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Purpose: To identify patients with autosomal recessive retinal dystrophy caused by mutations in the gene, retinal
dehydrogenase 12 (RDH12), and to report the associated phenotype.
Methods: After giving informed consent, all patients underwent full clinical evaluation. Patients were selected for
mutation analysis based upon positive results from the Asper Ophthalmics Leber congenital amaurosis arrayed primer
extansion (APEX) microarray screening, linkage analysis, or their clinical phenotype. All coding exons of RDH12 were
screened by direct Sanger sequencing. Potential variants were checked for segregation in the respective families and
screened in controls, and their pathogenicity analyzed using in silico prediction programs.
Results: Screening of 389 probands by the APEX microarray and/or direct sequencing identified bi-allelic mutations in
29 families. Seventeen novel mutations were identified. The phenotype in these patients presented with a severe early-
onset rod-cone dystrophy. Funduscopy showed severe generalized retinal pigment epithelial and retinal atrophy, which
progressed to dense, widespread intraretinal pigment migration by adulthood. The macula showed severe atrophy, with
pigmentation and yellowing, and corresponding loss of fundus autofluorescence. Optical coherence tomography revealed
marked retinal thinning and excavation at the macula.
Conclusions: RDH12 mutations account for approximately 7% of disease in our cohort of patients diagnosed with Leber
congenital amaurosis and early-onset retinal dystrophy. The clinical features of this disorder are highly characteristic and
facilitate candidate gene screening. The term RDH12 retinopathy is proposed as a more accurate description.

Leber congenital amaurosis (LCA), first described by
Theodor Leber in 1869 [1], is a heterogeneous autosomal
recessive, generalized retinal dystrophy that presents at birth
or soon after. The disorder is now recognized as the most
severe form of a spectrum of early-onset retinal dystrophies
(EORD), accounting for 3%–5% of childhood blindness in the
developed world, with an estimated incidence of 2–3 per
100,000 live births [2]. Presentation is usually with reduced
vision and nystagmus in early infancy. Undetectable or
severely reduced rod and cone electroretinograms confirm the
diagnosis [3,4]. The retinal appearance may initially be
normal or show a variety of abnormalities, including white
dots at the level of the retinal pigment epithelium (RPE),
retinal pigment migration, retinal vascular attenuation, and
macular atrophy.

To date, 14 causative genes, guanylate cyclase 2D
(GUCY2D) [5], aryl hydrocarbon receptor interacting protein-
like 1 (AIPL1) [6], retinal pigment epithelium-specific protein
65 (RPE65) [7], retinitis pigmentosa GTPase regulator
interacting protein 1 (RPGRIP1) [8], cone-rod homeobox-
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containing gene (CRX) [9], tubby like protein 1 (TULP1)
[10], crumbs homolog-1 (CRB1) [11], retinol dehydrogenase
12 (RDH12) [12], centrosomal protein 290 kDa (CEP290)
[13], lebercilin (LCA5) [14], spermatogenesis-assoicated
protein 7 (SPATA7) [15], lecithin retinol acyltransferase
(LRAT) [16], c-mer proto-oncogene tyrosine kinase
(MERTK) [17], and IQ motif-containing protein 1 (IQCB1)
[18], and one more locus, LCA9 [19]) have been identified.
The RDH12 gene, consisting of seven coding exons was
identified due to sequence homology to RD11 (originally
named PSDR1) [20], and mapped to chromosome 14q23.3
[20,21]. RDH12 mapped to the same region of chromosome
14 as two loci for LCA known as LCA3/LCA13 [22]. In 2004,
the first mutations in families mapped to LCA13, were
identified [12].

RDH12 expression is highest in the retina, where it
localizes to the inner segments of rod and cone photoreceptors
[21,23]. The protein sequence places it in the short chain
dehydrogenase/reductase family. It was thought to be
responsible for the conversion of vitamin A (all-trans retinal)
to 11-cis retinal during the regeneration of cone visual
pigments. But in the murine model, disruption of RDH12
neither causes a retinal dystrophy nor affects the levels of all-
trans and 11-cis retinoids [23]. It has been proposed that
RDH12 functions to protect the retina from excessive all-trans
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retinal accumulation in continuous illumination [24,25].
There is some evidence, at least in the mouse retina, that
RDH12 may be involved in detoxifying 4-hydroxynonenal in
photoreceptor cells [26].

RDH12 mutations have been associated with LCA [27,
28], EORD [12], and with one family of autosomal-dominant
retinitis pigmentosa [29]. Published phenotypic data suggests
that visual symptoms first develop in early childhood. There
is subsequent disease progression with extensive
photoreceptor cell loss by adulthood [12,30-32]. Fundus
examination at that stage shows a severe pigmentary
retinopathy, with macular atrophy and vascular attenuation
[12,30-33]. Electroretinographic findings reveal severe
generalized loss of rod and cone photoreceptor function.

