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Abstract Organismal development is a complex process, involving a vast number of molecular

constituents interacting on multiple spatio-temporal scales in the formation of intricate body

structures. Despite this complexity, development is remarkably reproducible and displays tolerance

to both genetic and environmental perturbations. This robustness implies the existence of hidden

simplicities in developmental programs. Here, using the Drosophila wing as a model system, we

develop a new quantitative strategy that enables a robust description of biologically salient

phenotypic variation. Analyzing natural phenotypic variation across a highly outbred population and

variation generated by weak perturbations in genetic and environmental conditions, we observe a

highly constrained set of wing phenotypes. Remarkably, the phenotypic variants can be described

by a single integrated mode that corresponds to a non-intuitive combination of structural variations

across the wing. This work demonstrates the presence of constraints that funnel environmental

inputs and genetic variation into phenotypes stretched along a single axis in morphological space.

Our results provide quantitative insights into the nature of robustness in complex forms while yet

accommodating the potential for evolutionary variations. Methodologically, we introduce a general

strategy for finding such invariances in other developmental contexts.

Introduction
One of the most salient features of organismal development is its reproducibility and tolerance to

environmental and genetic perturbations. The robust development of intricate body structures is

striking in light of the complexity of the process, involving a vast number of molecular constituents

and interactions across multiple spatial and temporal scales. Despite insights into the molecular com-

plexity of an organism’s developmental program and the intricacies of the mechano-chemical

dynamics involved, we lack a deep understanding of how robustness emerges within a complex

developmental program and what its generic quantitative signatures must be (Visser et al., 2003).

The existence of robustness hints at the existence of global constraints within the development pro-

gram that ensure that the inevitable fluctuations in underlying mechanisms invariably lead to similar

outcomes.

It has been noted that there is an apparent paradox related to robustness (Wagner, 2008; Han-

sen, 2006; Masel and Siegal, 2009; Kirschner and Gerhart, 1998; Masel and Trotter, 2010). If

some body structure shows evidence of evolving within or between species, it would seem that

robustness would antagonize its evolvability. It suggests that there is a conflict between the

demands for developmental robustness and the requirement for evolvability. In particular, global

constraints on the spectrum of developmental outcomes restrict the nature of varieties that can be

selected for by the environment. One explanation to resolve this conflict supposes that the
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constraints can be temporarily alleviated, resulting in sudden expression of phenotypic diversity

from the underlying genetic diversity (Waddington, 1953; Rutherford and Lindquist, 1998;

Hermisson and Wagner, 2004). It is unclear how the constraints are alleviated during the natural

evolutionary history of organisms. Another explanation supposes that the constraints allow for many

different genotypes to generate similar, though not identical, phenotypes (Wagner, 2008) Thus,

there are many mutations and combinations of mutations that can elicit similar phenotypic change.

These very constraints might ensure that the map from an organism’s genotype to phenotype is not

idiosyncratic.

To address these issues, we put forward a general mathematical strategy for the direct quantifica-

tion of the degree and nature of developmental robustness of a wholly integrated body organ. His-

torically, developmental robustness has been measured by focusing on one or a few discrete traits

that are small parts of a much larger body structure (Waddington, 1953; Dun and Fraser, 1958;

Rendel, 1959). Moreover, methods to quantify the morphology of large body structures have all

relied on an arbitrary fragmentation of the structure into a handful of composite measurable traits,

referred to as landmarks (Kendall, 1989; Bookstein, 1993; Dryden and Mardia, 2016;

Abouchar et al., 2014; Debat et al., 2009; Klingenberg, 2009; Klingenberg and Gidaszewski,

2010; Pélabon et al., 2006). Logically then, landmark-based analysis of morphology is potentially

missing important features of morphological variation and an incomplete measure of more global

properties such as robustness. We propose that a landmark-free approach to align and statistically

analyze a large number of individual variants defines the appropriate statistical ensemble to make

apparent any global constraints in play within a developmental system.

We have chosen the model system of the wing of Drosophila melanogaster to conduct this analy-

sis. We chose the wing as the prototype body structure to study because of the comprehensive

understanding of its development, with many genes implicated in wing development (Lecuit et al.,

1996; Lecuit and Cohen, 1998; Lecuit and Cohen, 1997; Blair, 2007), its complex form and func-

tion (Figure 1a), and its clear fitness impact for the organism (Garcia-Bellido and de Celis, 1992;

de Celis, 2003; De Celis and Diaz-Benjumea, 2003).

Carrying out spatial correlation analysis of large ensembles of aligned individual wings, over many

genetic and environmental perturbations, we decompose the data to reveal global features of the

developmental process. Remarkably, we find that the outcomes of wing development can be statisti-

cally described by a one-dimensional (1D) linear manifold in morphological space that corresponds

to a non-intuitive combination of structural variations across the wing. This dominant mode is sys-

tematically excited by variants generated by very weak mutations in signaling pathway genes as well

as by thermal and dietary environmental perturbations. As such, our work provides direct empirical

evidence for the presence of global constraints within the developmental program of the wing,

funneling environmental inputs and genetic variation into phenotypes stretched along a single axis

in morphological space. Our work is a step towards a quantitative characterization and explanation

of the robustness of complex living forms. While the developmental outcomes are globally con-

strained, there exists the potential for morphological variation along the unconstrained direction.

This provides a dissolution of the apparent conflict between robustness and evolvability. Finally, this

general strategy used to study the wing formulates an approach for finding such constraints in a

broader class of developmental processes.

Results

Landmark-free morphometrics
Current approaches to morphological phenotyping are particularly problematic for body structures

with complex form and pattern, where spatial information is often arbitrarily discretized into land-

marks – anatomical loci that are homologous in all individuals being analyzed (Figure 1a–c;

Jones and Mahadevan, 2013; Choi and Mahadevan, 2018). Analysis of phenotypic variation has

additional challenges owing to the inability to perform precision alignment of complex two-dimen-

sional (2D) and three-dimensional (3D) shapes, which cannot be achieved through simple schemes

that account for rotation, scaling, and shear transformations (Kendall, 1989; Bookstein, 1993;

Dryden and Mardia, 2016).
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Figure 1. Landmark-free morphometrics. (a–c) Standard landmarks (red) for Procrustes analysis of a Drosophila wing (a), the beak of a Darwin finch (b),

and the face of DaVinci’s Vitruvian Man (c). (d–f), The landmark-free method involves boundary identification of wings (d), boundary alignment through

conformal mapping to unit discs (e), and bulk alignment of wings through optimization in the space of conformal maps from the disc to itself (f). (g)

Pixel entropy of an ensemble of wings from the outbred wildtype population. Enhanced variation of cross-veins is observed (arrows). (h) Procrustes

Figure 1 continued on next page
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To overcome these problems, we have developed an alignment tool that admits a landmark-free

method to measure the physical totality of all traits in a body subsystem. Using the wing of D. mela-

nogaster as the prototype subsystem, the landmark-free method comprises four steps (Figure 1d–f).

First, each wing is imaged by transmitted light microscopy at high resolution (Figure 1—figure sup-

plement 3b). Second, the boundary of the wing image is accurately detected (Figure 1—figure sup-

plement 2; Berg et al., 2019). Third, the boundary of the wing image is computationally mapped to

the interior of a fixed-sized disc. The mapping of the boundary to the disc relies on an efficient

numerical implementation of the Riemann mapping theorem (Riemann, 1867; Ahlfors, 1953;

Driscoll and Trefethen, 2002; Ablowitz et al., 2003). In particular, the map is conformal, preserving

the shape of the image, locally, by preserving angles, while manifestly distorting areas (Figure 1—

figure supplement 4). This feature of the approach is both a strength and a limitation, downweight-

ing the effects of variation in boundary shape, and upweighting the effects of the pattern of hairs

and veins in the interior of the wing (Figure 1—figure supplement 4j, k). Fourth, mapped images

are globally registered to one another (Figure 1e, f and Figure 1—figure supplement 4l) since

disc-mapped wings vary in their orientation and region of focus (the central point in the disc). These

misalignments are spanned by the space of conformal maps of the disc onto itself, which can be

optimized to produce a global registration of the images, as shown in Figure 1f (further details can

be found in Materials and methods). We can thus generate boundary and bulk registered ensembles

of wing images, whose variation we can study at single-pixel resolution in a landmark-free manner.

