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Abstract

The impact of artificial intelligence (Al) in understanding biological processes is potentially
immense. Structural elucidation of mycobacterial PE_PGRS is sustenance to unveil the role
of these enigmatic proteins. We propose a PGRS “sailing” model as a smart tool to diffuse
along the mycomembrane, to expose structural motifs for host interactions, and/or to ship
functional protein modules at their C-terminus.

Solving protein structures of pathogenic microbes through
artificial intelligence

Like other “revolutions” in science, the release of the artificial intelligence (AI) AlphaFold
method to predict protein structure has been initially received with a mix of skepticism and
enthusiasm [1]. In just few months, thanks also to the public availability of the training code
that allowed to continuously improve the prediction potential while testing the method with a
multitude of proteins [2], more than 350,000 protein models from 21 species have been made
public, together with smart and effective tools to interrogate their structures [3]. The model
accuracy for each protein is expressed as a confidence score for each residue position (pre-
dicted local distance difference test (pLDDT)). For example, a very high (pLDDT > 90) confi-
dence score was obtained for 34.8% human protein residues, and for 30.3%, 67.8%, and 72.5%
protein residues of Trypanosoma cruzi, Mycobacterium tuberculosis (Mtb) and Escherichia coli,
respectively. Predicting with high accuracy protein structures of pathogenic microbes as Mtb
that killed approximately 1.5 million people in 2019, may shed light at molecular level of key
pathogenetic mechanisms and pave the way for the development of urgently needed improved
therapies and vaccines.

AlphaFold as a tool to solve the puzzle of the enigmatic PE_PGRS

Approximately 10% of the Mtb genome is occupied by the PE and PPE genes, coding for pro-
teins that are unique for Mtb and few other pathogenic mycobacteria [4,5]. Among these, the
PE_PGRS and PPE_MPTR subfamilies are peculiar for the apparently redundant and exten-
sive amino acid sequences downstream the PE and PPE N-terminal domains, respectively [5].
PE_PGRSs are a large family of Mtb proteins implicated in tuberculosis (TB) pathogenesis that
show a modular structure [6,7] (Fig 1A): the N-terminal PE domain, highly homologous to the
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domain found in tens of others PE proteins and whose structure has been already solved by
crystallography [8]; a C-terminal domain that is unique for each protein; the polymorphic gly-
cine-rich domain (PGRS) that varies in length from few tens to more than 1,000 amino acids
and whose structure has puzzled scientist for more than 20 years. The difficulties in expressing
and purifying in native conditions PE_PGRS proteins has so far prevented experimental struc-
tural studies. We have recently proposed a structural model for PGRS domains, in which gly-
cine-rich triplets fold into left-handed helices to form poly-glycine II (PGy;) sandwiches (Fig
1B) [6]. The model explained the puzzling high abundance of glycine residues in these
domains, as glycine is always pointing inwards and is the sole residue to be sterically allowed
(Fig 1B). In small PGy sandwiches, 5 or 6 antiparallel PGy helices are stacked in 2 antiparallel
groups, with 3 to 4 triplets spanning the PGy; domain length (about 35 to 50 A). The proposed
model was also consistent with a plastic structure that can tolerate large indels while maintain-
ing correct localization on the mycomembrane, providing a structural and functional frame-
work for the polymorphic PGRS domain [9]. Recently, AlphaFold predicted the structure of
many Mtb proteins, including PE_PGRSs, offering a unique opportunity to discuss how the
findings obtained on these structurally complex and enigmatic proteins can be illuminating to
better understand their role in TB pathogenesis and may serve as a model to solve key ques-
tions in biology [10].
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Fig 1. Structural features of PE_PGRS. (A) A schematic view of the organization of a PE_PGRS protein in PE, linker,
and PGRS domain. The conserved GRPLI is highlighted. (B) Stick representation of our previously proposed structural
model of a PGRS PGy sandwich domain [4,5]; hydrophobic residues on 1 edge and conserved glycine residues
pointing inwards the PGy; sandwich are labeled. (C, D) Structural representation of PE_PGRS33 and PE_PGRS35
structures, respectively. PE_PGRS33 PE domain is shown in magenta cartoon, the PGRSs domains in white stick/
surface, the PE_PGRS35 catalytic domain in prune cartoon/surface. Hydrophobic residues lining the straight edges of
the PGRS33 and PGRS35 domains are colored orange, those of PE_PGRS35 catalytic domain in yellow. (E, F) Two
180° views of electrostatic potential surfaces of PGRS33 and PGRS35, respectively.

