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Nine million cases of tuberculosis (TB) were reported in 2013, with a further 1.5 million deaths attributed to the disease. When
delivered as an intradermal (i.d.) injection, the Mycobacterium bovis BCG vaccine provides limited protection, whereas aerosol
delivery has been shown to enhance efficacy in experimental models. In this study, we used the rhesus macaque model to charac-
terize the mucosal and systemic immune response induced by aerosol-delivered BCG vaccine. Aerosol delivery of BCG induced
both Th1 and Th17 cytokine responses. Polyfunctional CD4 T cells were detected in bronchoalveolar lavage (BAL) fluid and pe-
ripheral blood mononuclear cells (PBMCs) 8 weeks following vaccination in a dose-dependent manner. A similar trend was seen
in peripheral gamma interferon (IFN-�) spot-forming units measured by enzyme-linked immunosorbent spot (ELISpot) assay
and serum anti-purified protein derivative (PPD) IgG levels. CD8 T cells predominantly expressed cytokines individually, with
pronounced tumor necrosis factor alpha (TNF-�) production by BAL fluid cells. T-cell memory phenotype analysis revealed that
CD4 and CD8 populations isolated from BAL fluid samples were polarized toward an effector memory phenotype, whereas the
frequencies of peripheral central memory T cells increased significantly and remained elevated following aerosol vaccination. Expres-
sion patterns of the �4�1 integrin lung homing markers remained consistently high on CD4 and CD8 T cells isolated from BAL fluid
and varied on peripheral T cells. This characterization of aerosol BCG vaccination highlights features of the resulting mycobacterium-
specific immune response that may contribute to the enhanced protection previously reported in aerosol BCG vaccination studies and
will inform future studies involving vaccines delivered to the mucosal surfaces of the lung.

An estimated 9 million people contracted Mycobacterium tu-
berculosis in 2013, with a further 1.5 million deaths attributed

to tuberculosis (TB) infection and coinfection with HIV (1). Vac-
cination is widely accepted to be the most effective method for
control of an infectious disease. The current TB vaccine, Mycobac-
terium bovis BCG, is most commonly delivered as an intradermal
(i.d.) injection. It is known to reduce the occurrence of dissemi-
nated forms of childhood TB (2) but displays variable efficacy
against the infectious forms of adult pulmonary disease, suggest-
ing that BCG-induced immunity may decline over time (3, 4).
While several novel vaccines have progressed to clinical trials (5),
none has yet improved upon the limited protection afforded by
intradermal BCG vaccination. Typically, novel vaccines are deliv-
ered via a parenteral route, and, consequently, attention is now
refocused on alternative routes for vaccine delivery, specifically
aligning the route of vaccination with the natural route of TB
infection using aerosol delivery methods (6–9). BCG has been
shown to enhance protection against experimental M. tuberculosis
infection when delivered intranasally or by aerosol to mice (10,
11) and as an aerosol to guinea pigs (12, 13) or rhesus macaques
(14). However, the previous aerosol BCG immunization studies
did not investigate in detail the immunological mechanisms un-
derlying this protection.

A successful TB vaccine will need to induce persistent memory
T-cell populations. There is an established division of labor be-
tween effector T cells (TEM) able to migrate to peripheral tissues
through the expression of tissue-specific homing markers to exe-
cute inflammatory functions and central memory T cells (TCM)
that reside within secondary lymphoid tissues ready to proliferate
and replenish the TEM pool (15). The T-cell response to active TB
infection has been shown to favor the TEM phenotype, with TCM
more prevalent in latently infected individuals (16). Vaccine-in-
duced TEM responses have been associated with protection

against viral pathogens (17), and TEM populations have been in-
vestigated and detected following systemic BCG vaccination (18).
Hence, it has been hypothesized that the current BCG vaccination
induces TEM populations capable of the short-term control of M.
tuberculosis infection but poorly induces the TCM populations
required for long-term protection (19).

Currently there is no validated correlate of protection against
M. tuberculosis infection, but a cell-mediated T-helper 1 (Th1)
response from CD4 T cells (20) and probably a major histocom-
patability class (MHC) I restricted CD8 response (21) are known
to be important for successful control of the disease. In the ab-
sence of a true correlate, functional markers such as gamma inter-
feron (IFN-�) expression are measured to assess vaccine immu-
nogenicity. In recent years, the quality of the T-cell response has
been highlighted as important to the induction of memory T cells
(22), and multifunctional CD4 cells expressing combinations of
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the cytokines IFN-�, tumor necrosis factor alpha (TNF-�), and
interleukin-2 (IL-2) have been implicated both in the active phase
of the disease (23) and as correlates of vaccine-induced protection
(24–26). However, there is also evidence contradicting the legiti-
macy of these multifunctional cells as markers of anti-TB protec-
tive immunity (27), which highlights the likely complexity of the

immune response required for tuberculosis immunity. Indeed, it
is now clear that the CD4 T-helper response is diverse and in-
cludes cells of the Th17 lineage. IL-17 production has been impli-
cated in the induction and maintenance of the Th1 response fol-
lowing BCG vaccination and recruitment of cells to the lung
following infection with M. tuberculosis (28, 29) and correlates
with improved outcome following M. tuberculosis exposure in
nonhuman primates (NHP) (30).

