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Acinetobacter baumannii is an important, opportunistic nosocomial pathogen that

causes a variety of nosocomial infections, and whose drug resistance rate has increased

in recent years. The CRISPR-Cas system exists in several bacteria, providing adaptive

immunity to foreign nucleic acid invasion. This study explores whether CRISPR-Cas

is related to drug resistance. Antibiotics were used to treat strains ATCC19606 and

AB43, and the expression of CRISPR-related genes was found to be changed.

The Csy proteins (Csy1–4) were previously detected to promote target recognition;

however, the potential function of csy1 gene is still unknown. Thus, the RecAb
homologous recombination system was utilized to knock out the csy1 gene from

A. baumannii AB43, which carries the Type I-Fb CRISPR-Cas system, and to observe

the drug resistance changes in wild-type and csy1-deleted strains. The AB431csy1

mutant strain was found to become resistant to antibiotics, while the wild-type strain

was sensitive to antibiotics. Moreover, transcriptome analysis revealed that the csy1

gene regulates genes encoding CRISPR-Cas-related proteins, drug-resistant efflux

pumps, membrane proteins, and oxidative phosphorylation-related proteins, inhibiting

antimicrobial resistance in A. baumannii. The in vitro resistance development assay

revealed that the complete CRISPR-Cas system could inhibit the development of

bacterial resistance. Our findings expand our understanding of the role of CRISPR-Cas

csy1 gene in A. baumannii and link the CRISPR-Cas system to the biogenesis of bacterial

drug-resistant structures.

Keywords: Acinetobacter baumannii, nosocomial pathogen, CRISPR-Cas system, antimicrobial resistance, csy1

gene

INTRODUCTION

Acinetobacter baumannii, a non-fermented Gram-negative bacterium, is one of the primary causes
of nosocomial infections worldwide. It mainly causes ventilator-associated pneumonia and blood,
urinary tract, skin, and soft tissue infections, particularly in critically ill patients in the intensive care
unit (1). Over the past few years, the drug resistance rate of A. baumannii has gradually increased
(2). Due to the treatment challenges posed by emerging and increasing drug resistance, multi-drug
resistant (MDR) A. baumannii poses a global threat to human health (3).
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The CRISPR-Cas system is an immune system used in
prokaryotes resisting invasion of foreign genetic elements. It
generally consists of three parts: a CRISPR array, a leader
sequence, and Cas-related proteins (4). In general, three different
stages have been described in the CRISPR-Cas immune response:
(i) adaptation, (ii) CRISPR (Cr) RNA expression and maturation,
and (iii) interference (5). The CRISPR-Cas system directs
sequence-specific cleavage of phage and plasmid nucleic acids
using nucleases programmed by small RNAs (6). The CRISPR-
Cas system also inhibits conjugation and transformation, thereby
limiting horizontal gene transfer. As the latter significantly
affects bacterial evolution, the spread of antibiotic resistance
and virulence determinants is the most pronounced (7). Several
studies have demonstrated that the CRISPR-Cas system is
associated with bacterial drug resistance. A previous study
has demonstrated that a variety of genes are regulated by
the Campylobacter jejuni II CRISPR-Cas9 system to promote
bacterial drug resistance (8). The CRISPR/Cas9 system can
mediate MDR Escherichia coli to restore antibiotic sensitivity
(9). The Cas9-dependent CRISPR-Cas system of the intracellular
bacterial pathogen Francisella novicida enhances antibiotic
resistance by strengthening envelope integrity (10). In the I-F
CRISPR-Cas system,multiple Cas proteins (Csy1–4) and CRISPR
RNA (CrRNA) form a surveillance complex (Csy complex) for
target recognition (11). Studies have shown that Csy proteins
(Csy1–4) promote target recognition by enhancing sequence-
specific hybridization between CRISPRRNA and complementary
target sequences (12).

