuple

vector (t�1 , t�2 , . . . , t�d )= (T1,T2, . . . ,Td )=S
d
i = 1Ti is a

Dirichlet random vector with t�i 2 (0, 1), S
d
i = 1t�i = 1, and

concentration parameters d. Here, the positive constant m is an

arbitrary scaling variable that always preserves the correct

mean. By the property of Dirichlet distribution, we have

E(t�i )=msi=S
d
i = 1msi =msi=mS

d
i = 1si = si , and the mode

is given by Mt�
i
=(msi � 1)=½(Sd

i = 1msi)� d �=
(msi � 1)=(m� d ) where msi . 1, i = 1, 2, . . . , d . The

choice of m is thus determined by min1 ł i ł dfmsig. 1. A

positive integer m is chosen to satisfy m = 1
min1 ł i ł d si

l m
where

ad e returns the least integer greater than or equal to a. The

choice of m here is designed to be the minimal needed to pre-

vent the phylogenetic tree from varying too wildly from the

given one while still adequately testing robustness.49

Figure 9 shows the phylogeny and their condition number

for a raw tree and its transformed trees.

We implemented the shrinkage method, length stretching

method and pruning tips (drop shortest tip) method to trans-

form trees. We simulated 200 birth-death trees of taxa size

between 300 and 1000 using R package: TreeSim36 with

speciation rate j;U(0:01, 0:1) and extinction rate m;U(0, j).
The condition numbers of the phylogenetic covariance matrix

C for the raw trees and transformed trees are calculated and

are plotted in Figure 10. Among the 3 methods, shrinkage

method and pruning tip (drop the shortest tip) method help to

reduce the condition number. As seen in Figure 10 (left most

panel), the shrinkage method provides a large amount of

reduction in condition numbers for all trees. The log10 condi-

tion number of raw tree ranges from 3 to 8, whereas all C

matrices of shrunk trees have condition number of value less

than 4 (in log10 scale). The pruning tip method, shown in

Figure 10 (right most panel), is similar to Figure 7 and con-

tributed to a smaller condition numbers for all trees. The

length stretching method, shown in Figure 10 (middle panel),

Figure 9. The raw tree with k = 387:1 is shown in upper left panel, the
shortest tip pruned tree with k = 33:6 is shown in upper right panel, the
shrunk tree with k = 6:6 is shown in lower left panel, and the stretched tree
with k = 26:4 is shown in lower right tree.
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in general does not improve the condition number when com-

paring with the raw method without transformation.

Assessment of the Methods
There is a metaphor for parameter estimation that is about

searching a lost key in a region of street with no light. A man

who lost his keys in the night. A friend came across the man

searching under a streetlight, and asked, where did you lose

them? Down there, the man said, but there’s no light there, so we

are looking for them here.

In our case, the tree is transformed in some way (taxa

deleted, branches stretched) which lets parameter search work

more easily—but have we moved so far away from where the

parameters are that the ease of search does not make for better

results? To address this, we examined whether estimates of

rate of evolution s the root state u under BM are better with

transformed trees than on the original tree. There are 2 aspects

to this: are these estimates calculable at all, and, if they are, are

the estimates good? Performance is assessed by examining nor-

malized root-mean-square deviation (RMSD) defined by

RMSDu =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½(u� û)2�

q
and RMSDs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½(s � ŝ)2�

q
ð9Þ

where (u,s) are the true parameters and (û, ŝ) are the MLEs.

As the study of interest is the impact from the ill-

conditioned tree, trees are simulated with more ill-conditioned

C matrix where the Cholesky decomposition by R package

solve fails to find the inverse for some trees. One case of an

ill-conditioned tree can be built by adding up tiny lengths to

all tips right after the tips of tree are trimmed to the most

common ancestor of the shortest tips. This can be done by

adding a relative small number C to the diagonal of the C

matrix after the diagonal elements are replaced with the the

second largest elements in the C (the height from the root to

the most recent common ancestor of the shortest tips).