The NHP model has many advantages over other species for
the study of potential TB vaccines. These include the similarity of
primate anatomy, physiology, susceptibility to low-dose aerosol
infection, and, crucially, immune response to those of humans
(31, 32). In this study, we used the rhesus macaque model to
investigate mucosal and systemic immune responses induced fol-
lowing aerosol BCG vaccination. In doing so, we reveal features of
the aerosol-induced immune response that may contribute to the
enhanced protection reported in the literature and inform future
vaccination strategies and the search for correlates of protection.

MATERIALS AND METHODS
Aerosolization of BCG and effect on vaccine viability. BCG was aerosol-
ized by nebulization with the Omron MicroAIR device, and the effect of
this on vaccine viability was investigated. One-milliliter solutions of BCG
Danish strain 1331 (Statens Serum Institut [SSI], Copenhagen, Denmark)
reconstituted in phosphate-buffered saline (PBS) were aerosolized
through a sealed system to prevent loss of aerosol to the atmosphere, and
cells were passively collected by condensation into sterile deionized water.
The condensate was plated onto Middlebrook 7H11 selective agar con-
taining oleic acid, bovine albumin, dextrose, and catalase (OADC) (bio-
Mérieux, Basingstoke, United Kingdom) for enumeration of viable CFU.
In parallel, CFU were measured in a nonaerosolized aliquot of identical
BCG solution to enable quantification of any change in bacterial viability
associated with the aerosolization process. To estimate the aerosol vacci-
nation dose, losses associated with the nebulization apparatus and proce-
dure were measured. BCG vaccine solution was nebulized through the
Omron MicroAir device with an unsealed pediatric face mask, and the
aerosol was collected in an all-glass impinger (AGI) (ACE Glass Inc.,
Vineland, NJ, USA) under conditions mimicking macaque inhalation and
expiration. Viable CFU in collected aerosols were determined alongside
those in nonaerosolized BCG solution as described above.

Experimental animals. Eight rhesus macaques (Macaca mulatta) of
Indian origin aged between 4.6 and 5.2 years of age were obtained from an
established United Kingdom breeding colony. The absence of a previous
exposure to mycobacterial antigens was confirmed by tuberculin skin tests
as part of the colony management procedures and by screening for IFN-�
enzyme-linked immunosorbent spot (ELISpot) assay (MabTech, Nacka,
Sweden) responses to purified protein derivative (PPD) (SSI, Copenha-
gen, Denmark) and pooled 15-mer peptides of early secreted antigen tar-
get 6 (ESAT-6) and 10-kDa culture filtrate antigen (CFP-10) (Peptide
Protein Research Ltd., Fareham, United Kingdom). Animals were housed
in compatible social groups, in accordance with the Home Office (United
Kingdom) Code of Practice for the Housing and Care of Animals Used in
Scientific Procedures (1989) and the National Committee for Refinement,
Reduction and Replacement (NC3Rs) Guidelines on Primate Accommo-
dation, Care and Use, August 2006. For each procedure, sedation was
applied by intramuscular injection with 10 mg ketamine hydrochloride
(Ketaset; Fort Dodge Animal Health Ltd., Southampton, United King-
dom) per kilogram of body weight. All animal procedures were approved
by the Public Health England Ethical Review Committee, Porton Down,
United Kingdom, and authorized under an appropriate United Kingdom
Home Office project license.

Vaccination. Sedated animals were exposed to aerosolized BCG Dan-
ish strain 1331 (SSI, Copenhagen, Denmark) using an Omron MicroAir
mesh nebulizer (Omron Healthcare United Kingdom Ltd., Milton

FIG 1 Frequencies of systemic PPD-specific IFN-� spot-forming units (SFU)
measured by ELISpot assay. The frequencies of PPD-specific IFN-� SFU were
measured in PBMCs following vaccination with aerosol-delivered BCG equiv-
alent to a standard i.d. dose (Aero 1�) (A) and 10-fold less than a standard i.d.
dose (Aero 1/10) (B). Panels A and B show SFU frequencies in individual
animals, whereas panel C depicts vaccination group median SFU � standard
deviations. Vaccination with aerosol BCG is indicated by a dotted line at week
zero.
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Keynes, United Kingdom) and a modified pediatric anesthesia mask. Vac-
cine doses were selected to be equivalent to or 1/10 of a standard adult
intradermal dose after the expected losses in BCG titer associated with the
aerosol delivery process were taken into account. BCG vaccine was pre-
pared by adding 1 ml of PBS to each vaccine vial to give an estimated
concentration of 2 � 106 to 8 � 106 CFU/ml. Multiple vials were pooled to
ensure standardization between vaccinations, and 1/10 dose solutions
were created by diluting this stock 1:10 with PBS before delivering 1 ml of
the appropriate preparation to each animal.