The Type I CRISPR-Cas system is the most widely distributed
in nature (13). The unique feature of Type I-F CRISPR-Cas is the
fusion of Cas2 and Cas3 (Cas2/3), together with Cas1 mediating
the integration of the spacer into the CRISPR site (14, 15). There
are two primary subtypes of the I-F CRISPR-Cas system known

FIGURE 1 | Repeat (squares), spacer (diamonds), and the composition of different types of CRISPR-cas system of A. baumannii. (A) ATCC19606; (B) AB43.

in A. baumannii, namely, Type I-Fa and Type I-Fb (16–18). The
composition of Type I-Fa and Type I-Fb is illustrated in Figure 1.
The Csy1 protein is missing in the Type I-Fa CRISPR-Cas system;
however, the other components contain additional domains that
can compensate for the role of Csy1 protein (19). Moreover, the
role of csy1 gene in antimicrobial resistance is still unknown.

Our study aimed to research whether antibiotics
affect the expression of CRISPR-Cas-related genes in
A. baumannii to determine the relationship of csy1 gene
with antimicrobial resistance.

MATERIALS AND METHODS

Bacterial Strains and Plasmids
This study included standard strain A. baumannii ATCC19606
(GenBank: CP045108.1, https://www.ncbi.nlm.nih.gov/nuccore/
CP045108.1), which carries the complete CRISPR-Cas subtype

I-Fa system, and clinical isolates of A. baumannii AB43

(GenBank: CP083182.1, https://www.ncbi.nlm.nih.gov/nuccore/
2095284784), carrying the complete CRISPR-Cas subtype I-

Fb system. Moreover, AB133, ABF7, and ABE5 are clinical
isolates containing an incomplete I-Fa system, an incomplete I-
Fb system, or no CRISPR-Cas system, respectively (Table 1). The
clinical isolates used in this study were isolated from the Affiliated
Hospital of Yangzhou University and identified in our laboratory.
The bacterial strains and plasmids used in this study are listed in
Table 1.

CRISPR-Cas Finder (https://crisprcas.i2bc.paris-saclay.fr/
CrisprCasFinder/Index) was used to determine the existence of
the CRISPR-Cas system and spacers in the genomes of strains
ATCC19606 and AB43. The existence of clinical strains (AB133,
ABF7, and ABE5) with CRISPR-Cas genes was determined by
PCR (primers are shown in Supplementary Table 1).
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Antimicrobial Susceptibility Assessment
Strains with different CRISPR-Cas systems were subjected to
determine the minimum inhibitory concentrations (MICs) of
doxycycline, minocycline, tigecycline, ceftriaxone, imipenem,
gentamicin, kanamycin, ciprofloxacin, polymyxin B, colistin,
erythromycin, and rifampin to detect the relationship of CRISPR-
Cas system integrity with drug resistance. TheMICs of antibiotics
were measured using the standard broth microdilution method,
according to the Clinical and Laboratory Standard Institute
2020 guideline.

Real-Time Quantitative Reverse
Transcription-PCR (qRT-PCR) to Detect
CRISPR Gene Expression After Exposure
to Antimicrobials
Strains ATCC19606 and AB43 were grown to the early-
exponential phase and incubated with the MICs of antibiotics
for 4 h. Total RNA was extracted from the bacteria using a
total RNA extraction kit (TIANGEN, Beijing, PR China). The
HISCRIPT 1st strand cDNA synthesis kit (Vazyme, Nanjing,
China) was used to synthesize cDNA. A housekeeping gene
(16S rRNA gene) was used as an internal control for each
sample. qRT-PCR was performed on an ABI 7,500 RT-PCR
system (Applied Biosystems, CA, USA), and SYBR Green was
the dye (Vazyme, Nanjing, China) utilized. Primers used for qRT-
PCR are illustrated in Supplementary Table 2. The relative gene
expression levels were compared with those of 16S rRNA by the
2−11Ct method.