We imaged wings from a highly outbred population of wildtype D. melanogaster. This population

was founded from 35 inbred wildtype strains collected worldwide, which were then blended

together for 2 years to ensure substantial genetic variation. We visualized the quantitative variation

in the ensemble of images at the single-pixel resolution, measured as per-pixel information entropy

(Figure 1g; Kozachenko and Leonenko, 1987). Entropy is a measure of the uncertainty, which here

is based on variations in image intensity determined on a per-pixel basis (MacKay and Mac Kay,

2003). Regions of higher entropy straddle the longitudinal veins, indicating that the positions of

these veins along the anterior-posterior (AP) axis vary slightly between individuals; less than a single

vein width across the ensemble of wings. However, the proximal region of the L1 vein shows consid-

erable variation, as do some other regions near the hinge. In addition, the cross-veins substantially

vary between individuals along the proximal-distal (PD) axis. The intervein region between L1 and L2

veins and the intervein regions near the distal tip also show variation owing to variation in wing hair

location. A Procrustes analysis of the same wing ensemble is limited to the variation in landmarks

alone, with the intersection of L1 and L2 veins being the most variable (Figure 1h and Figure 1—fig-

ure supplement 1c). An anatomical description of the Drosophila wing can be found in Figure 1—

figure supplement 3c, d.

The wings of male and female Drosophila differ in their size, shape, and pattern (Figure 2—figure

supplement 1a, b), providing a setting to compare the landmark-based and landmark-free

approaches to distinguishing two populations. By Procrustes landmark analysis, the intersection of

L1 and L2 veins shows the greatest sexual dimorphism, with substantial non-overlap between male

and female (Figure 2a). The intersection of L1 and L5 veins also shows sexual dimorphism. A very

different perspective is revealed using our landmark-free method (Figure 2b). The relative entropy

of pixel intensities across the two ensembles demonstrates that sexual dimorphism is not restricted

to the landmarks. In particular, the proximal and distal regions of the L1 vein are variable between

male and female. The L3 vein proximal to the cross-vein also shows considerable variation. Strikingly,

the regions showing sexual dimorphism do not spatially overlap with the regions showing variation

Figure 1 continued

analysis of the same ensemble of wings, highlighting variation in the 12 landmark positions. Inset shows the landmark where the L1 and L2 veins

intersect.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Procrustes alignment of landmarks.

Figure supplement 2. Wing boundary identification.

Figure supplement 3. Structure and form of the Drosophila wing.

Figure supplement 4. Conformal map representation.
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Figure 2. Comparison of Procrustes and landmark-free phenotyping. (a, b) Variation between ensembles of male and female wings from the outbred

wildtype population. (a) Procrustes analysis with inset showing the landmark where L1 and L2 veins intersect. (b) Per-pixel symmetrized Kullback–Leibler

divergence in landmark-free analysis detects variation along veins, undetected by landmark-based analyses. (c) The dimensions of phenotype space

comprise individual pixels. Three such pixels are randomly selected here to show their 3D phenotype space. An ensemble of wings are points in this

Figure 2 continued on next page
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within each wildtype population. In summary, this comparative analysis demonstrates the remarkable

sensitivity of our landmark-free method to make precise measurements of the variational properties

of wing form, as well as demonstrating the incomplete picture of variation provided by landmarks

alone.

A dominant mode of natural phenotypic variation
We note that the space in which phenotypes are parameterized via our landmark-free approach is

vast. The intensity of each pixel in the space of disc-mapped images is identified with a unique

dimension (Figure 2c). Therefore, an individual image is a single point in this phenotype space of

~30,000 dimensions (pixels). By contrast, the standard landmark-based parameterization of the wing

defines phenotype in 24 dimensions – the x and y locations of 12 landmarks. By way of illustration,

we portray an ensemble of wildtype wings populating a 3D slice of this vast phenotypic space

(Figure 2c). The dominant mode of variation in the population is indicated as the ‘long axis’ of the

cloud of points. To find the major axes of variation within the 30,000-dimensional space, we per-

formed principal component analysis (PCA) on male and female wings from the outbred stock raised

under standard environmental conditions. PC1 and PC2 axes account for 68% of the total variation,

with 66% of the variation aligned along PC1 (Figure 2d). Strikingly, male and female wings are sepa-

rated along PC2, suggesting that the dominant mode of variability is not sex-specific. This dominant

mode of variability is also not congruent with left-right patterning (Figure 2—figure supplement

1d), variation in wing size (Figure 2—figure supplement 1e), or variation in imaging conditions

across the ensemble (Figure 2—figure supplement 1f). We mapped pixels whose variation is most

aligned with PC1 and found vein positions are most prominent, particularly in the proximal region

(Figure 2e). We also performed PCA on the Procrustes landmark data from the wildtype ensemble

and observed that sexual dimorphism is the dominant source of detected variation (Figure 2f). Strik-

ingly, the dominant mode made manifest in our landmark-free analysis is undetected by a landmark-

based method (Figure 2—figure supplement 1c), demonstrating that novel, even dominant, modes

of variation are rendered detectable by our more holistic analysis.

Genetic and environmental variation
To investigate the origins of this dominant mode of variation, we performed landmark-free analysis

on a published dataset of wing images from the wildtype Samarkand strain and from animals hetero-

zygous for weak mutations in signal transduction genes (Sonnenschein et al., 2015a). Specifically,

these genes act in the Notch, bone morphogenetic protein (BMP), and EGF receptor (EGFR) path-

ways, which are required for proper growth and patterning of the developing Drosophila wing

(Blair, 2007). Note that all of the mutations are considered to be recessive to wildtype for wing phe-

notypes, and thus the heterozygous animals do not exhibit easily discernible differences in wing

form from wildtype. Since stronger effect mutations produce phenotypes rarely seen in a natural

population, the weak nature of these genetic perturbations is crucial to our investigations into the

origins of natural variation. Mutant wing images were subjected to our landmark-free analysis. The

high-dimensional phenotype space occupied by each mutant population was compared to the refer-

ence wildtype population. This was done by finding the centroid (center of mass) for each popula-

tion’s cloud of points, which constitutes its average phenotype. We then considered the line joining

each mutant centroid and the reference wildtype centroid, which represents the difference between

the average mutant and wildtype phenotypes. For illustration, a simplified 3D example is shown in

Figure 2 continued

space. The direction of largest variation in the space is identified by principal component analysis (PCA) as PC1. (d) Landmark-free PCA of the outbred

wildtype population reveals a novel dominant direction of variation orthogonal to sex-specific variation. Sex-specific variation aligns with PC2. (e) Pixel

alignment with PC1 analysis shown in panel (d), showing vein position variation aligns with PC1. (f) Procrustes-based PCA of the same ensemble

analyzed in panel (d). PC1 only detects the sex-specific variation.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Accounting for the variation in wings.

Figure supplement 2. Mean wing conformal maps from animals raised under different conditions or with different genotypes.