Clinical assessment. Animals were sedated at two weekly intervals for
blood sample collection and measurement of body weight and body tem-
perature, red blood cell (RBC) hemoglobin levels, and erythrocyte sedi-
mentation rates (ESR). RBC hemoglobin was measured using a HemoCue
hemoglobinometer (HemoCue Ltd., Dronfield, United Kingdom), and
the ESR was measured using the Sediplast system (Guest Medical, Eden-
bridge, United Kingdom). Animal behavior was observed throughout the
study for contraindicators, including depression, withdrawal from the
group, aggression, changes in feeding patterns, respiration rate, or cough-
ing. Bronchoalveolar lavage (BAL) fluid was collected at 4-week intervals,
as described previously (6).

Immune response analysis. (i) IFN-� ELISpot assay. Gamma inter-
feron (IFN-�) ELISpot assays were performed on peripheral blood mono-
nuclear cells isolated from heparin anticoagulated blood using standard
methods, as previously described (6).

(ii) Intracellular cytokine staining. Intracellular cytokine staining
(ICS) was performed on 1 � 106 BAL fluid cells or peripheral blood
mononuclear cells (PBMCs) in medium (R10) consisting of RPMI 1640

supplemented with L-glutamine (2 mM), penicillin (50 U/ml), streptomy-
cin (50 �g/ml), and 10% heat-inactivated fetal bovine serum. These cells
were stimulated with a 10 �g/ml solution of CD28 and CD49d costimu-
latory antibodies (both from BD Biosciences, Oxford, United Kingdom)
and 10 �g/ml PPD (SSI, Copenhagen, Denmark), 5 �g/ml staphylococcal
enterotoxin B (SEB) (Sigma-Aldrich, Gillingham, United Kingdom), or
R10 medium alone as a negative control. Intracellular cytokine staining to
evaluate antigen-specific production of the cytokines IFN-�, TNF-�, IL-2,
and IL-17 was performed as previously described (6).

(iii) Immunophenotyping. Immunophenotyping was performed us-
ing 1 � 106 freshly isolated PBMCs or BAL fluid cells incubated for 30 min
at room temperature with optimal dilutions of the following fluorescent
antibodies: CD3-AF700, CD4-allophycocyanin (APC)-H7, CD8-fluores-
cein isothiocyanate (FITC), CD95 PeCy7, CCR7-phycoerythrin (PE),
CD29-APC, and CD49d-BV711 (all from BD Biosciences, Oxford, United
Kingdom), CD28-BV421 (BioLegend, London, United Kingdom), and
CD14-ECD and CD20-ECD (Beckman Coulter, High Wycombe, United
Kingdom). The amine-reactive Live/Dead fixable red dead cell stain kit
was from Life Technologies (Renfrew, United Kingdom). BD CompBeads
(BD Biosciences) were labeled with the above fluorochromes and used as
compensation controls. Following antibody labeling, cells and beads were
washed by centrifugation and fixed in 4% paraformaldehyde solution
(Sigma-Aldrich, Gillingham, United Kingdom) prior to flow cytometric
acquisition.

(iv) Flow cytometric acquisition and analysis. Cells were analyzed
using a four-laser LSR II flow cytometer (BD Biosciences, Oxford, United
Kingdom). Cytokine-secreting T cells were identified using a forward