Construction of the csy1 Gene Deletion
Mutant
To delete the csy1 gene from A. baumannii AB43, pKD4 was
used as a template to amplify the complete kanamycin cassette
gene fragments. The PCR amplification products were identified
by 1% agarose gel electrophoresis and purified using the
FastPure Gel DNA Extraction Mini Kit (Vazyme). A. baumannii
carrying RecAb on pMMB67EH (pAT04) was inoculated into
liquid Luria Bertani (LB) medium containing carbenicillin to
preserve the plasmid. IPTG was added to bacteria to the mid-
log phase with a final concentration of 2mM, incubated at

37◦C for 3 h. Then bacteria were collected, washed thrice with
10% ice-cold glycerol, 1,000-fold concentrated. One microgram
recombinant engineering PCR products were electrotransformed
into A. baumannii AB43 competent cells (100 µL, ∼1010

bacteria) in 2mm cuvette at 1.8 kV. The bacteria are grown in
a 4mL rich medium containing 2mM IPTG for 4 h, centrifuged
at 4,000 rpm for 10min, and removed the supernatant, added
in 100 µL LB. Then, positive clones were selected from LB agar
medium containing 50µg/mL kanamycin incubated overnight
at 37◦C. Screening primers outside the homology region were
used to confirm the insertion of the kanamycin cassette (20).
Then the following steps were made to make the kanamycin
cassette lost in the AB43 1csy1::kan mutant strains. First, pAT03
(pMMB67EHwith flippase recombinase) was electrotransformed
into AB43 1csy1::kan mutant strains. Then, the bacteria were
resuscitated and cultured using LB with 2mM IPTG for 1 h.
Positive clones were then selected on LB agar plates containing
carbenicillin (75µg/mL) incubated overnight at 37◦C. The csy1
gene knock-out mutation was confirmed by PCR and DNA
sequencing (Tsingke Biotechnology Co., China).

Complementation of 1csy1 Mutant Strain
The pMMB67EH vector was utilized to generate a csy1 gene
complementation vector. An 1,110 bp fragment containing
an open reading frame of csy1 gene from the genome
was amplified and ligated to the pMMB67EH vector, then
the recombinant plasmid was electrotransformed into the
AB431csy1. Complementation vector-transformed 1csy1
mutants were selected on LB agar plates containing 50µg/mL
kanamycin and 10µg/mL tetracycline. Positive clones were
verified by colony PCR using primers and DNA sequencing
(Tsingke Biotechnology Co, China). The expression of the csy1
gene in AB43, complemented mutant, and 1csy1 mutant strains
was determined by qRT-PCR as described above.

Antimicrobial Susceptibility Testing of
Mutant Strains and Resistance
Development Studies
For in vitro resistance development of AB43, AB431csy1/pcsy1,
and AB431csy1, antibiotics sensitive to all three strains were

TABLE 1 | Strains and plasmids used in this study.

Strain/plasmid Relevant genotype and property Source and/or reference

A. baumannii strain19606 I-Fa CRISPR-Cas ATCC

A. baumannii strain AB43 I-F b CRISPR-Cas This study

A. baumannii strain AB133 I-F a CRISPR-Cas This study

A. baumannii strain ABF7 I-F b CRISPR-Cas This study

A. baumannii strain ABE5 Lack CRISPR-Cas This study

A. baumannii strain AB431csy1 1csy1 This study

A. baumannii strain AB431csy1/pcsy1 1csy1/pcsy1 This study

pMMB67EH AMPr This study

pAT04 pMMB67EH with RecAb system, Tetr This study

pAT03 pMMB67EH with FLP recombinase kanr This study

pKD4 Kanr This study

r, represents resistance.
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selected, and then resistance development experiments were
conducted. Strains were exposed separately to polymyxin B and
rifampin for step-wise selection. Strains at the exponential phase
were diluted 1: 1,000 into fresh MHB medium supplement with
0.5 × MIC or 0.25 × MIC of polymyxin B and rifampin. After
being cultured at 37◦C for 24 h at 200 rpm, the MIC of each drug
was determined by brothmicrodilution asmentioned before. The
process was repeated for 10 generations. Moreover, the ratio of
the MIC obtained from every generation to the MIC at the first
generation (first contact) was determined. The data are expressed
as the relative increase of MIC per generation (21).