Figure supplement 3. Alignment of axis of sexual dimorphism rotates as a function of environmental stress across 4 different conditions.
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Figure 3. Variational analysis of genetic mutants. (a) Schematic of hypothetical 3D phenotype space, with each cloud of points representing wings from

an ensemble subject to a different treatment or condition. The principal component (PC)1 vector for each cloud of points can be independently

calculated. The vectors joining the centroids of any two clouds of points can also be calculated. The angles between the direction of maximal variation

(PC1) of the reference population and the directions from the reference to test ensembles are measured (qA and qB). (b-e) Per-pixel intensity difference

Figure 3 continued on next page
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Figure 3a. The spatial maps of the mutant-wildtype differences in pixel intensities are revealing

(Figure 3b–e), and they show how our method can detect even subtle effects (see

Materials and methods). Mutation of the Egfr gene causes L3 and L4 veins to be slightly more distant

from one another, whereas mutation of Star, which encodes an inhibitor in the EGFR pathway, has

the opposite effect. The posterior cross-vein is also affected by these mutants. Both mastermind

(mam), a component in the Notch pathway, and thick veins (tkv), a component in the BMP pathway,

have common effects in that L2–L4 slightly shift anterior. However, tkv shows evidence of subtle vein

thickening, which is an attribute of the homozygous mutant phenotype. We conclude that the land-

mark-free method is sensitive enough to robustly detect phenotypic differences in mutant alleles

that are historically considered to be completely recessive to wildtype.

How does the phenotypic variation in the mutants compare with the phenotypic variation in the

outbred wildtype population? We measured the alignment between the top four vectors of variation

in the outbred population (PC1–PC4), and the vectors connecting Samarkand and mutant centroids

(Figure 3a). The cosine of the angle � between each PC vector and each centroid-centroid vector is

reported in Figure 3f. There is a high degree of alignment between the dominant mode of variation

(PC1) in the outbred population and almost all of the mutants (cos �ð Þ ! 1 as �! 0). With the excep-

tion of the male population of Star heterozygotes, the degrees of alignment are far above those

expected by chance due to sample size effects or artifacts in the imaging and analysis pipeline

(Figure 3g). As such, the mutant phenotypes statistically align with a single direction, which is identi-

fied as the direction of dominant variation in an outbred wildtype population. We note that the

mutants affect distinct signaling pathways, which play significant and separate roles in wing develop-

ment, thus highlighting the nontrivial nature of the statistical alignment we observe. Taken together,

these small-effect genetic perturbations – both the recessive mutations and the variants in the out-

bred populations – excite variation along a single integrated mode of variation in the wing.

To investigate the nature of developmental variants generated due to perturbations in environ-

ment, we raised the outbred wildtype population at different temperatures from the standard 25˚C.

As previously observed, increasing temperature causes a decrease in wing size (Figure 2—figure

supplement 1g, h). The differences between the average wing phenotypes at different tempera-

tures were spatially mapped (Figure 4a, b). We also raised the outbred population on nutritionally

limited food, which decreases wing size (Figure 2—figure supplement 1i, j; Ferreira and Milán,

2015). The average wing phenotype due to nutrient limitation also reveals robust spatial variation

(Figure 4c). Remarkably, there is a strong statistical alignment of the temperature and dietary phe-

notypes with the dominant mode of variation within the outbred population raised under standard

environmental conditions (Figure 4d, e). Thus, small-effect environmental perturbations are also con-

strained in their impact on wing phenotype, aligning with the previously identified single mode of

variation.

Geometric analysis of phenotypic variation
Why are some perturbation phenotypes, for example, Star mutant male wings, less aligned to the

primary mode of natural phenotypic variation than others (Figures 3f and 4d)? Either phenotype is

less constrained for some perturbations or some underlying feature of the data was not being con-

sidered. Here, we demonstrate that a geometric feature of the data alone explains the observed var-

iations in alignment.

Figure 3 continued

between each mutant and the wildtype reference as measured at the center of each point cloud. Negative values are when mutant pixel intensity is

smaller than wildtype, and positive values are when mutant pixel intensity is larger. Comparison between wildtype and egfr (b), mam (c), Star (d), and

tkv (e) ensembles. (f) The cosine of the angle between the directions of PC1–PC4 of the outbred wildtype population, and the directions of the vectors

connecting the wildtype and mutant populations. M and F refer to male and female groups, respectively. (g) The cosine of the angle when the wildtype

and mutant populations analyzed in panel (f) are shuffled but the sexes are not. Shuffling leads to little or no alignment of mutant vectors with any PC.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Radon transformation.

Figure supplement 2. Eigenvalue spectrum in wings.

Figure supplement 3. Bootstrap for genetic ensemble.

Figure supplement 4. Statistical significance (p-values) of alignments in genetic analyses relative to a shuffled label null distribution.

Alba et al. eLife 2021;10:e66750. DOI: https://doi.org/10.7554/eLife.66750 8 of 24

Research article Developmental Biology Physics of Living Systems

https://doi.org/10.7554/eLife.66750


We consider a situation where wing phenotypes of a population can lie a small distance, s, away

from the axis of primary variation (PC1) of a reference group (Figure 5a). We define R to be the cen-

troid-centroid distance between the two groups, the strength of the phenotypic difference, and � to

be the angle between the axis of primary variation of the reference group and the vector connecting

the centroids of the two groups, a measure of alignment. The three quantities are related through a

Figure 4. Variational analysis of environmental perturbations. (a–c) Per-pixel intensity difference between wings from a test condition (described on left)

and a reference condition (described on the right). Difference is measured at the center of each point cloud. Negative values are when test pixel

intensity is smaller than reference, and positive values are when test pixel intensity is larger. Comparison between wings from 18˚C and 25˚C (a), 29˚C

and 25˚C (b), and restricted vs. rich diet (c) treatment. (d) The cosine of the angle between the directions of principal component (PC)1–PC4 of the

outbred wildtype population, and the directions of the vectors connecting the populations raised under different temperature and diet conditions. M

and F refer to male and female groups, respectively. (e) The cosine of the angle when the treated populations analyzed in panel (d) are shuffled but the

sexes are not. Shuffling leads to little or no alignment of vectors with any PC.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Kullback–Leibler divergence between left and right wings for each populations of female flies.

Figure supplement 2. Eigenvalue spectrum in wings.

Figure supplement 3. Bootstrap for environmental ensembles.

Figure supplement 4. Statistical significance (p-values) of alignments in environmental analyses relative to a shuffled label null distribution.
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Figure 5. Geometric analysis of dominant variational mode. (a) Schematic of a data manifold with a single dominant linear direction of variation,

embedded in high-dimensional phenotype space. Variation orthogonal to the dominant direction is visualized with a characteristic scale, s. In the

presence of such a data manifold, the angle between the dominant direction of a reference population, principal component (PC)1, and the centroid-

to-centroid vector connecting any two populations is predicted to decrease as a function of R, the length of the centroid-to-centroid vector. (b, c) The

Figure 5 continued on next page
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simple trigonometric relation, s=R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2�
p

, which mathematically embodies the intuitive fact

that if small-effect perturbations can only access a small region of phenotype space perpendicular to

the axis of primary variation, then the measure of alignment must increase with the strength of the

perturbation. This would mean that s=R ! 0 as R increases (Figure 5a). Strikingly, this relation is

observed for all of the environmental and mutant perturbations, analyzed by bootstrapped subsam-

pling of the data (Figure 5b, c). The results suggest that for all of the genetic and environmental

perturbations tested, they generate minor phenotypic deviation orthogonal to the primary mode of

natural phenotypic variation. Most variations manifested by the perturbations align with the primary

mode of natural variation. For example, the departure of Star mutant male wings from alignment

with the primary mode of variation (Figure 3f) can be explained by the weak phenotypic difference

they have, as demonstrated by the short distance between Star and wildtype centroids (Figure 5b).