FIG 2 Aerosol BCG vaccination induces both Th1 and Th17 type cytokines in CD4 T cells isolated from BAL fluid (A, B) and peripheral blood (C, D). The bar
charts display median values of the individual cytokines IFN-�, TNF-�, IL-2, and IL-17 produced prior to vaccination (PB) and at weeks 4, 8, and 13 after aerosol
BCG vaccination with a dose equivalent to (A, C) or 1/10 of (B, D) a standard i.d. dose. Cytokine frequencies in individual animals are represented by dots (n �
4 per vaccination group).
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scatter height (FSC-H) versus side scatter area (SSC-A) dot plot to identify
the lymphocyte population, to which appropriate gating strategies were
applied to exclude doublet events, nonviable cells, monocytes (CD14�),
and B cells (CD20�). For ICS analysis, sequential gating through CD3�,
CD4�, and CD8	 or CD3�, CD8�, and CD4	 cells was used before
individual cytokine gates to identify IFN-�-, IL-2-, TNF-�-, and IL-
17-producing subsets. For phenotyping analysis, CD4 and CD8 pop-
ulations were identified using bivariate dot plots before assessment of
homing marker expression using CD29 (
1 integrin chain) versus
CD49d (�4 integrin chain) bivariate plots (see Fig. 8E and F). T-cell
memory profiles were identified by gating on CD4 or CD8 populations
with high surface staining for CD95, before differentiation of CD28
and CCR7 expression (see Fig. 6 and 7E to H). All data were analyzed
using FlowJo (version 9.7.6; Tree Star, Ashland, OR, USA). Polyfunc-
tional cells were identified using Boolean gating combinations of in-
dividual cytokine-producing CD4 or CD8 T cells. The software pack-
age PESTLE (version 1.7) was used for background subtraction to
obtain antigen-specific ICS assay responses, and SPICE (version 5.35)
was used to generate graphical representations of flow cytometry data
(Mario Roederer, Vaccine Research Center, NIAID, NIH).

(v) Serum IgG ELISAs. Levels of anti-tuberculin PPD IgG in serum
samples were measured by enzyme-linked immunosorbent assays (ELISAs).
High protein binding capacity polystyrene plates (Fisher Scientific, Lough-
borough, United Kingdom) were coated with a 1 �g/ml solution of tubercu-
lin PPD (SSI, Copenhagen, Denmark) suspended in pH 9.5 carbonate-bicar-
bonate buffer (Scientific Laboratory Supplies, Hessle, United Kingdom).
Plates were washed and blocked using PBS plus 5% dried milk powder (BD

Biosciences, Oxford, United Kingdom) before addition of 2-fold serial dilu-
tions of serum samples. Following incubation, the plates were washed and
incubated with 0.3 �g/ml goat anti-monkey IgG-horseradish peroxidase
(HRP) (Insight Biotechnology Ltd., Wembley, United Kingdom). After fur-
ther incubation and washing, the peroxidase substrate 3,3=,5,5=-tetramethyl-
benzidine (SurModics, Inc., Eden Prairie, MN, USA) was added to the wells,
and the wells were incubated at room temperature for 10 min. The reaction
was stopped by the addition of 2 M sulfuric acid (Fisher Scientific, Loughbor-
ough, United Kingdom), and the absorbance at 450 nm was measured im-
mediately. Antibody titers were determined by linear regression of the sample
dilution series and are expressed as arbitrary units relative to the mean pre-
vaccination levels.

Necropsy. Before necropsy, animals were anesthetized with ketamine
(15 mg/ml intramuscularly [i.m.]), weighed, and photographed, clinical
data were collected, and exsanguination was performed via the heart,
before termination by injection of a lethal dose of anesthetic (140 mg/kg
Dolethal; Vétoquinol, Ltd., United Kingdom). A full necropsy was per-
formed, and gross pathology was assessed. Samples of spleen, liver, kid-
neys, lymph nodes (hilar, inguinal, mesenteric, axillary, and colonic), ton-
sil, brain, olfactory bulb, heart and pericardium, small intestine (ileum,
jejunum, and duodenum), transverse colon, eye, and the upper left lung
lobe were removed, dissected on sterile trays, and placed into formalin-
buffered saline for gross pathology and histopathology analysis.

Histopathology. Representative sections from the tissues described
above were processed to paraffin wax, cut at 5 �m, and stained with
hematoxylin and eosin (H&E) for microscopic examination. Pathology
analysis was performed blinded to the vaccination dose and group.

FIG 3 CD8 T-cell cytokine production in BAL fluid (A, B) and PBMCs (C, D) is indicative of an effector phenotype lacking IL-2 production. The bar charts display
median values of the individual cytokines IFN-�, TNF-�, IL-2, and IL-17 produced prior to vaccination (PB) and at weeks 4, 8, and 13 after aerosol BCG vaccination with
a dose equivalent to (A, C) or 1/10 of (B, D) a standard i.d. dose. Cytokine frequencies in individual animals are represented by dots (n � 4 per vaccination group).
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Statistical analyses. Comparisons of ex vivo ELISpot assay responses
and serum IgG titers were completed using the area under the curve
(AUC) of each animal’s response calculated using SigmaPlot version 10
(Systat Software Inc., Hounslow, United Kingdom). AUC values were
compared between test groups using the nonparametric Mann-Whitney
U test, Minitab version 15 (Minitab Ltd., Coventry, United Kingdom). To
compare T-cell functional profiles measured by polyfunctional flow cy-
tometry and T-cell homing and memory marker expression between vac-

cination groups, T-cell subset frequencies were compared using a Wil-
coxon rank test at each analysis time point (SPICE version 5.35).
Similarly, vaccine-induced changes in T-cell functional profiles and mem-
ory or homing marker expression within each vaccination group were
assessed by comparing frequencies at each analysis time point with
mean baseline values. Negative values in antigen-specific ICS data gen-
erated by background subtraction were replaced by a minimum
threshold value (33).