Transcriptomic Analysis
The RNA-Seq analysis of AB43 and AB431csy1 was performed
as proposed by Kesavan et al. (22). Total RNAs of AB43 and
AB431csy1 were extracted from cell cultures at the log phase
using an RNA extraction kit (TIANGEN, Beijing, PR China)
and quantified using a Nanodrop spectrophotometer (Thermo
Scientific, Waltham, MA, USA) by the ratio of absorbance
(260 nm/280 nm). cDNA synthesis, library generation, and data
analysis were performed by Shanghai Sheng gong Bioengineering
Company, and transcriptome sequencing was conducted using
Illumina HiSeqTM.

RESULTS

Spacer Identification and CRISPR Analysis
of A. baumannii
CRISPR-Cas Finder was used to determine the number and
sequence of spacers in the CRISPR-Cas repeat array of
ATCC19606 and AB43. The results are illustrated in Figure 1.
The results demonstrate that ATCC19606 carries five CRISPRs
(Crispr_1, Crispr_2, Crispr_3, Crispr_4, and Crispr_5), where
the number of spacers in the CRISPR locus of Crispr_1,
Crispr_2, Crispr_3, Crispr_4, and Crispr_5 is 1, 18, 45, 1, and
1, respectively. The Type I-Fa Cas cluster consists of Cas1, Cas6,
Csy3, Csy2, and Cas3-Cas2 (Cas3). Strain AB43 carries one
confirmed CRISPR, which contains 105 spacers, and the Type
I-Fb Cas cluster contains Cas1, Cas3-Cas2 (Cas3), Csy1, Csy2,
Csy3, and Csy4.

Antimicrobial Susceptibility of Selected
Strains
The status of the CRISPR-Cas system in selected A. baumannii
strains is demonstrated in Table 2. To investigate the relationship

between csy1 gene and drug resistance, the relationship between
the CRISPR-Cas carrier rate and drug resistance was first
investigated. The strains with a complete CRISPR-Cas system
(ATCC19606 and AB43) were sensitive to 12 antibiotics tested.
However, strains with an incomplete set of CRISPR-Cas-related
genes (A133 and F7) or without the CRISPR-Cas system (E5)
were resistant to most of the antibiotics tested. The results are
shown in Table 3. Thus, the CRISPR-Cas system was speculated
to be related to the drug resistance of A. baumannii.

CRISPR-Cas Gene Expression in
ATCC19606 and AB43 Exposed to
Antibiotics
qRT-PCR analysis of CRISPR-Cas-related cas and csy genes was
performed to further study the relationship between the CRISPR-
Cas system and antimicrobial resistance. The expression of the
CRISPR-Cas-related genes cas and csy changed under antibiotic
pressure (Figures 2A,B). Downregulation of cas1, cas3, cas6,
csy2, csy3, and csy4 was detected in ATCC19606 and AB43
when treated with most antibiotics. However, csy1 gene in AB43
was upregulated when treated with most antibiotics, and only
downregulated when treated with doxycycline and kanamycin.

TABLE 3 | Minimum inhibitory concentrations (MICs) of strains with different types

of CRISPR-Cas system.

Drugs (µg/ml) ATCC19606 AB43 A133 F7 E5

Doxycycline 0.125(S) 0.125(S) 64(R) 32(R) 32(R)

Minocycline 0.0624(S) 0.015625(S) 32(R) 8(I) 2(S)

Tigecycline 2(S) 0.5(S) 64(R) 8(I) 8(I)

Ceftriaxone 8(S) 2(S) ≥8192(R) 256(R) 1024(R)

Imipenem 8(S) 8(S) ≥512(R) 512(R) ≥512(R)

Gentamicin 8(S) 0.5(S) 1024(R) ≥8192(R) ≥8192(R)

Kanamycin 8(S) 4(S) ≥8192(R) ≥8192(R) ≥8192(R)

Ciprofloxacin 0.25(S) 1(S) 256(R) 16(R) 32(R)

Polymyxin B 0.25(S) 0.125(S) 2(S) 2(S) 2(S)

Colistin 0.125(S) 0.125(S) 0.25(S) 0.125(S) 0.125(S)

Erythromycin 8(S) 1(S) 256(R) 1(S) 4(S)

Rifampin 1(S) 0.5(S) 64(R) 2(S) 2(S)

R represents resistance; S represents sensitivity.