Here, we report 17 novel mutations in RDH12. To the
best of our knowledge, this is the first study associating the
clinical presentation with casual mutations in RDH12 in a
large cohort.

METHODS
Patient selection: Patients with nonsyndromic autosomal
recessive LCA or EORD were ascertained from the medical
retina clinics of Moorfields Eye Hospital, London. All
patients involved in this study provided written consent as part
of a research project approved by the local research ethics
committee. All investigations were conducted in accordance
with the principles of the Declaration of Helsinki.
Clinical evaluation: All patients underwent age-appropriate
assessment of visual acuity on a LogMAR scale and
funduscopy. Retinal imaging, including color fundus
photography (Topcon TRC 501A retinal camera; Topcon
Corporation, Tokyo, Japan), high-resolution spectral domain
optical coherence tomography (SD-OCT; Spectralis spectral
domain OCT scanner; Heidelberg Engineering, Heidelberg,
Germany) or time-domain OCT (TD-OCT; Stratusoct Model
3000 Scanner; Zeiss Humphrey Instruments, Dublin, CA),

and retinal autofluorescence (AF) imaging using a confocal
scanning laser ophthalmoscope (Zeiss Prototype; Carl Zeiss,
Oberkochen, Germany) was performed where nystagmus did
not preclude image acquisition and in those who were old
enough to cooperate. Electrophysiology had often been
previously performed elsewhere, but in those patients who had
not undergone previous testing, full field electroretinography
and pattern electroretinography were performed. In adults and
older children, these were performed using gold foil recording
electrodes according to International Society for Clinical
Electrophysiology of Vision (ISCEV) standards [34,35]. A
modified protocol using orbital surface electrodes was used
in infants and younger children, as previously described
[34-38].

DNA collection: Blood samples were collected in EDTA
tubes. DNA was extracted using a Nucleon Genomic DNA
extraction kit (BACC2; Tepnel Life Sciences, UK) or a
Puregene kit (Invitrogen, Glasgow, UK) following the
manufacturer’s instructions.

Apex chip: Genomic DNA from 389 unrelated affected
patients were sent to Asper Ophthalmics (Tartu, Estonia) for
analysis using the LCA APEX chip, as described previously
[39,40]. Samples in which mutations were identified in other
LCA genes were excluded from further study. Much of this
work has been published elsewhere [39,41-44].

Autozygosity scan: A full genome-wide autozygosity scan
was performed using all available members in families 9, 10,
and 12. Samples were analyzed using the Affymetrix Gene
Chip Human Mapping 50K XbaI array following the
manufacturer’s instructions (Affymetrix, Santa Clara, CA).
Detailed methodology for genotyping using the GeneChip
array has been previously described [45]. Genotypes for single
nucleotide polymorphisms (SNPs) were called by the
GeneChip DNA Analysis Software (GDAS v3.0;
Affymetrix). A macro was written in Visual Basic within the

TABLE 1. PRIMERS AND PCR CONDITIONS USED IN SCREENING RDH12 IN THIS COHORT.

Exon Primer PCR annealing (°C) Size of fragment (bp)
Exon 1F TTTCCCCACATTCTCTTTGCC 54 517
Exon 1R TCCACCATGGTATCCACAACACC   
Exon 2F TAACGTATCTTAGTGTGAGCTCG 54 306
Exon 2R TCCTTGAATTTCTAGTCAGAGC   
Exon 3F TCACTCTACCGTTGAAGGATGG 54 405
Exon 3R TGTGGCAGAACCTGTCTAGTGG   
Exon 4F ATAGTTATTGAGTGCTGAGGC 54 459
Exon 4R TAGACTGATCAGGAGAGGTAC   
Exon 5F TCAGACCAAACTGACCATTAGAG 54 460
Exon 5R TGACACGTGCATGTTTGACAGCC   
Exon 6F TGGTACCTGCTGAATCCTGGG 54 434
Exon 6R ACCTGGATTGCATCATCAGGC   
Exon 7F TTAGTTTCTTTGAGTCTGGC 54 884
Exon 7R TGATTTGTTCCATTTCTCTCC   
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Microsoft Excel (Microsoft, Redmond, WA) program to
detect genomic regions with a shared haplotype.
Screening of RDH12 by direct sequencing: Primers were used
to amplify the seven coding exons and intron-exon boundaries
of RDH12 (Table 1). All PCRs were performed in a total
volume of 30 μl containing 200 μM dNTPs (VH Bio,
Gateshead, UK), 20 μM of each primer, 1X reaction buffer
including 1.5 mM MgCl2 (VH Bio) with 1 unit of Moltaq
(VHBio) and 100 ng of DNA. PCR was performed on a
PTC200 DNA engine thermal cycler (Bio-Rad, Hemel
Hempstead, UK).