FIG 4 PPD-specific polyfunctional CD4 T-cell profiles measured in BAL fluid and PBMCs. The bar charts represent vaccination group median values for
cytokine frequencies in BAL fluid (A, B) and PBMCs (C, D) prior to vaccination (PB) and at weeks 4, 8, and 13 after aerosol BCG vaccination with 1/10 of (A, C)
or the equivalent of (B, D) a standard adult i.d. dose. Cytokine frequencies in individual animals are represented by dots (n � 4 per vaccination group).
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RESULTS
BCG viability following aerosolization through the mesh nebu-
lizer and determination of aerosol vaccine dose. The viability of
BCG following aerosolization through a sealed system was con-
firmed by bacterial culture and comparison to nonaerosolized
vaccine stock preparations. Stock solutions had viable counts
of 4.4 � 105 CFU/ml, compared to mean counts of 3.15 � 105

CFU/ml � 6.4 � 104 CFU/ml from passively collected aerosols.

To estimate the aerosol vaccine dose, BCG was aerosolized
through the unsealed nebulizer with a pediatric face mask and
actively collected under conditions mimicking macaque respi-
ration. Stock solutions of BCG had viable CFU counts of 5.35 �
105 CFU/ml, whereas the mean CFU collected from four repeat
nebulizations of BCG solution was 4.49 � 104 CFU/ml �
2.37 � 104 CFU/ml. This represented a 1.08-log10 reduction in
viable BCG CFU/ml, implying that the aerosol BCG dose would

FIG 5 PPD-specific polyfunctional CD8 T-cell profiles measured in BAL fluid and PBMCs. The bar charts represent vaccination group median values for
cytokine frequencies in BAL fluid (A, B) and PBMCs (C, D) prior to vaccination (PB) and at weeks 4, 8, and 13 after aerosol BCG vaccination with 1/10 of (A, C)
or the equivalent of (B, D) a standard adult i.d. dose. Cytokine frequencies in individual animals are represented by dots (n � 4 per vaccination group).
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be approximately 10-fold less than the titer of the nebulized
BCG solution.

Safety of aerosol-delivered BCG. There were no observed per-
turbations beyond the normal ranges in body weight, temperature,
peripheral lymph node size, red cell hemoglobin concentration, or
erythrocyte sedimentation rate following aerosol BCG vaccinations.

Histopathology analysis by H&E staining of secondary lym-
phoid tissues did not reveal any adverse findings attributable to
the BCG vaccination or route of administration.

The frequency of systemic PPD-specific IFN-�-secreting
cells increases following aerosol BCG vaccination. Systemic im-
mune responses induced by aerosol BCG vaccination were pro-
filed using an ex vivo IFN-� ELISpot assay. Increases in PPD-
specific IFN-� spot-forming unit (SFU) frequencies were
observed from 8 weeks after aerosol vaccination and reached sig-
nificance at weeks 10 and 13 in both vaccination groups (P � 0.03)
(Fig. 1). Significant differences were not detected between i.d.-
equivalent and lower-dose aerosol vaccination groups when
ELISpot assay AUCs measured across the study time course were
compared by the Mann-Whitney U test (P � 0.34).

CD4 and CD8 T-cell responses measured by ICS are of Th1
and Th17 lineage following aerosol BCG vaccination. Antigen-
specific production of the cytokines IFN-�, TNF-�, IL-2, and
IL-17 by CD4 and CD8 T cells was measured throughout the study
by multiparameter ICS (Fig. 2 and 3). Cytokine production by
CD4 and CD8 T cells in BAL fluid and PBMCs was characteristic
of a Th1- and Th17-type response. A clear dose response was
evident in both the mucosal and systemic T-cell populations, with

significantly greater frequencies of IFN-�-, IL-2-, and TNF-�-
producing CD4 cells (P � 0.02) and IFN-�-producing CD8 T cells
(P � 0.02) detected in BAL fluid 13 weeks after aerosol BCG vac-
cination equivalent to a standard i.d. dose.