Ultrametric trees are simulated from TreeSim5 with specia-

tion rate n;U(0:01, 0:1) and extinction rate m;U(0, j) where

U is a uniform distribution. Trait of size n= 100, 500 is simu-

lated using 2 set of true parameters (u,s)= (0, 1) and

(u,s)= (10, 5) given a tree. For each tree, we simulated 50

traits and repeated this procedure 700 times for each combina-

tion of parameters. Among 700 trees, 345 trees have their C

matrices invertible by the Cholesky decomposition (ie, solve
returns C�1 with no error). The other 355 trees are trans-

formed under the 3 tree transformation methods. For the pur-

pose of comparison of the 3 methods and the raw method

without transformation, traits simulated under BM model

from raw trees are fixed and used for parameter estimation

across transformed trees. Each tree can be in a region where

the matrix is sufficiently well-conditioned to be used with

solve or in an area where it would fail. There are 2 analyses

done:

(1) Solve works: Estimates the parameters on just

the well-conditioned trees using the raw tree and after

the various transformations. This evaluates whether,

for trees that are already somewhat feasible, does trans-

formation still help even though the raw tree could be

used and which transformation works best.

(2) Solve fails: Estimates the parameters on just the

poorly conditioned trees (where the raw tree is not

feasible) after transformations. This evaluates which

transformation performs best in the hard cases.

Figure 10. Comparison of condition number between the raw tree and transformed tree. The horizontal axis as well as the vertical axis shows the range of
condition number in log10 scale of the simulated trees. The diagonal dashed line is 1:1 relationship to demonstrate the pattern. Scatter plot of condition number
of the simulated trees vs the condition number for the transformed trees is shown in each panel.
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If the best approach in the first case is to just use the raw

tree, then a good protocol is to use the raw tree when possible

and use a transformation if needed. If one of the transforma-

tions works best in both the first and second cases, then it is

best to use that transformation in general, at least for the trees

in this tricky but sometimes solvable region. Results for com-

parison of trees with size 100 and 500 are reported in Figure

11 for u and in Figure 12 for s2.

In Figure 11, comparison of using various tree transforma-

tion methods to search MLEs for u in BM model shows that

those methods returns consistent parameter estimates for u.

The medians of the RMSD u values are around 0.1 or lower

across all methods.

For comparison of methods using RMSD of s2 shown in

Figure 12, the pruning tip method, raw method, length

stretching method, and lambda method perform well.

However, the shrinkage method has significantly larger

RMSDs in both sol and unsol cases. From earlier work, it sug-

gests that the tip length of shrunk trees after tree transforma-

tion has relationship with the proportion of tree height. For

instance, the average of the shrinkage estimator across 100

replicates for birth-death tree of 100 taxa and 800 taxa is

(d̂= 0:20, 0:12). Consider a more extreme case: a star tree

obtained from the shrinkage method with d= 1,b=(1� d)=

(n� 1)= 0 is used for parameter estimation, then

Sd = 0 3 C + 1 3 T =T is a diagonal matrix. Then, the trait

is indeed analyzed under independent normal distribution.

The bias of parameters in this case can be seen from theoretical

approach. Without loss of generality, let T = I be an identity

matrix and let trait data Y be simulated under BM model (ie,

Y ;N (u1,s2C). Then, under the shrinkage method with

d= 1, Y is analyzed under the i.i.d. normal distribution with

MLEs û=
Pn

i = 1 yi=n=�y and ŝ2 =
Pn

i = 1 (yi � �y)2=n.

Given true parameters u, s, the RMSD u is bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Pn

i, j cij=n2
q

. And if the root to tip tree height is 1 (ie,

0 ł cij ł 1 for all i, j = 1, 2, . . . , n), then RMSD u has a natu-

ral upper bound s (see Lemma 4 in supplemental material).

However, the RMSD for s has a nontrivial lower bound.

For mathematical convenience, s2 is used instead to show

that a lower bound is RMSDs2 ø (s2)2(2
Pn

i, j = 1 cij=n2

+(
Pn

i = 1 cii=n)2 � 2)+Var½(
Pn

i = 1 (yi � �y))2� (see Lemma

5 in supplemental material).