PCR products were visualized on a 2% agarose gel
containing 0.05% ethidium bromide. The products were
cleaned using multiscreen PCR filter plates (cat. no.
LSKMPCR10; Millipore, Watford, UK) before sequencing.
PCR products were sequenced directly using the ABI Prism
Big Dye terminator kit V3.1 (Life technologies, Carlsbad,
CA) in a 10 μl reaction. Samples were purified using the
Montage cleanup kit (cat. no. LSK509624; Millipore) before
being run on an Applied Biosystems 3730 DNA Sequencer.

Analysis of electropherograms was performed by hand
and using the DNA sequence analysis software Lasergene
V8.1 (DNASTAR, Madison, WI). Identified mutations were
confirmed bidirectionally and then checked in family
members for segregation with disease. Novel missense
mutations were checked in at least 100 control DNA
chromosomes (European Collection of Cell Cultures and
ethnically matched DNA samples). Missense mutations were
analyzed using three software prediction programs: Sorting
Intolerant from Tolerance (SIFT) [46], PolyPhen-2 algorithm
[47], and pMUT [48].

RESULTS
Mutational analysis: RDH12 mutations (Table 2) were
identified in 32 individuals from 29 families. Using the Asper
Ophthalmic LCA chip on 389 patients with LCA/EORD, 11
patients were identified, with at least one mutation in
RDH12. Direct DNA sequencing confirmed these changes
and identified a second RDH12 mutation in all of them, six of
which are novel. Autozygosity mapping and subsequent direct
sequencing of RDH12 identified two more families with novel
homozygous mutations (families 10 and 12). Direct
sequencing was also performed on 210 LCA/EORD patients
who had previously been screened across the Asper LCA chip
with either no hit or with one hit in a gene. This identified four
more patients with mutations in RDH12 and five novel
mutations.

Twelve additional patients with EORD or autosomal
recessive retinitis pigmentosa with a phenotype consistent
with RDH12 deficiency underwent RDH12 screening. All had
mutations in RDH12, with four more novel mutations being
identified.

Nine of 28 mutations identified in this study were located
in exon 5 (Figure 1). All 17 novel mutations were absent in
100 ECACC controls or in 50 Asian controls. Where DNA
samples from parents and unaffected siblings were available,
further analysis demonstrated that the disease segregated with
the mutations.

Analysis of all identified missense mutations using in
silico methods are shown in Table 3. All three programs
identified the p.C70Y, p.R169Q, p.R169W, p.Y200C, and
p.R239W mutations as being intolerant or damaging to the
protein. For all of the missense mutations, at least one of the
programs considered the protein change to be significant.

In total, 28 different alleles in 29 families from various
ethnic origins were identified (Table 2). Twelve families were
consanguineous, and they harbored homozygous mutations.
Two other families also had homozygous mutations, even
though they did not report consanguinity. The most common
mutation identified was p.C201R (8/58 alleles, 14%). Overall,
missense mutations were the most prevalent mutation
identified, affecting 38/58 alleles (65%). Nonsense mutations
accounted for 8/58 (14%), and frameshift mutations affected
10/58 alleles (17%). The remainder of mutations consisted of
a deletion of a codon (2%), and a splice site mutation (2%).
Only one coding SNP was identified, rs17852293 (c.482G>A,
p.R161Q), located in exon 5.

Clinical phenotype: Appendix 1 summarizes the clinical
features of the 32 patients. Twenty-one patients (66%)
presented with reduced vision. Nyctalopia (6/32) and visual
field constriction (7/32) were predominant features. Twenty-
nine patients reported loss of vision that was slowly
progressive by age five years. Interestingly, 11 patients
reported that their vision dramatically deteriorated further and
were able to specify the age at which this had occurred, a
median age of 26 years. Fundus examination in adults and
older children revealed characteristic dense intraretinal
pigment migration throughout the retina that typically
approached the macula from the equator in a concentric
manner, with severe RPE atrophy and arteriolar attenuation
(Figure 2A). The pigmentation showed “para-arteriolar
sparing” in seven patients (Figure 2B). In the younger patients
(6/32, age range 5–18 years), widespread RPE atrophy was
the predominant feature, with pigment migration, when
present, being confined to the retinal periphery (Figure 2C).
Macular atrophy was present in all cases and was associated
with striking yellow deposits in 18 patients (56%; Figure 2D).
AF imaging in 10 of 13 patients failed to detect any macular
AF (Figure 2E), corresponding to the severe macular atrophy.
The youngest patients to undergo AF imaging had overall
reduced levels of macular AF but also had a
hyperautofluorescent signal at the fovea (families 6, 11, and
17; age range of 5–11 years).
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Ten of 13 patients underwent either Stratus OCT (6/13)
or SD-OCT (7/13) imaging, which showed marked macular
thinning (Figure 2F). The respective average adult foveal
thicknesses observed with TD-OCT and SD-OCT were
133 µm and 56 µm (normal adult mean values: 144 µm and
228 µm [49]). In the adults who underwent SD-OCT imaging,
there was marked macular excavation, severe retinal thinning,
and loss of the laminar architecture (6/7 patients; Figure 2F).
OCT imaging of the three youngest patients, in whom the
macula was better preserved on funduscopy, demonstrated a
mean foveal thickness of 167 µm (TD-OCT, families 6 and
11) and 114 µm (SD-OCT, family 17), with some preservation
of the laminar architecture.