Peripheral and mucosal multifunctional T-cell response
profiles induced by aerosol BCG vaccination. Mucosal and sys-
temic polyfunctional profiles of CD4 and CD8 T cells producing
combinations of the cytokines IFN-�, IL-2, and TNF-� following
aerosol BCG vaccination were measured throughout the study.
CD4 responses induced by aerosol vaccination in BAL fluid cells
were significantly above the prevaccination levels in four distinct
profiles: IFN-�, IL-2, and TNF-� triple-positive cells (P � 0.02),
IFN-� and TNF-� dual-positive cells (P � 0.02), and IFN-�- or
TNF-�-producing single-positive cells (P � 0.02) (Fig. 4A and B).
A clear dose response was apparent between the vaccination
groups in terms of mucosal CD4 T cells, with the frequency of
triple-positive cells (P � 0.02), IFN-� and TNF-� dual-positive
cells (P � 0.02), and IFN-� only-producing cells (P � 0.02) sig-
nificantly greater following vaccination via the aerosol route with
a dose equivalent to a standard i.d. vaccination. CD8 T cells in BAL
fluid and PBMCs were found to produce IFN-� or TNF-� or both
cytokines simultaneously (Fig. 5A to D) and were present 4 weeks
following aerosol vaccination. CD8 T cells producing TNF-� in-
creased significantly in BAL fluid and were detected in PBMC
samples following aerosol BCG vaccination.

Aerosol BCG vaccination leads to expansion of systemic cen-
tral memory populations, whereas mucosal T cells remain po-
larized in an effector memory phenotype. Central and effector

FIG 6 CD4 T cells isolated from BAL fluid samples remain polarized in an effector phenotype, whereas PBMC TCM populations expand following aerosol BCG
vaccination. CD4 memory phenotype analysis of BAL fluid cells (A, B) and PBMCs (C, D) collected at baseline (PB) and at weeks 4, 8, and 13 after aerosol BCG
vaccination with 1/10 of (A, C) or the equivalent of (B, D) a standard adult i.d. dose. The box plots show interquartile ranges (IQR) with medians represented as
horizontal bars. Representative bivariate flow cytometry plots showing sequential gating of CD95-stained populations and definition of central to effector
memory T-cell populations by patterns of CD28 and CCR7 expression in cells isolated from BAL fluid (E, F) and PBMCs (G, H).
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memory T-cell populations are identified in the rhesus macaque
by expression of cell activation markers such as CD95, followed by
differential expression patterns of the costimulatory receptor
CD28 and lymph node homing marker CCR7. Therefore, the cen-
tral-to-effector memory axis was determined as CD28� CCR7�

(TCM), CD28� CCR7	 (transitional effector memory cells
[TransEM]), and fully differentiated CD28	 CCR7	 (TEM) (Fig.
6E to H and 7E to H) (34, 35). Using this classification, T-cell
memory profiles were assessed on cells isolated from BAL fluid
and PBMCs at regular intervals throughout the study. CD4 and
CD8 T cells from BAL fluid remained polarized in an effector
T-cell phenotype throughout the study. CD4 T cells primarily
occupied a TransEM profile; CD8 restricted cells were approxi-
mately evenly split between the TransEM and the fully differenti-
ated TEM phenotype (Fig. 6A and B and 7A and B). A similar
pattern was observed in CD4 and CD8 effector memory subsets
isolated from peripheral blood but was accompanied by signifi-
cant increases in TCM frequency. This TCM expansion was most
pronounced in the CD4 subset and was seen in both aerosol vac-
cination groups. Expanded TCM populations remained elevated
following aerosol BCG vaccination with a dose equivalent to the
standard i.d. BCG vaccination, whereas the population had con-
tracted and was significantly lower in the 1/10 dose group 13 weeks
after vaccination (P � 0.02) (Fig. 6C and D and 7C and D).

�4�1 integrin homing markers are highly expressed by mu-
cosal T cells. T-cell expression patterns of the �4 and 
1 integrin
chains were investigated as putative T-cell lung homing markers
(Fig. 8). Dose-related differences in expression profiles were not

observed following aerosol vaccination; therefore, data from the
high- and lower-dose vaccination groups were combined for anal-
ysis purposes. The �4
1 integrin chains were highly expressed on
CD4 and CD8 T cells isolated from BAL fluid prior to vaccination
and remained consistently high throughout the study, with a sig-
nificant increase in �4
1 coexpression on CD4 T cells 13 weeks
following vaccination (Fig. 8A and C). The expression patterns on
PBMCs were more varied and generally remained consistent
throughout the study, although a trend for reduced �4
1 detec-
tion in the CD8 subset was noted 4 weeks after vaccination and
was accompanied by a significant increase in the proportion of
�4
1 double-negative cells at this time point (Fig. 8B and D).

Anti-tuberculin PPD IgG titers measured in serum increase
following aerosol BCG vaccination. Levels of tuberculin PPD-spe-
cific IgG were measured in serum samples at selected time points
throughout the study using a PPD ELISA. Median anti-PPD IgG ti-
ters increased in both vaccination groups relative to the prevaccina-
tion levels but had subsided 10 weeks later in the lower-dose vaccina-
tion group. Titers remained elevated in animals receiving aerosol
vaccination equivalent to a standard i.d. dose (Fig. 9).