However, tips of the tree may overly lengthen by the

shrinkage method so the parameter s cannot be estimated

well. To explore the utility of the shrinkage method, a simu-

lation comparing the RMSD under different ds and taxa

size n is shown in Figure 13 which suggests that RMSD of

Figure 11. Evaluation of performance of parameter estimation under trees transformation for ancestral status parameter u. The left panel is for true
parameter u = 0 and the right panel is for u = 10 with tree size n = 100 (upper panel) and n = 500 (lower panel). The box plots of RMSD of u defined in equation
(9) under each method are shown in each panel. The labels of the horizontal axis starting from the left to the right are droptip: prune the shortest tip, prun: the
pruning algorithm,11 raw: untransformed tree, stretch: length stretched tree, shrink: shrinkage matrix regularization method and lambda: Pagel’s lambda
method. Each label contains 2 groups: sol and unsol where sol represents the estimates of parameters on well-conditioned trees using raw tree and after
various transformation, and unsol represents the group of estimates of the parameters on just the poorly conditioned trees after various transformations are
reported. Because raw trees cannot be evaluated when their C matrices fall in ill-condition, only the box plot for raw tree is reported when the C matrix is
invertible under Cholesky method. Graphs are plotted in log10 scale.
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s in general increases with d. The model parameter s can

be estimated better with smaller d. If the goal is to obtain a

reliable estimate of s, then a relatively small number of d

shall be considered to attain a better estimate for s with

lower RMSD value. Therefore, users may manually set up

the shrinkage parameter as small as possible to obtain reli-

able estimate when the transformed tree has invertible C

matrix.

Figure 12. Evaluation of performance of parameter estimation under trees transformations for rate parameter s2. The box plots under each panel compare
the RMSD values under each tree transformation method. The labels are the same as in Figure 11. The box plots are reported in log10 scale. Among those
transformations, the shrink method has significantly larger RMSD than other methods in both of the C is solvable (sol) and unsolvable (unsol).

Figure 13. Evaluation of the shrunk tree of taxa sizes 100 and 500 with different shrinkage parameter values d = 0:01, 0, 05, 0:1, 1. For each taxa size, RMSDs
are computed using 300 birth-death trees where for each tree 50 traits are simulated under Brownian motion model. The 2 plots in upper panel investigate the
RMSD for s = 1 and s = 5 when the inverse of C (sol C) can be computed directly, whereas the other 2 plots in lower panel investigate the RMSD for s = 1 and
s = 5 for the case where the C matrix is ill-conditioned (unsol C). Overall, the 4 panels suggest a relatively small shrinkage value d may be used to achieve a
better estimate for s.

Jhwueng and O’Meara 11
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To sum up, although the tree transformation methods pro-

posed here do not provide significantly better improvement

than the raw tree, they are still reliable options for users to

choose when the C matrix of tree is ill-conditioned. Moreover,

even when the C matrix is fairly well-conditioned, applying

transformations does not have a substantially worse effect. One

suggestion is that when the phylogenetic covariance C matrix

is solvable, it may be the best to use the raw tree. Meanwhile,

when C is so poorly conditioned that C cannot be inverted

exactly by Cholesky decomposition, tree transformation meth-

ods provide alternative options and can give reliable estimates

for most cases.

Conclusions
In this article, we explore the condition number k of the phy-

logenetic covariance matrix C transformed from a phylogenetic

tree. We found with fairly short terminal branch (eg, a tip with

length of 10�15 or smaller for tree of 100 taxa) the phyloge-

netic C matrix fails to give the exact inverse by the Cholesky

decomposition method by current software. The failure of

returning exact inverse of C also depends on the number of

taxa and range of condition numbers k.

We proposed 3 methods (shrinkage matrix regularization,

pruning the tips of tree, and length stretching) to alleviate the

ill-conditioned matrix issue arising from the phylogenetic tree

and obtain a well-conditioned estimate for C matrix.