In summary, we demonstrate that the nature of phenotypic variation caused by diverse weak genetic

and environmental perturbations in the fly wing is constrained along a single 1D manifold that aligns

with the phenotypic variation seen within every population.

Discussion
In this study, we present evidence for the presence of strong global constraints within the develop-

ment program of the Drosophila wing. Leveraging a new mathematical strategy to statistically ana-

lyze large ensembles of wings across multiple conditions, we demonstrate that natural variants can

be described by a 1D linear manifold in morphological space that corresponds to a non-intuitive

combination of structural variations that are spatially extended across the wing. Strikingly, the single

phenotypic mode is also excited by weak genetic perturbations in distinct developmental pathways,

suggesting that its encoding is more global than any particular gene or pathway. As such, our study

indicates the presence of strong constraints that limit the spectrum of phenotypic varieties when

confronted with small changes in the genetic and environmental conditions of development. The

spectrum of investigated phenotypes stand in contrast to the those associated with strong-effect

genetic mutations that manifestly probe additional phenotypic dimensions that are absent in natural

populations.

We hypothesize two developmental processes that could potentially give rise to such an inte-

grated mode of phenotypic variation. First, thick proveins are refined into narrow veins during pupal

development, allowing for the possibility to globally alter the final resting place of veins (Blair, 2007).

Second, the number, size, and shapes of intervein epidermal cells might vary, and after expansion,

separate neighboring veins by different distances (Kicheva et al., 2007; Bollenbach et al., 2008;

Wartlick et al., 2011; Aguilar-Hidalgo et al., 2018). These effects could be exacerbated in the

proximal wing during hinge contraction, which occurs over an extended period of time

(Aigouy et al., 2010; Dye et al., 2017; Sui et al., 2018).

We believe that there are three distinguishing characteristics of the approach that facilitated our

discovery. First, the precision boundary and bulk alignment of wings permit a more holistic, land-

mark-free, approach to parameterizing phenotype. Although we apply the approach to one body

structure, the Drosophila wing, it can be applied to any 2D surface with no holes. This could be a

simple 2D shape like the wing or the closed surface of a complex 3D shape such as a tooth, brain, or

another body part. Second, transformations that are learned from the data are those that interpolate

between different individuals within an outbred D. melanogaster population and those subject to

Figure 5 continued

angle between the direction of maximal variation (PC1) in a reference population (RP) and the centroid-to-centroid vector connecting the RP and a

second population as indicated. This is shown as a function of R, the distance between them. Samples are bootstrapped to indicate the in-sample

variance, with each bootstrap represented by a point. Both in the mutant/wildtype (WT) (b) and environmental (c) ensembles, alignment grows as a

function of distance, indicative of a single dominant direction in the data manifold. The dotted lines represent the relationship between s /R versus R if

sigma was a constant.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Geometric analysis of dominant mode.

Figure supplement 2. Robustness of manifold geometry to perturbations in image analysis pipeline.

Figure supplement 3. Degree of alignment and analysis of global geometry of (a, b) log-transformed data and (c, d) log-transformed inverse data.
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mild genetic and environmental perturbations. This stands in sharp contrast to the more severe phe-

notypes generated by strong-effect mutations. Third, our approach is statistical, involving the analy-

sis of large ensembles of wings, permitting a quantitative analysis of variance. We propose that it is

these three features of our approach that permits the data-driven discovery of global phenotypic

constraints in the Drosophila wing developmental program and lays the foundations for doing so in

other developmental contexts.

Our work presents a general strategy for the quantitative case study of the emergence of robust-

ness and evolvability in complex developmental forms. In the context of the fly wing, we quantify the

degree and nature of developmental robustness, which we demonstrate funnels diverse environmen-

tal and genetic variation into a 1D, spectrum of phenotypes. Wing development is robust in that the

final body structures are statistically constrained to lie along this mode and not elsewhere in mor-

phological space. However, it indicates that the wing is also evolvable because varieties produced

along this mode are highly probable. Indeed, our work suggests that the map from genotype to this

constrained set of phenotypes is massively degenerate, wherein a vast number and variety of genetic

and environmental changes produce similar phenotypic outcomes. As such, our study suggests that

global constraints are required to insulate the system from the idiosyncratic and random nature of

genes and their mutations. The correspondence between the constrained phenotypic mode identi-

fied in this study and fitness remains unclear. The mode might correspond to changes in organismal

form that buffer the system from perturbations with little or no impact on fitness. Alternately, the

identified mode could correspond to the most broadly conserved aspects of fitness. Disambiguating

between these possibilities is central to understand the origins and consequences of such pheno-

typic constraints. Stepping back, since the spectrum of developmental varieties provide the menu

options for the environment to select from, our discovery suggests that closely related species ought

to diverge along the phenotypic axis we detect here. If found, an alignment between the statistical

properties of a developmental and evolutionary ensemble would lay the groundwork for a quantita-

tive approach to the study of evolutionary-developmental biology.

Materials and methods

Fly husbandry
Cornmeal-molasses food was used for standard husbandry. Inbred lines were kept in bottles or vials.

The outbred population was kept at 25˚C in an 8.8 L population cage. The size of the cage and food

availability limited the population size to 1000–2000 adults per generation. Populations were raised

in Percival incubators. The temperature of incubators was monitored daily. Fly bottles or vials were

monitored for moisture levels. Any condensed moisture on the inside of the container walls was

absorbed using Kimwipes. Incubators were monitored for mite infestations using mite traps checked

daily.

Construction of the outbred wildtype population
A collection of 35 wildtype D. melanogaster stocks were obtained from the Bloomington Drosophila

Stock Center (BDSC). These inbred stocks originated from founder individuals isolated from around

the world (Supplementary file 1). Fourteen stocks were established in the 20 century from four con-

tinents plus the island of Bermuda: one from Africa, three from Asia, one from Bermuda, four from

Europe, and five from North America. The other 21 stocks were established in 2003 as isogenic lines

from the Drosophila Genetics Resource Panel (DGRP). Founders of the lines were isolated in the

area of Raleigh, NC, USA.

Six of the DGRP isogenic stocks were randomly paired with one another, and 20 males from one

stock were mated with 20 females from the other stock (Supplementary file 2). The offspring from

these three crosses were then used in addition to the remaining 29 inbred stocks for a new round of

pairwise mating – 16 F0 crosses in total (Supplementary file 2). The assignment of stocks to pair

was made randomly, as were the assigned sexes used in each paired mating. Again, 20 males from

one were mated with 20 females from the other. The offspring from these 16 crosses were used for

another round of pairwise mating – eight F1 crosses in total (Supplementary file 2). The assignment

of stocks to pair was made randomly, as were the sexes used in each mating. For these crosses, 50

males from one were mated with 50 females from the other. The offspring from these eight crosses
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were used for an F2 round of pairwise mating – four crosses in total (Supplementary file 2). The

assignment of stocks to pair was made randomly, as were the sexes used in each mating. For these

crosses, 100 males from one were mated with 100 females from the other. The offspring from these

four crosses were used for an F3 round of pairwise mating – two crosses in total

(Supplementary file 2). The assignment of stocks to pair was made randomly, as were the sexes

used in each mating. For these crosses, 300 males from one were mated with 300 females from the

other. The offspring from these two crosses were used for a final round of mating. For this cross,

800 males from one were mated with 800 females from the other. Mating was performed in a popu-

lation cage. The population cage was 8.8 L in volume. Offspring from this final cross constituted the

outbred stock, the net result of the systematic mixing of 35 distinct populations. The outbred stock

was then propagated in population cages for another 50 generations. The purpose of this was for

the population to approach equilibrium in allele frequencies.