DISCUSSION

Despite a concerted global effort, TB remains a leading cause of
mortality from an infectious agent. In recent years, the search for
novel vaccines to improve upon the protection afforded by con-
ventionally delivered BCG has begun to focus on alternative
routes for vaccine delivery. Aerosol delivery of TB vaccines to the
mucosal surface of the lung is a rational approach for localizing a

FIG 7 CD8 memory T-cell populations display a predominately effector memory phenotype split between the TransEM and TEM subsets. CD8 memory
phenotype analysis applied to BAL fluid mononuclear cells (A, B) and PBMCs (C, D) collected at baseline (PB) and at weeks 4, 8, and 13 after aerosol BCG
vaccination with 1/10 of (A, C) or the equivalent of (B, D) a standard adult i.d. dose. The box plots show IQR with medians represented as horizontal bars.
Representative bivariate flow cytometry plots showing sequential gating of CD95-stained populations and definition of central to effector memory T-cell
populations by patterns of CD28 and CCR7 expression in cells isolated from BAL fluid (E, F) and PBMCs (G, H).
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vaccine-induced response at the primary site of infection. Such an
approach has proven practical and effective in the context of mea-
sles vaccination (36) and has recently proven safe and immuno-
genic in clinical trials of the novel TB vaccine MVA85A (7).

Aerosol-delivered BCG vaccination has previously been shown
to afford enhanced protection against inhaled M. tuberculosis in-
fection in the rhesus macaque (14). However, these studies did not
describe the host response underpinning this protection. With
this assessment of the immunogenicity of aerosol BCG vaccina-
tion, we highlight features of the mycobacterium-specific T-cell
response induced via the mucosal vaccination route that may con-
tribute to the enhanced protection observed in previous studies.
Moreover, in comparison with recently published studies describ-
ing equivalent immunogenicity measures applied following i.d.
BCG vaccination in age-matched rhesus macaques, a comparison
can be drawn between the immune responses induced by each
vaccination route (6). Multifunctional T-cell responses are
thought to be an important component of a protective immune
response against intracellular pathogens, including M. tuberculosis
(24–26), and have been shown to be involved during the active
phase of tuberculosis infection (23). Our results show that poly-
functional CD4 T cells are detected in the lung following aerosol
vaccination and that the functional repertoire of CD4 and CD8 T
cells induced by aerosol BCG was consistent with that reported in
our prior studies of i.d. BCG immunogenicity. However, the fre-
quency of antigen-specific cells was observed to increase at later
time points following aerosol vaccination (6, 32). In addition,
aerosol vaccination also induced TNF-�-secreting CD8 popula-
tions detectable at the mucosal surfaces or in the periphery. As

antigen-specific TNF-� production has been implicated as a pro-
tective factor in the control of tuberculosis (37, 38) and anti-
TNF-� therapy has been demonstrated to induce reactivation of
latent infection (39, 40), this could prove to be an important factor
in the protection imparted by aerosol BCG vaccination.

Delayed T-cell activation is an established phenomenon asso-
ciated with M. tuberculosis infection and is often in contrast with
the kinetics observed following infection with comparable intra-
cellular pathogens and viruses (41–45). Our study suggests that
the route of BCG vaccination has a significant impact on the ki-
netics of the cell-mediated response. This was seen as a delay in the
peripheral response measured by the IFN-� ELISpot assay, which
was detected approximately 8 weeks following aerosol vaccina-
tion, whereas intradermally delivered BCG responses typically oc-
cur by week 4 (6, 32). Moreover, a similar trend was observed in
CD4 T-cell cytokine production, including that of polyfunctional
T cells, measured in BAL fluid and PBMCs, which was delayed
relative to the cytokine production observed in prior i.d. BCG
vaccination studies (6). This is also a notable retarding of T-cell
induction relative to that observed following M. tuberculosis infec-
tion via the respiratory route, where PPD-specific IFN-� SFU are
usually detected within 4 weeks of infection in immunologically
naive animals (32). Furthermore, such delayed activation of the
mycobacterium-specific response may explain the protection ob-
served in prior studies by Barclay et al. (14), as their study design
delivered the M. tuberculosis challenge 8 weeks following vaccina-
tion, which would be during the peak of the primary aerosol BCG-
induced vaccine response.