https://doi.org/10.1371/journal.ppat.1010760.g001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010760 September 1, 2022 2/6


https://doi.org/10.1371/journal.ppat.1010760.g001
https://doi.org/10.1371/journal.ppat.1010760

PLOS PATHOGENS

The predicted structure supports the model claiming cleavage of
the PE domain by a specific protease

AlphaFold recently released the structures of several PE_PGRS proteins, most of which with
a high confidence score. The PE domain predicted structure is consistent with that proposed
for PE/PPE couples and for many other PE proteins [8,11]. The polymorphic linker region
found immediately downstream the PE domain is generally predicted as an o-helix extending
up to the highly conserved GRPLI motif (Fig 1A). Similarly to what observed for other PE
proteins, the linker domain seems properly positioned for recognition by EccCs, the cytoplas-
matic module of the type VII secretion system ESX-5, with the polymorphisms between the
different PE_PGRS possibly providing specificity for secretion [11,12]. Recent evidence indi-
cates that the PE domain of PE_PGRSs is cleaved off by a protease that in M. marinum has
been identified in PecA, the homologous of PE_PGRS35 in Mtb [13]. The protease domain of
PE_PGRS35 localizes in the unique C-terminal domain that is positioned to recognize and
cleave off the tubular-like PE domain (Fig 1A). Experimental data indicate that cleavage of
PE_PGRS proteins remove approximately 11 kDa fragment, corresponding to approximately
110 N-terminal amino acids [13,14], though the exact cleavage site has not yet been identi-
fied. These observations, together with the predicted structure of the PE_PGRSs (see below),
suggest that cleavage of the PE domain may occur upstream the PGRS domain. In keeping
with these observations, PE_PGRSs proteins localize on the mycomembrane outer leaflet
with their PGRS and the unique C-terminal domains available on the mycobacterial surface
(6,9,13].

AlphaFold prediction supports the PG, sandwich model of PGRS

AlphaFold predicts the PGRS domain as tightly packed sandwiches that are consistent with the
PGy sandwich model we recently proposed [6,9]. There is a large variability in the number of
PGy helices that compose PGRS sandwiches, from the small sandwiches of PE_PGRS17, 18,
—11,and -35 (7, 10, 11, 11 helices) to the medium sized as in PE_PGRS33 and —47 (27 and 29,
respectively) to the large ones as in Wag22 (54 helices). However, they all share the same pecu-
liar structural features: (i) they are all flat and sail shaped, with 1 straight edge made of short
and regular loops rich in hydrophobic and aromatic residues as Phe and Trp and less fre-
quently Tyr (Fig 1C and 1D); (ii) on the opposite side, they exhibit an irregular edge exposing
loops of variable amino acid composition; and (iii) their 2 lateral sides are characterized by
negative electrostatic potential surfaces (Fig 1E and 1F). Interestingly, some PE_PGRS proteins
as PE_PGRS3 or Wag22 are characterized by the presence of 2 GRPLI motifs and present 2
parallel sails (www.uniprot.org/uniprotkb/P9WIG5/entry). Altogether, structural features
shared by all PGRSs strongly suggest that the straight hydrophobic edge, in the absence of
trans-membrane helices, is a smart tool to embed these domains in the mycobacterial outer
leaflet, thus pointing the opposite irregular edge outward the mycomembrane (Fig 2). Indeed,
structures of PGRS domains share the typical “protruding hydrophobes” that were proposed
as a discriminating criterium to identify protein surfaces involved in membrane binding and
therefore fingerprints of peripheral proteins [15]. Importantly, the negative electrostatic poten-
tial surface of the 2 sides of the PGRS sails may constrain them to be orthogonally aligned to
the mycomembrane, due to their unfavorable electrostatic interactions with the negatively
charged mycomembrane. As a result, mature PGRSs associate to outer leaflet through nonspe-
cific hydrophobic interactions, which make PGRS domains free sailors on the “fluid” myco-
membrane [16], where they can expose moieties conferring specific functions to each
PE_PGRS.
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Fig 2. A speculative drawing of PE_PGRS33 (white), —35 (white-prune), and Wag22 (blue-green) proteins sailing the
mycomembrane. TLR2 (pdb code 6nig) was docked on PGRS33 structure by combining surface complementarity, using the
software PatchDock, with refinement of electrostatic interactions and desolvation energy, using FireDock. Structure-based B cell
antigen prediction was performed using ElliPro.