TABLE 2 | Strains with different carrying situations of CRISPR-Cas system genes.

Strain ST cas1 cas3 cas6 csy1 csy2 csy3 csy4

ATCC19606 (I-Fa) ST931 + + + – + + –

AB43 (I-Fb) ST705 + + – + + + +

AB133 (I-Fa) ST1145 + – – – + – –

ABF7 (I-Fb) ST195 + – + + + + +

E5 ST195 – – – – – – –

+, contain; –, lack.
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FIGURE 2 | CRISPR-cas gene expression in strains after exposure to antibiotics. (A) CRISPR-related genes (cas1, cas3, cas6, csy2, and csy3) expression in

ATCC19606 against antimicrobials; (B) CRISPR-related genes (cas1, cas3, csy1, csy2, csy3, and csy4) expression against antimicrobials in AB43.
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FIGURE 3 | The RNA level of csy1 gene in wild type (AB43), csy1 gene deletion (AB431csy1), csy1gene complementation (AB431csy1/pcsy1) strains. The RNA level

in AB43 was set as 1, and those in strains AB431csy1 and AB431csy1/pcsy1 were calculated accordingly. Data are presented as means ± SEM from three

independent experiments. **p < 0.01.

The Role of csy1 Gene in Antimicrobial
Susceptibility
The above studies demonstrated that an integrated CRISPR-
Cas system might inhibit the drug resistance of A. baumannii.
Further, when A. baumannii was exposed to tested antibiotics,
only csy1 gene was upregulated. However, little is known
regarding the role of csy1 gene in the drug resistance of A.
baumannii. A csy1 gene knock-out strain was constructed. The
expressions of csy1 gene RNA in the wild type (AB43), csy1
gene deletion (AB431csy1), and csy1 gene complementation
(AB431csy1/pcsy1) strains were determined by qRT-PCR. The
expression of csy1 gene RNA was significantly decreased by
deletion in the csy1 gene deletion mutant, and restored to wild-
type levels in the csy1 gene complementation strain (Figure 3).
The antimicrobial susceptibility of AB43, the complemented
mutant, and 1csy1 mutant strains to 12 drugs was evaluated.
The results are shown in Table 4. A 16- to 512-fold (doxycycline,
tigecycline, ceftriaxone, imipenem, ciprofloxacin, erythromycin)
increase in susceptibility was observed in the1csy1mutant strain
compared with its wild (AB43) strain. Moreover, a >1,024-fold
increase of MIC (minocycline, gentamicin, and kanamycin) was
observed in the 1csy1 mutant strain compared with AB43. The
MICs of polymyxin B, colistin, and rifampin were similar in the
three strains.

The Role of csy1 Gene in Resistance
Development
Based on the results that csy1 gene can regulate the drug
resistance of A. baumannii, a drug resistance development

TABLE 4 | Minimum inhibitory concentrations (MICs) of AB43, complemented

mutant, and 1csy1 mutant strains to different antibiotics.