Induction of immunological memory is an essential feature of

FIG 8 �4
1 integrins are expressed at high frequency by BAL fluid CD4 and CD8 T cells, whereas more varied expression is observed in PBMCs. Expression of
the �4
1 integrin lung homing markers on CD4 and CD8 T cells was measured in cells isolated from BAL fluid (A, C) and PBMCs (B, D). The box plots show
vaccination group medians and IQR of �4
1 integrin expression prior to vaccination (PB) and at weeks 4, 8, and 13 after aerosol BCG vaccination (standard i.d.
dose equivalent and 1/10 dose vaccination groups combined). Patterns of homing marker expression on CD4 T cells isolated from BAL fluid are displayed in
panel A and from PBMCs in panel B. Equivalent CD8 T-cell profiles are shown in panels C and D. Representative bivariate flow cytometry plots of �4 integrin
(CD49d) and 
1 integrin (CD29) chain staining on CD4 T cells isolated from BAL fluid (E) and PBMCs (F).
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a successful vaccine. BCG is primarily administered to infants or
adolescents and confers protection against disseminated child-
hood forms of tuberculosis (2). However, the longevity of this
protection is thought to wane beyond the adolescent years, sug-

gesting that intradermally delivered BCG weakly induces long-
lived memory T-cell responses (3, 4). Our T-cell memory pheno-
typing analysis shows that aerosol-delivered BCG leads to
significant expansion of circulating CD4 central memory popula-
tions. This expansion persisted for at least 3 months following
vaccination, after which point there was evidence for contraction
of the TCM population in the lower-dose vaccination group.
While different models exist to describe the development pathway
of memory T-cell populations (46, 47), most agree that induction
of the TCM subset leads to long-lived populations residing within
secondary lymphoid tissues. However, we recognize that ours is a
relatively short-term study and that longer time scales are required
to assess the longevity of these cells beyond the primary phase of
the vaccine response. Furthermore, measurement of functional
markers such as cytokine production, cytotoxicity, and prolifera-
tion within the memory T-cell subsets is required to assess the
antigen-specific recall capacity of these cells.

In agreement with previous observations, our data confirm
that the T-cell repertoire within the lung is biased toward an ef-
fector phenotype (35, 48). This is further supported by the high
levels of Th1 and Th17 effector cytokines we detected in cells iso-
lated from BAL fluid. The homing capacity to peripheral organs is
a key feature of TEM (47), and expression of the �4
1 integrin cell
surface adhesion markers has been linked with T-cell enrichment
in the lung (49) and lung localization of PPD-specific IFN-�-pro-
ducing CD4 cells in M. tuberculosis-infected patients (50). To in-
vestigate whether these markers could be used as correlates of
mucosal immunity, we followed the surface expression dynamics
of the �4
1 integrin chains following aerosol BCG vaccination.
Our data confirm that CD4 and CD8 T cells isolated from BAL
wash fluid coexpress �4
1 at a high level, supporting the use of
these markers as a measure of lung homing capacity. However,
expression frequencies remained unchanged in both BAL fluid
and PBMC samples following vaccination. We believe this high-
lights the limitation of measuring global frequencies of these
markers, which inevitably reduces an assay’s sensitivity to detect
small changes within the total T-cell pool. Therefore, character-
ization of homing marker expression on cells executing antigen-
specific functions should be a priority for future studies.

Aerosol delivery of vaccines is a practical proposition in the
clinical setting, holding many advantages over conventional nee-
dle-based approaches. The safety of delivering novel TB vaccines
to rhesus macaques and healthy human volunteers has recently
been established (6–9). However, despite the excellent safety re-
cord of BCG, particular caution is warranted in the context of
delivering live, attenuated bacilli to the lung and nasopharyngeal
surfaces. The primary objective of this study was to characterize
the immunological profiles induced by aerosol BCG and contrast
these with existing i.d. BCG immunogenicity data to elucidate
potential correlates of mucosal immunity. In addition, we are able
to report that aerosol BCG was well tolerated, with no contrain-
dications observed in the clinical parameters measured. More-
over, histopathology analysis of secondary lymphoid tissues did
not reveal any adverse findings attributable to the BCG vaccina-
tion or route of administration. However, further studies are re-
quired to demonstrate the safety of this approach before trials in
human volunteers and immunocompromised individuals. Con-
sequently, we intend to further investigate the efficacy of aerosol
BCG vaccination and characterize the events following low-dose
experimental M. tuberculosis infection to confirm the protection

FIG 9 Increase in anti-tuberculin PPD IgG measured in serum following aerosol
BCG vaccination. Anti-tuberculin PPD IgG titers measured in serum samples
following vaccination with aerosol-delivered BCG equivalent to a standard adult
i.d. dose (Aero 1�) (A) and 10-fold less than a standard adult i.d. dose (Aero 1/10)
(B). IgG titers were established relative to the mean prevaccination levels (arbitrary
units). Panels A and B show IgG titers measured in individual animals, whereas
panel C depicts vaccination group median titers � standard deviations. The vac-
cination with aerosol BCG is indicated by a dotted line at week zero.
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reported in the literature and further interrogate correlates of mu-
cosal immunity and protection.
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