https://doi.org/10.1371/journal.ppat.1010760.9002

Experimental evidence from single PE_PGRS support the “sailing”
model

PE_PGRS33, one of the most investigated proteins, is known to mediate entry into macro-
phages through TLR2 interactions [17]. TLR2 can dimerize to form heterodimers with TLR1
or TLR6 depending on the interaction with acylated lipoproteins, though several studies indi-
cate that the TLR2/TLR1 heterodimer is more often involved in the detection of TLR2-specific
mycobacterial ligands [18], classically represented by triacylated lipopeptides that bind to the
hydrophobic pocket in TLR2 [19]. In the docking model we propose, the PGRS domain of
PE_PGRS33 interacts with the externally exposed amino acids located in the proximity of the
hydrophobic ligand-binding pocket of TLR2 (Fig 2), without hindering the binding of the clas-
sical TLR2 ligands to the hydrophobic pocket. Given the experimentally demonstrated ability
of PGRS33 to bind TLR2 and activate the signaling pathway via MyD88, it remains to be deter-
mined whether the interaction between the PGRS33 is sufficient to promote heterodimeriza-
tion of TLR2 with TLR1 (or TLR6) and activate the signaling pathway in absence of the ligand
or if PGRS33/TLR?2 interaction promotes or facilitates binding of the ligand to the hydropho-
bic pocket. While we consider more likely the latter hypothesis, it would be highly speculative
to propose a model in absence of sufficient data. Yet, regardless of the precise mechanism, the
exposure of the PGRS sail on the mycomembrane well agrees with a role of PE_PGRS33 in
engaging TLR2 through interactions with its PGRS33 sail (Fig 2) [17,20]. In line with this
model, the PGRS domain of PE_PGRS5 can target the endoplasmic reticulum and promote a
TLR4-dependent cell death [21,22], yet the low confidence score obtained by AlphaFold in the
prediction of the PE_PGRSS5 structure prevents any speculation on the region involved in the
interaction with TLR4. Similarly, the PGRS domain of PE_PGRS31 interacts with S100A9 fac-
tor in macrophages to promote mycobacterial survival [23]. Similarly, our sailing model
ensures an effective exposure of epitope regions in the PGy; sandwich structure of the highly
antigenic Wag22 [24] and similar considerations can be extended to other PE_PGRS proteins
that have been proposed to serve as immunological decoys [25]. Indeed, the fact that PGRS
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domains are endowed with a well-structured fold make them even more suitable to serve as
decoys, as they may expose structural motifs, with specific conformations, that act in the cam-
ouflage of effector molecules responsible for immune evasion [25].

Another interesting example is PE_PGRS35, which contains a C-terminal aspartic protease
domain able to hydrolytically deprive other PE_PGRS proteins of their PE domains (Fig 1D).
In this specific case, our suggested feature of PGRS35 to root in the mycomembrane through
its hydrophobic edge (Fig 1D) may be functional to the proper orientation of the protease
domain for catalysis and to allow it to easily float on the mycomembrane to meet its substrates
(Fig 2). This may also be the case for the few other PE_PGRS proteins with a unique C-termi-
nal domain endowed with specific functions (as outlined in SI Table). These PE_PGRSs may
be considered moonlight proteins, with the PGRS domain providing proper cellular localiza-
tion to the whole protein and playing a specific role thanks to the moieties exposed outward in
the PGRS domain and the unique C-terminal domain exerting the enzymatic activity or its
peculiar function.

In conclusion, new structural evidence provides unprecedented clues on the role of PGRS
domains in mycobacterial life. As in the old legend of the Flying Dutchman, PGRS domains
are doomed to sail the mycomembrane without making port; PGRS domains are molecular
sailors that allow mycobacteria to sense or interact with host molecules and/or to ferry myco-
bacterial enzymes or other functional protein domains across the mycomembrane.

Supporting information

S1 Table. Predicted functions of PE_PGRS C-terminal domains based on structure align-
ment. Z-score and root mean square deviations (RMSD) from most similar structures were
computed using DALL
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