Simulations here are similar in spirit to what is performed in

Figure 5 in the work by Adams and Collyer9 where the condi-

tion number of phylogenetic covariance matrices at different

level of sample size was shown. Their work was interested in

the condition number relative to type I error of comparative

methods, whereas our examinations use different aspects of the

effect of tree condition. Another common approach is to add a

small constant to the eigenvalues of the phylogenetic covar-

iance matrix and reestimate the phylogenetic covariance matrix

from the eigenvectors and adjusted eigenvalues. However, this

method would alter the topology of the phylogenies, so we do

not consider to implement it here.

Current R software packages that implement Felsenstein’s

pruning algorithm work effectively. For example, the R pack-

age mvMORPH can compute the square root of the phylogenetic

covariance matrix and its determinant with arbitrary small tips,

whereas the R package PCMBase implements the pruning

algorithm to return the likelihood even with zero-length

branches (see supplemental material pmmfelprunzero-

branch.pdf). Note that the analysis of parameter estimation

under the maximum likelihood estimation for the univariate

BM model used in this work is performed without implement-

ing measurement error. When assuming that each species in

the tree has a measurement error variance, technically, this is

also equivalent to extending each branch in the tree by a con-

stant. Then, the variance-covariance matrix that includes mea-

surement error and an ill-conditioned C matrix could have

better matrix condition, especially in our cases where the poor

matrix condition typically came from near zero-length tips.

Measurement error is also included as part of the model for the

phylogenetic mixed model.50 However, measurement error can

lead to bias in the inferred parameters.51 Also, some software

with hundreds of citations, such as OUCH52 and SURFACE,53

does not yet allow for incorporation of measurement error, ren-

dering this potential solution impossible. As we focus on

studying the condition number of C matrices on its own and

explore the impact on subsequent analyses, we do not include

the measurement error in this study.

There are a couple of extensions from this work. One possi-

ble work is to look at the multirate evolutionary BM model54

where the rate of phenotypic evolution is assumed to change

throughout history of life. As the rate parameters are

embedded in the phylogenetic covariance matrix, the condition

number of the phylogenetic covariance matrix hence depends

on both the tree and rate parameters. Another possible exten-

sion from this work is to look at the condition number of the

phylogenetic variance-covariance matrix for more general trait

models. For instance, if one assumes OU process for trait evo-

lution,48 then the phylogenetic variance-covariance matrix is

S=s2Sa½i, j�=s2 exp (� atij)(1� exp (� 2ata))=(2a)

where a is the constraining force, s is the rate of evolution, tij

is the time that separating species i and j, and ta is the time

that species i and j shared a common ancestor. The statistical

model for the OU process trait evolution is Y ;N (u1,s2Sa).

In particular, when a= 0, Sa =C is the BM model. Larger

constraining force parameter a in OU model has the effect of

lengthening the tip relative to the internal edges and may help

the ill-conditioned matrix issue.

There are more complex models developed under different

assumptions based on this OU process, for instance, the multi-

force, multioptimum, and multirate model in the work by

Beaulieu et al55 has fairly complicated phylogenetic variance-

covariance matrix Sa,s. Its poor performance with especially

complex models could stem from issues with matrix condition,

though this needs to be investigated. In addition, Bastide et

al12 and Jhwueng and O’Meara8 developed a phylogenetic

comparative method (PCM) using phylogenetic networks,

rather than trees, it would be interesting to further explore the

matrix condition in this case. We hope that our tree transfor-

mation methods provide the community options to ameliorate

the issues produced by ill-conditioned C. All analysis and

simulations are done by computer Mac Pro: macOS Mojave

(Late 2013), processor: 3.7 GHz Quad-Core Intel Xeon E5,

RAM:12 GB 1866 MHz DDR3. The R scripts and relevant

files to generate results can be accessed at https://tonyjhwueng.

info/KappaPCM.
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45. Bartoń K. MuMIn: multi-model inference (R package version 1.9.13). http://

CRAN.R-project.org/package=MuMIn. Updated 2013.
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