Temperature and diet perturbations
Twenty-five mating pairs of outbred adults were mated for 2 days in a bottle, and offspring were

raised at a uniform temperature of 18˚C, 25˚C, or 29˚C in Percival incubators. Standard cornmeal-

molasses food was used. To compare the effects of rich versus limited diet, 25 mating pairs of the

outbred population were mated for 2 days in a bottle, and offspring were raised on food with low

yeast content. We used the food recipe described in Ferreira and Milán, 2015. The low-yeast food

recipe is 1 L food contains 20 g dried bakers’ yeast (Bakemark), 100 g sucrose (Sigma), 27 g Bacto

Agar (Difco), 3 mL propionic acid (Sigma), and 30 mL 10% (w/v) Tegosept in ethanol (Sigma).

Wing mounting
Young adults were sorted by sex and stored in 70% (v/v) ethanol for a minimum of 24 hr. Flies were

discarded if they had a torn or wrinkled wing. A single fly was dissected in a few drops of 70% etha-

nol solution on a microscope slide. Wings were removed by clasping the wing joint with a pair of for-

ceps and pulling the wing from the body, using a different pair of forceps to hold the body in place.

Both left and right wings were dissected, and the carcass was discarded. Both wings were then

placed in a small volume of 70% ethanol solution on the microscope slide ventral side down. A few

drops of 70% (v/v) glycerol were added to the wings/ethanol on the slide. If the alula was folded

onto the dorsal side of a wing, it was unfolded or removed. A coverslip was placed over the two

wings, and any bubbles under the wings were removed by gently pressing down on the coverslip

with a pair of blunt forceps. Only the left and right wings from one adult were mounted per slide.

Microscopic imaging
Imaging was performed using a Zeiss Axioplan microscope. A 4� 0.1 NA Plan Apochromatic objec-

tive was used and the Optivar was set to 1.25� magnification. The camera adaptor magnification

was 0.5�. This gave a total magnification of 2.5�. The condenser was focused and centered on a

wing specimen, and then the stage was moved in order to define shading correction at a neutral

point with no slide or wing in the image. Specific shading correction was defined before any images

were taken in an imaging session. Each wing had two images taken: one with unfiltered light from

the microscope’s halogen lamp at 100% power, and one with the green filter in place between the

lamp and specimen. The slide remained in the exact same position for each of the two images. After

one wing was imaged, its partner wing was then imaged. Wing images were taken so that the ante-

rior side of the wing faced downwards in the image so as to eliminate confusion between right and

left wing labeling. If either wing appeared damaged or if dust or debris marked either wing, we

rejected that wing and its partner wing. For some female wings, the specimen was too large to be

captured in one image. For these, we captured a portion of each wing in one image and then moved

the stage to capture the rest of the wing in a separate image. The two images had sufficient overlap

that they could be computationally stitched together post-imaging.

Images were captured as CZI files with a Zeiss Axiocam ERc 5s attached to a Dell XPS 8500 com-

puter using ZEN Blue 3.1 imaging software. Each image had dimensions of 2560 � 1920 pixels, and

each pixel intensity was recorded in 8-bit RGB mode. Each CZI file was converted to a TIFF file using

the Bio-Formats 6.5.1 plugin for Matlab. Exposure time was 0.3 ms for white-lit images and 0.4 ms

for green-lit images. Color balance was set to auto. The intensity level was set at 100%. This ensured
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that the background was not saturated, that is, background pixel intensity was not maximal. The

average background pixel intensity was reproducibly between 210 and 215 for almost all wing sam-

ples (Figure 2—figure supplement 1e). For those wing samples that were captured using two over-

lapping images, we used the Photomerge algorithm in Adobe Photoshop CS3 with default settings.

Although both white-lit and green-lit images were captured for each wing, we only used the green

channel of the green-lit RGB files for further analysis.

We analyzed both left and right wings for each individual. The datasets generated for the follow-

ing conditions were 18˚C (169 females and 71 males), 25˚C (202 females and 202 males), 29˚C (185

females and 208 males), and 25˚C limited diet (216 females and 219 males).

Image analysis of genetic mutants
We used a publicly available image database of D. melanogaster wings that had been used for land-

mark analysis by others (Sonnenschein et al., 2015a). Briefly, P-element insertion mutants in the epi-

dermal growth factor receptor (Egfr), mastermind (mam), Star (S), and thick veins (tkv) genes had

been extensively backcrossed into the Samarkand wildtype strain in order to introgress their genetic

backgrounds with Samarkand. Each P-element mutant is described as hypomorphic when homozy-

gous, meaning that they are weak loss-of-function mutations. They were crossed to the Samarkand

strain to generate heterozygous mutant offspring. These were the wings that had been imaged in

addition to fully wildtype Samarkand wings, and all were deposited in a public

database (Sonnenschein and Chari, 2015b).

We rejected some images due to quality issues that included but were not limited to dust, non-

homogeneous illumination, damage to the wings. The remaining images were used for landmark-

free analysis: wildtype (214 females and 200 males), Egfr (231 females and 236 males), mam (212

females and 260 males), S (230 females and 222 males), and tkv (232 females and 232 males).

Landmark-based morphometrics
Landmarks are defined as anatomical loci that are unambiguously identifiable and are homologous

in all individuals being analyzed. In the case of the D. melanogaster wing, 12 points where wing veins

intersect have been historically used as landmarks (Figure 1—figure supplement 1a). We used the

Wings 4 software tool that had been developed specifically to automatically identify the position of

the 12 landmarks on each wing. The software fits a spline model of the wing to each picture of the

wing. The software and manual can be found in van der Linde, 2003.

Once the landmarks were identified for each image, the ensemble of landmarks was aligned using

a standard Procrustes method (contributors, 2020). In the Procrustes analysis, objects are superim-

posed by optimal translation, rotation, and uniform scaling of the objects. Both the placement in

space and the size of the objects are freely adjusted. The aim is to obtain a similar placement and

size by minimizing the Procrustes distance between the objects.

As a hypothetical example, we take a sample triangle and align it with a reference triangle (Fig-

ure 1—figure supplement 1g). Once the shapes are on top of one another, the sample shape is uni-

formly scaled to match the area of the reference shape. The last step is to rotate the sample shape

to best-align with the reference. These steps are performed until the average distance between the

landmarks (vertices of the triangle) of the sample is minimally distant to the landmarks of the

reference.

A measure of the goodness of the superimposition is the Procrustes distance:

d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xref
� �2þ y� yref

� �2þ� � �
q

;

where (x, y,. . .) and (xref, yref, . . . ) are coordinates of the landmarks of the sample image and ref-

erence image, respectively. There are 12 landmarks on the Drosophila wing, thus there are 24 x and

y coordinates that represent each wing. In the case of triangles, d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2A þ r2Bþ r2C

p

(Figure 1—figure

supplement 1d–g). If two shapes are exactly the same but have different orientation and position,

the Procrustes method will perfectly align them (d = 0) (Figure 1—figure supplement 1h, i). For the

Drosophila wing landmarks, we used the Wings 4 software to perform the Procrustes alignment of

the landmarks.
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Since there are 24 x and y coordinates that represent each wing, one can think about each wing

as a vector in 24�dimensional space. One can perform PCA on these vectors for an ensemble of

wings. As a result, one can get directions of the largest variation in landmark positions, but there will

not be any information about the positions of the veins or other parts of the wing that have no land-

marks. We performed PCA on the landmark-based data using the pca function from the Dimension-

ality Reduction and Feature Extraction toolbox in Matlab.

Landmark-free morphometrics
The main concept of the method is to treat every pixel in a wing image as a variable, a trait, with a

discrete intensity value. Hence, the higher the resolution of the image, the greater the number of

variables. The resolution of wing images we captured are such that there are 100,000 pixels for each

wing. However, the pixels are not landmarks in the traditional sense. Traditional landmark-based

methods globally align identifiable anatomical loci from homologous objects of different individuals.