Drugs (µg/ml) AB43 AB431csy1/pcsy1 AB431csy1

Doxycycline 0.125(S) 0.015625(S) 16(R)

Minocycline 0.015625(S) 0.015625(S) 16(R)

Tigecycline 0.5(S) 8(S) 128(R)

Ceftriaxone 2(S) 4(S) 256(R)

Imipenem 8(S) 8(S) ≥4096(R)

Gentamicin 0.5(S) 1(S) ≥4096(R)

Kanamycin 4(S) 4(S) ≥4096(R)

Ciprofloxacin 1(S) 0.0625(S) 16(R)

Erythromycin 1(S) 0.5(S) 64(R)

Colistin 0.125(S) 0.0625(S) 0.25(S)

Polymyxin B 0.125(S) 0.125(S) 0.125(S)

Rifampin 0.5(S) 0.5(S) 1(S)

R represents resistance; S represents sensitivity.

assay was done to further elucidate its role in antibiotic
resistance. No significant differences were found between AB43,
AB431csy1/pcsy1, and AB431csy1 in resistance to polymyxin B
and rifampin (Table 4); thus, both were chosen for the resistance
induction experiment. There was no significant difference
among AB43, AB431csy1/pcsy1, and AB431csy1 in resistance
to polymyxin B until the sixth step of selection (2µg/mL).
At 2µg/mL polymyxin B, only AB431csy1 exhibited growth
(Figure 4). The drug resistance of rifampicin showed a difference
at the third selection step and a 16-fold increase at the eighth
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FIGURE 4 | Polymyxin B and rifampicin resistance gains during continuous passaging. (A) Polymyxin B; (B) Rifampicin.

selection step (Figure 4). The results suggested that the csy1 gene
mutant strain drug resistance developed significantly faster than
that of the wild strain.

Transcriptomic Analysis of the csy1 Gene
Knock-Out Mutant
Transcriptome analyses of AB43 and AB431csy1 were
performed, which demonstrated that genes encoding efflux
protein, the 50S/30S ribosomal proteins, proteins involved
in energy metabolism, and cytochrome C were upregulated
in AB431csy1 (Figure 5). The upregulation of the gene
encoding the efflux pump was reported to be associated with
increased antimicrobial resistance (23). Additionally, the
increased synthesis of ATP could promote drug efflux. Several
downregulated genes in the mutant strain were also detected.
After the csy1 gene was knocked out, the expression of CRISPR-
Cas-related genes was downregulated. The related proteins of
the CRISPR-Cas system were speculated to influence each other
as a whole. The decreased expression of membrane-related
proteins indicated that the CRISPR-Cas system might regulate
cell membrane formation.

DISCUSSION

The primary role of the CRISPR-Cas system is bacterial defense
against phages, plasmids, and other foreign DNA. Some recent
studies showed that the CRISPR-Cas system might play a role in
antibiotic resistance of bacteria (24). The effect of the CRISPR-
Cas system on antibiotic resistance varies in different bacteria.
The CRISPR-Cas system promotes resistance in C. jejuni and
inhibits resistance in E. coli and E. fecium (8, 9, 25). However, the
relationship of the CRISPR-Cas system with antibiotic resistance
in A. baumannii is not fully elucidated. By investigating the
carrying situation of the CRISPR-Cas system and the drug
resistance level of selected strains, we assessed whether the
CRISPR-Cas system plays a role in A. baumannii antibiotic
resistance. The results showed that the complete CRISPR-Cas

system might inhibit bacterial drug resistance. qRT-PCR analysis
was conducted to measure the expression levels of Type I-Fa and
I-Fb CRISPR-Cas system-related genes after antibiotic treatment.
The results demonstrated that the expressions of cas and csy genes
were modified.

With the excessive use of antibiotics, the bacterial resistance
rate has continued to increase. The infection rate of MDR
pathogens is increasing. Thus, the development of different
strategies to combat antimicrobial resistance is critical (4).
Moreover, research on the relationship between CRISPR-Cas
and bacterial resistance is primarily focused on the cas3 and
cas9 genes (26). The cas3 gene in Streptococcus mutants can
regulate biofilm formation and the ability to resist fluoride
(27). Sampson et al. proved that the CRISPR-Cas endonuclease
gene cas9 together with tracrRNA and ScaRNA is essential for
enhancing the stability of the bacterial envelope and promoting
antibiotic resistance (10). However, the relationship between the
csy1 gene and drug resistance in bacteria has not been previously
reported. To the best of our knowledge, this is the first study
regarding the relationship between csy1 gene and drug resistance
in A. baumannii. Preliminary studies have demonstrated that
csy1 gene can regulate the drug resistance of A. baumannii and
maintain its sensitivity to antibiotics. After knocking out the
csy1 gene, the bacterial resistance level increased. Simultaneously,
the drug resistance experiment showed that csy1 gene could
inhibit the drug resistance development of bacteria. The complete
CRISPR-Cas system may inhibit its drug resistance. The results
are similar to studies on Enterococcus fecalis, which found that the
lack of CRISPR genes is related to species, multidrug resistance,
and major drug resistance-related genes (28).