Then, the variation in the landmark coordinate position is measured for each landmark. Our land-

mark-free method globally aligns the entire image from homologous objects of different individuals.

Then, the variation in intensity for each pixel coordinate is measured.

Homologous body structures from different individuals can have different shapes. This can apply

not only to individuals from different species (i.e., forelimb of bat and horse) but also individuals

from the same species. This is why the field of morphometrics has reduced the complexity of the

continuum of shape to a discretized proxy, that is, landmark-based Procrustes analysis then can esti-

mate shape variation.

Our approach (code is available in Alba, 2020) is to use a conformal map to map all homologous

body structures onto the same shape, in this case, a disc of fixed size. Although we apply the

approach to one body structure, the Drosophila wing, it can be applied to any 2D surface with no

holes, with or without a boundary. This could be a simple 2D shape like the wing or the closed sur-

face of a complex 3D shape such as a tooth, brain, or another body part.

Wing boundary identification
Although the background intensity of all images was highly consistent across ensembles (Figure 2—

figure supplement 1e), there were minor differences, including uneven illumination across the field

of view. This variability was most problematic with the wing images from the genetic

database (Sonnenschein and Chari, 2015b). To correct these issues, we apply contrast-limited

adaptive histogram equalization (CLAHE) to our images (Figure 1—figure supplement

3a; Pizer et al., 1987).

We use an Ilastik segmentation model to identify pixels that belong to the wing bulk, veins, and

background (Figure 1—figure supplement 2a). The machine learning model is trained on 25 wings

and after that is applied to all wings across all ensembles to remove systematic trends owing to var-

iations in segmentation. The output of Ilastik comprises four layers (Figure 1—figure supplement

2b). The segmentation output requires further cleaning that is done in a custom-made Matlab script.

In particular, we use knowledge about the fact that background is only outside of the wing, and

wing bulk is surrounded by veins, to clean up the segmentation (Figure 1—figure supplement 2c).

Once the segmentation is cleaned, we use a watershed algorithm to produce the boundary of the

wing (Figure 1—figure supplement 2d). Watershed algorithms find catchment basins in an image,

treating intensity as a height of the landscape. Since wings were detached from the body by break-

ing the hinge region with tweezers, each wing has a slightly different hinge due to experimental

manipulation. Therefore, we use two morphologically identifiable landmarks, the humeral break and

the alula notch (stars in Figure 1—figure supplement 2d). These landmarks are manually selected

for each segmented wing image, and a script automatically defines the line between the two points

as the proximal boundary. This defines a precise and repeatable way to delete the hinge. Area of

each wing is measured as pixel number inside the wing boundary. Distribution of outbred group

wing areas is shown in Figure 2—figure supplement 1g–j.

Conformal map conformal mapping
One feature of a conformal map is that it is possible to map any closed region onto another closed

region if the shape is approximated as a complex polygon. For example, when we approximate the
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boundary of the Drosophila wing as a 100-point polygon, we can map the whole wing onto a unit

disc. We distribute these points on the wing boundary with a density that is inversely proportional to

the local curvature of the wing boundary (Figure 1—figure supplement 2e). Therefore, we compute

2D curvature for every point of a segmented wing boundary using the linecurvature2D

package (Kroon, 2020). Once we have curvature for every point, we compute and plot the cumula-

tive curvature and distribute points equidistantly along the cumulative direction. The cumulative

curve is monotonous; therefore, we can find the position of the vertices on the boundary. This

approach minimizes the difference between polygonal representation and the real boundary for a

given number of points.

Once a polygonal representation is made of a wing boundary, Schwarz–Christoffel mapping gen-

erates a map from the interior of the polygon onto a unit disc. The conformal map scales each local

region homogeneously, but the scaling constant depends on the position. In the case of the Dro-

sophila wing, which is approximately the shape of an ellipse, the bulk of the wing is minimally dis-

torted, while regions far from the I are more distorted. For instance, several peripheral pixels may

be mapped onto one pixel of the unit disc (Figure 1—figure supplement 4k). Particular distortion

depends on the shape of the wing; therefore, if we would like to decouple shape from a pattern,

this feature comes in handy.

We use the Schwarz–Christoffel Toolbox for Matlab (Driscoll, 2002) to map each segmented

wing onto a unit disc that has a diameter of 200 pixels (Figure 1—figure supplement 4i). Schwarz–

Christoffel conformal mapping requires only the boundary and I-point (Figure 1—figure supple-

ment 4b) of the shape. The shape’s boundary becomes the circumference and the shape’s I-point

becomes the origin. This is done individually for all of the segmented wings in an ensemble.

Note that the unit disc is the same area for all segmented wings. A wing boundary is a polygon in

a complex space. Therefore, conformal mapping a segmented wing image onto the unit disc

depends on the size of the segmented wing image. However, the target (the unit disc) has a fixed

size, and so it may be the case that several pixels in the wing image may be mapped onto one pixel

in the disc. Consequently, the intensity of the target pixel is an average of the wing image pixels

that map to it. For the imaging resolution that was used, this happened most often for peripheral

pixels (Figure 1—figure supplement 4k).

The Riemann mapping theorem implies that there is a biholomorphic (i.e., a bijective holomorphic

mapping whose inverse is also holomorphic) mapping f from a non-empty simply connected open

subset, U, of the complex plane C onto the open unit disc, D ¼ z 2 C: zj j<1.
The Schwarz–Christoffel formula is a recipe for a conformal map f from the upper half-plane (the

canonical domain) z 2 C:Imz>0 to the interior of a polygon (the physical domain). The function f

maps the real axis to the edges of the polygon. If the polygon has interior angles a1,a2,a3,. . ., then

this mapping is given by

f zð Þ ¼ f z0ð ÞþC

Z

z

z0

Y

j¼1

j¼1

w� zj
� �

aj=pð Þ�1
dw

where C is a constant, aj are interior angles at the vertices, and zj are pre-images of the vertices,

that is, dots on the real axis. They obey inequality z1 < z2 <. . . < zn = ¥. For wing data, the unit disc

contains 31,416 pixels, which is smaller in number than the ~100,000 pixels in each segmented wing

image. The reduction was achieved by reducing the weight of the peripheral pixels, and as a result,

the shape of the wing has a lower weight.

Conformal map alignment
Since wing shapes and orientations are variable, the mapped wings must be globally aligned with

one another. To align the mapped images, we use the remaining freedom, which is a rotation of the

disc, plus we use the movement of the origin (Figure 1—figure supplement 4j). This freedom is an

automorphism of the unit disc,

g zð Þ ¼ ei�
z�a

1� �az
;

where � is a rotation angle and a¼ g�1
0ð Þ is a movement of the origin. We perform an
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independent parameter sweep of angle and displacement for one mapped wing image to obtain

maximal cross-correlation between it and a reference wing disc. This operation is repeated for all of

the other mapped wings, aligning each one to the same reference wing disc. We wrote a script that

uses the Geometric Transformation Toolbox in Matlab to perform this procedure.

Since we are comparing variation within a group as well as variation between groups, we ran-

domly choose one mapped wing to be the reference for an entire experiment. There is only one ref-

erence wing disc for all groups within the experiment varying diet and temperature

(G_25C_high_F_139_R). There is only one reference wing for all groups within the experimental data

comprising the genetic mutants (G_samw_lei4X_F_110_L).

Left and right wings have a different orientation. We use the function fliplr from Matlab to flip all

images of left wings prior to conformal mapping. Once flipped they are treated in the same way as

right wings, but we store information about their chirality. To determine if left and right wings are

different in shape or pattern, we computed the Kullback–Leibler divergence (for details, see SI.4.14

and Figure 4—figure supplement 1) between left and right ensembles for the outbred group and

found no difference. We also plot PC1 vs. PC2 for the outbred group and use color labels for chiral-

ity (Figure 2—figure supplement 1d). We find no correlation between the score for PC1/PC2 and

chirality. These analyses indicate that there is no statistical difference between the left and right

wings. All subsequent analysis aggregates both left and right wing data.

Radon transformation
The Drosophila wing icomprises a sparse pattern of dark veins and lighter intervein compartments.

We anticipate that much of the variation between wings will be detected as differences in vein thick-

ness, position, and their angle relative to the body axes. A Radon transformation of a density func-

tion f(x,y) produces a function Rf Lð Þ ¼
R

L
f xð Þ dxj j defined on a space of all lines L. For 2D images, a

Radon transformation generates sinograms with coordinates of angle and R (Figure 3—figure sup-

plement 3a, f–k). Since veins resemble lines, comparing two lines that differ by an angle is more

sensitive to Radon-transformed data (Figure 3—figure supplement 3b–e). For this reason, we carry

out all further analysis of the data with Radon-transformed images of aligned wing discs, obtained

using the radon function in Matlab. However, when we need to present images of a wing, we use an

inverse transformation iradon in Matlab.

Pattern variation within a group
Once all images are aligned to a reference on the disc, the remaining variability reflects biological

variation. We use 8-bit grayscale images, which means that each pixel has intensity ranging from 0

to 255. Therefore, a wing image with N pixels can be represented as a single vector in discrete N-

dimensional space, or to be more precise it is a vector in an N-dimensional cube ([0255]N). For a

group with M number of wings, the group can be represented as a set of M vectors in N-dimensional

space. Therefore, we can use all the tools from linear algebra.

We can analyze variability within a group since each group of individuals is subject to natural vari-

ation. We analyze this variation using PCA, which finds the directions of greatest variation within the

group. Each PC is a unit vector in the same N-dimensional space as the wing discs comprising a

group. We use the pca function from the Dimensionality Reduction and Feature Extraction toolbox

for Matlab for all PCA-related computations.

We can also analyze variability within a group using entropy. Each pixel at a fixed position may

have different intensities for wings in an ensemble. If the pixel belongs to a region that has almost

no variability in intensity, then it will have small entropy, but in the regions where there is pattern

variability, the entropy will be larger. As an example, we can consider vein motion, which means that

the position of the vein along either AP or PD axes varies between wings. If a pixel at a fixed posi-

tion has identical intensity values for all aligned images, then that pixel has zero entropy. If a fixed-

position pixel is within a wing vein for some but not all aligned images, then it might have larger

entropy. In the intervein regions of wing images, the intensity of fixed-position pixels often varies

slightly, so their entropy will be small but nonzero. We use the Kozachenko–

Leonenko (Kozachenko and Leonenko, 1987) entropy estimator for entropy
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H kð Þ ¼ log cdð Þþ log N� 1ð Þ� kð Þþ d

N

X

N

i¼1

log�k ið Þ;

where d is the dimension of x and cd is the volume of the d-dimensional unit ball

cd ¼p
d=2=G d=2þ 1ð Þ for Euclidean norm, �k ið Þ is the distance of the ith sample to its kth nearest

neighbor, and y(x) is digamma function.

Eigenvalue spectra of intra-group variation
For each ensemble of wings, we performed alignment to the reference wing and Radon transforma-

tion. For each population, we performed PCA on a single population. As a result, we obtained spec-

trum of the eigenvalues; see Figure 3—figure supplement 2 and Figure 4—figure supplement 2.

Analysis of pattern variation between groups: entropy-like approach
When there are two or more groups and we would like to compute the variability between them, we

can estimate the Kullback–Leibler divergence, DKL, or relative entropy. Let us consider two distribu-

tions P = P(X) and Q = Q(Y), the former one is interpreted as a real distribution (postulated prior

probability) and the latter one is an assumed distribution that is measured at the experiment. The

value of this functional is equal to the amount of information that is not accounted if Q be taken

instead of P,

DKL P kQð Þ ¼
X

n

i¼1

pi log
pi

qi
:

We use the two-nearest-neighbor non-parametric Kozachenko–Leonenko estimator (Wang et al.,

2009) for the Kullback–Leibler divergence,

DKL P kQð Þ ¼ d

N

X

N

i¼1

log
nk ið Þ
�k ið Þþ log

M

N� 1
;

where �k ið Þ is the distance from xi to its kth nearest neighbor in Xj

� 	

j 6¼i
, and nk ið Þ is the distance

from xi to its kth nearest neighbor in Yj
� 	

.

Left-right patterning
We present Kullback–Leibler divergence between left and right wings for each population of female

flies. For comparison, we also present Kullback–Leibler divergence between two randomly assigned

groups that have the same number of wings as left and right groups correspondingly. We conclude

that there is no significant difference between left and right wings as between groups and that spe-

cial noise level is higher for the groups that have smaller number of flies.

Analysis of pattern variation between groups: centroid-based analysis
Another method to compare two or more groups is by centroid-based analysis. For one group con-

taining Z wings, the group can be represented as a set of Z vectors in N-dimensional space. The cen-

ter of mass or centroid of the set can then be computed. The centroid can be thought of as the

mean wing of the group (Figure 2—figure supplement 2a, b). Since we have a large number of

wings for each group (Z > 100), the mean wing is a statistically robust representation of the group

(also we used bootstrap to check robustness, see next section). We perform all manipulation for

Radon images of the wings and transform everything back with its inverse transformation.

We compute the mean wing for each group of wings, and then we can calculate the pairwise dif-

ference between mean wings of different groups. A pairwise difference is a vector that shows how

one mean wing transforms into another mean wing. For example, when we say that there is a direc-

tion from mean wing A to mean wing B we mean that there is a vector, D, that generates mean wing

B when added pixel-wise to mean wing A: B = D + A. If we normalize this vector, n = D/|D|, we get a

unit vector that points from the reference group to another group (i.e., wildtype group to genetic

mutant group). We can compare the direction of a unit vector with the direction of any PC vector
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from PCA of a given group. This is done by computing a scalar product between the unit vector and

the PC vector:

cos�¼ n;PCð Þ:

Bootstrapping and shuffling
We have to check that the findings of the analysis are statistically robust. This requires that the popu-

lations are well-sampled, that is, we have enough images so that the in-sample variance of the mean

wing is small, and as a result that measured direction between populations is stable and close to the

ideal direction that would be achieved if we had an infinite number of wings. For this approach, we

use the bootstrap method that requires that we randomly draw subsets of wings that have a size of

50% of the ensemble. We repeat this procedure for each ensemble individually, so we do not mix

wings that correspond to different populations. For pairs of such samples, we compute mean wings

and the directional vector between them. We found that the numerical value of the cos� is stable,

and the difference between sampled in this way cos� and value that is computed for whole popula-

tions is extremely low (few percent of the corresponding values), suggesting that it is well estimated.

The second important check is to confirm that the trends we observe are biological in origin and

not artifacts of our analysis. We perform a shuffle test. For this check, we construct new populations

from images drawn randomly from the entire ensemble, which means that we mix wings from differ-

ent populations (difference environmental and genetic conditions). We find that for these shuffled

populations, a variation of the cos� is relatively large, and the mean value is only a few percent of the

unshuffled data. This suggests that the observed phenomenon depends on biological labels of the

wings rather than artifacts introduced by the method and analysis itself.

1D structure of the observed data
While the data is embedded in high-dimensional space, it does not imply that the structure of the

data is high dimensional as well. The simplest structure of the data that we may have is a 1D cylin-

der, where the data is distributed along a line with noise in directions orthogonal to it. The simple

structure of the data would hint at a simplifying principle that could be modeled and more deeply

understood.