The study by Aydin et al. suggested that the CRISPR-Cas
system may interfere with the acquisition of resistant plasmids,
thereby maintaining the sensitivity of these strains (9). Klebsiella
pneumoniae strains detected that the spacers in the CRISPR
array matched the genome of the plasmid or phage, some
containing resistance genes (29). In Francis bacteria, CRISPR-Cas
can enhance the integrity of its envelope, leading to resistance to
several membrane stressors, including antibiotics, and increasing
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FIGURE 5 | Transcriptome analysis of AB43 and AB431csy1. (A) Differential gene volcano map; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis of up-regulation genes; (C) KEGG enrichment analysis of down-regulation genes; the color of the dot represents the size of the Q-value, and the size of the

dot represents the number of differential genes; (D) Selected differential expression genes involved in CRISPR-Cas related protein, ribosome protein, oxidative

phosphorylation related protein, a membrane-associated related protein, and multidrug efflux pump protein.
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antibiotic resistance (10). Transcriptome analysis was conducted
to assess the mechanism of csy1 gene inhibiting the drug
resistance of A. baumannii. The csy1 gene mutant strain has a
higher expression of drug efflux pump, ATP synthesis-related,
and ribosomal genes, as well as a lower expression of CRISPR-
Cas-related and membrane-related genes.

Thus, with the steady increase inMDR bacterial infections, the
innovation of novel therapies to combat MDR bacteria is critical.
Existing studies have demonstrated that the CRISPR-Cas system
delivered by phages can sequentially eliminate Staphylococcus
aureus (30). CRISPR-encoded presentation plasmids or CRISPR-
Cas antibacterial drugs can reduce the occurrence of antibiotic
resistance in Enterococci (31). The delivery of CRISPR-Cas9
effectively removes antibiotic resistance in vitro by targeting
plasmid-borne resistance genes (32). Our work main revealed
that the csy1 gene participates in the regulation of drug resistance
in A. baumannii. The present study has several limitations.
It is unknown how csy1 gene, regulates drug resistance in
A. baumannii. Moreover, we only performed csy1 gene knock-out
experiments in AB43 (I-Fb CRISPR-Cas), and more strains are
needed to generalize our results. Thus, future studies should focus
on assessing themechanism bywhich CRISPR-Cas regulates drug
resistance. Moreover, deploying the Type I CRISPR-Cas system
as an antimicrobial to treat drug-resistantA. baumannii infection
is an attractive strategy compared with conventional antibiotic
therapy. It is also necessary to explore the effect of other CRISPR-
Cas components in modulating aspects of bacterial physiology
such as virulence and drug resistance.

CONCLUSIONS

In conclusion, we studied the relationship of the CRISPR-Cas
system with antibiotic resistance in A. baumannii. Our results
revealed that the expression of CRISPR-Cas related genes was
changed under antibiotic pressure and that the presence of
the csy1 gene has an inhibitory effect on the drug resistance
of A. baumannii. Deletion of the csy1 gene in A. baumannii
strain AB43 made it resistant to most of the antibiotics tested.
In addition, this study extends our understanding of resistance
regulation of A. baumannii and provides a new direction for
studying the functions of CRISPR-Cas systems in drug resistance.

Future work can be focused on their functions that extend
beyond the general disruption of invading foreign DNA and
may clarify how CRISPR-Cas systems contribute to bacterial
resistance and virulence. This knowledge will be useful in the
exploration of new antibacterial strategies.
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