The angle between the n and PC vectors resides in an N-dimensional space. For a 1D cylinder,

one can compute a dependence of cos � as a function of R, the distance between points. If the dis-

tance between the two mean wings is R, then

cos�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s

R

� �2

r

¼)s

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2�
p

:

Thus, we get that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2�
p

!R!¥0ass=R, which suggests the presence of a long direction in the

data that dominates all other directions of variation. It further suggests that where cos�~R�1, then

the noise in the directions orthogonal to the cylinder is constant along it. The simplest explanation

for a different exponent would be that noise level increases with distance, and the structure is a

cone rather than a cylinder. We experimentally measure the value of angles q for pairs of boot-

strapped centroids, computing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2�
p

, and we found that it qualitatively displays a decay as a

power of R:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2�
p

!R!¥0as s

Ra
. Values of a from fitting to an experimental data are reported in Fig-

ure 5—figure supplement 1.

Robustness of results to errors in image analysis
We performed three artificial perturbations of the system in order to check the robustness of the

method (Figure 5—figure supplement 2e–h). The first one is a random shift of the origin that was

obtained by the maximization of the cross-correlation between individual image and reference

image (Figure 5—figure supplement 2f). We randomly shifted origin by a random value from �3 to

3 pixels in each direction. Also, we randomly shifted alula notch and humeral break by a random

value from �3 to 3 pixels in each direction. Once these points shifted, new boundary is identified as

presented in Figure 5—figure supplement 2g. The final perturbation was perturbation of the

boundary segmentation. Each pixel of the initial boundary that was obtained after refinement of the

segmentation part of the pipeline is shifted by random number from �1 to 1 (Figure 5—figure
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supplement 2h). After these perturbations, the remaining pipeline is applied. We notice that despite

small numerical differences of the analysis for the perturbation, quantitative conclusions remain the

same.

Robustness of results to log-transformed pixel data
Motion of a vein across a database corresponds to a significant variation in intensity in limited zones

of the image. We performed the analysis on log-transformed data and log-transform of the inverse

of data (where veins are bright as opposed to dark structures) to investigate the significance of the

representation. We confirmed that all the statistical trends are maintained with intensity transformed

data. We thank the referee for this and other recommendations through which we believe we have

provided further evidence towards the accuracy and robustness of the computational approach/

pipeline.

Statistical significance
We were exploring previously unknown phenomena, and therefore it is a priori unknown as to what

is a good observable, let alone what a sufficient sample size ought to be to help parameterize it. In

light of this, our study has generated a large dataset that permits a careful analysis of statistical

robustness and significance. As a rule, we leverage non-parametric approaches to assessing signifi-

cance, including bootstrap with replacement and resampling from marginal distributions (also known

as shuffling). We pursue a non-parametric approach to avoid any assumptions regarding the genera-

tive process of a manifestly very complex phenomena.

This section of the SI puts forward our reasoning for our confidence in our conclusions. In particu-

lar, we confirm that our sample size is sufficient to generate robust estimation of inferred parameters

that we use in our study.

Parameters of interest
There are fundamentally two quantities that form the basis of our analyses of intra- and inter-popula-

tion variation. Those being the first and second moments of each genetic and environmental popula-

tion in the phenotype space that we define. It must be stated that these two quantities are provably

the most statistically robust features of an empirical data distribution. Nonlinear analyses that are

nowadays commonplace in even the most standard dimensionality reduction algorithms are more

susceptible to noise. These two quantities go into helping a spectral, or principal component, analy-

sis of the distributions. The central result of the paper is the striking dominance and importance of

the first principal component (eigenvector). It must again be stated that this direction is the most

statistically robust direction by construction. The only other parameter we infer is the mean pheno-

type of populations, which is already a quantity that goes into the construction of PCA.

PCA
To demonstrate the significance of the PCs that we further analyze and base our conclusions on, we

adopt a marginal resampling approach. The explicit advantage of this approach over a Marcenko

Pasteur (MP) approach is that the closed-form analytic solutions for the eigenvalue distributions are

based on an assumption of Gaussianity of the data. To avoid this parametric assumption, which is

rarely true for real-world data, we adopt a marginal resampling approach. This approach gives a

spectrum of eigenvalues that could be generated by the nature of the marginal distributions alone,

and not due to any covariance in the data. For all our populations, we got at least 70 significant

eigenvalues.

Degree of alignments
The central feature of our analysis was to estimate the degree of alignment between the (1) direction

of variation between the means of two populations and (2) the natural variation of the individual

populations. (1) Is the phenotype associated with the difference, say, for example, the phenotypic

difference between a genetic mutant set of wings and the WT? The mean values of the degree of

alignments are presented in the main manuscript in Figures 3f and 4d for the genetic and environ-

mental analyses, respectively. Complete distributions of these alignments, achieved through
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bootstrapping, are presented here in Figure 4—figure supplement 3 and Figure 3—figure supple-

ment 3, for the environmental and genetic populations, respectively.

To assess the significance of these measurements of alignment, you must compare what is mea-

sured to a null distributions. Again, in the non-parametric approach embodied in our work, the null

distribution is constructed from the data itself. In particular, we compare the measured directions to

directions that would emerge by chance were the labels of the different populations of wings to be

shuffled. Any alignment between inter-population directions of change and intra-population direc-

tions of variance in the shuffled label data is purely due to chance or an artifact of our pipeline. Fig-

ure 4—figure supplement 4 and Figure 3—figure supplement 4 present the p-values achieved

through these analyses in the environmental and genetic populations. In all instances, other than the

male star population, the alignments are significant. The lack of significance of the male star popula-

tion is explained in our manuscript as being a statistical consequence of its very weak effect on

phenotype.

Sexual dimorphism vs. the long axis of the data
We include a more detailed description of the relative orientations of the long axis in the data and

the axis corresponding to sexual dimorphism in the high-quality images of environmental variation.

We observe that within stressed populations of flies, at low diet and high temperatures close to their

physiological limit (29˚C), the sexual dimorphism axis rotates from being orthogonal to the long axis

in the data to parallel; see Figure 2—figure supplement 3. This conditional GxE interaction (G

being sex-specific genes) provides further evidence that what we are observing is biological in ori-

gin, rather than an artifact of our pipeline. It is also consistent with our observation that alignment of

mutational perturbations in signaling genes with the long axis in the data is sometimes dependent

on the sex of the flies, depending on the mutation (Figure 5).
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dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 144:4406–4421.
DOI: https://doi.org/10.1242/dev.155069, PMID: 29038308

Ferreira A, Milán M. 2015. Dally proteoglycan mediates the autonomous and nonautonomous effects on tissue
growth caused by activation of the PI3K and TOR pathways. PLOS Biology 13:e1002239. DOI: https://doi.org/
10.1371/journal.pbio.1002239, PMID: 26313758

Garcia-Bellido A, de Celis JF. 1992. Developmental genetics of the venation pattern of Drosophila. Annual
Review of Genetics 26:277–304. DOI: https://doi.org/10.1146/annurev.ge.26.120192.001425, PMID: 1482114

Hansen TF. 2006. The Origins of Robustness.
Hermisson J, Wagner G. 2004. The population genetic theory of hidden variation and genetic robustness.
Genetics 168:2271–2284. DOI: https://doi.org/10.1534/genetics.104.029173

Jones GW, Mahadevan L. 2013. Planar morphometry, shear and optimal quasi-conformal mappings. Proceedings
of the Royal Society A: Mathematical, Physical and Engineering Sciences 469:20120653. DOI: https://doi.org/
10.1098/rspa.2012.0653

Kendall DG. 1989. A survey of the statistical theory of shape. Statistical Science 4:87–99. DOI: https://doi.org/10.
1214/ss/1177012582

Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, González-Gaitán M. 2007. Kinetics of
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