Electroretinography was performed at our institution on
nine patients (age range of 2–22 years). This showed
undetectable or severely attenuated rod and cone responses,
demonstrating severe generalized retinal dysfunction from a
very young age. This included five of the seven children below
age 16 who otherwise had relatively preserved visual acuities.

DISCUSSION
This report on the mutational analysis and detailed description
of the phenotype in a cohort of 32 patients with RDH12
mutations represents the largest such series to be studied to
date. Seventeen novel mutations are described.

The majority of the variants identified were missense
mutations, with only one SNP found. Several mutations

occurred more than once in the present cohort. The most
common mutation, occurring in 14% of alleles, was p.C201R,
which was found to be homozygous in all patients of Gujurati
Indian descent. This mutation has been previously reported in
one patient of Indian ancestry [33] and may represent a
founder mutation in this population. The p.A269AfsX1
mutation (indentified in 12% of alleles) was found in the
compound heterozygous state with another mutation in
patients who were all of British Caucasian descent. This
mutation was originally described in a German male in the
homozygous state [12], making this a northern European
mutation. Exon 5 appears to be a mutational hotspot with 9/28
mutations located in it. Therefore, screening of exon 5 in a
large cohort of patients could be a first step in the
identification of RDH12 mutations. The novel variant
p.R161W affects the same codon as the only SNP seen in the
screening of this cohort, rs17852293 (p.R161Q). In silico
analysis of this variant was inconclusive, but it has been
considered in this paper as a potential disease variant due to
its being found in the compound heterozygous state with a
frameshift mutation in families 27 and 29.

The characteristic phenotype associated with RDH12
retinopathy comprises early-onset visual loss between birth
and 5 years of age (78% in the present cohort). The visual loss
was progressive, leading to severe visual loss in adulthood.
The subjective symptoms of nyctalopia and visual field
constriction were not frequently reported at the time of

Figure 1. RDH12 gene structure showing the locations of the mutations identified in this study. Novel mutations are shown in red.
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presentation, but were commonly reported later in the disease
course. One seldom reported feature was dramatic visual
deterioration at a later age [30,31], revealed by 11 patients in
this study. Cataract, a frequent feature of severe retinal
degeneration [12,31,33], was present in approximately 50%
of adult patients.

The defining features of RDH12 retinopathy were present
upon fundus examination. Widespread RPE atrophy
predominates at a younger age, with minimal intraretinal
pigment migration. Despite the presence of maculopathy at
this stage, the central foveal thickness and foveal architecture
may still be preserved. As patients age, there is striking
intraretinal pigmentation, possibly with para-arteriolar
sparing, accompanied by severe pigmentary maculopathy,
characteristic yellow macular deposits, and macular
excavation. There is little or no autofluorescence at the
macula, in keeping with severe macular atrophy. SD-OCT
imaging demonstrated severe macular thinning and the
excavation and loss of the foveal laminar architecture. These
SD-OCT data are in agreement with previous studies using
TD-OCT imaging [27].

No genotype-phenotype correlation could be identified
for age of onset, age at diagnosis, presenting features,
refractive error, or visual acuity.

There are limited data regarding the histopathology of
intraretinal pigment migration (or bone spicule pigmentation).
A recent study of the rhodopsin knockout (rho−/−) mouse, a
murine model of human retinitis pigmentosa, demonstrated
that the migration of RPE cells along blood vessels within the

inner retina is triggered by the close approximation and direct
contact of the inner retinal vessels with the RPE [50]. This is
a consequence of the loss of photoreceptor cells and
subsequent reduction of retinal thickness, which causes an
approximation of the inner retinal layers with the RPE.
Subsequent bone spicule pigmentation occurs as pigmented
cell clusters form over most of the retinal capillaries except
for the large surface vessels. This may explain the distribution
of the intraretinal pigment in RDH12 retinopathy, and
possibly the observation of para-arteriolar sparing, which is
also a feature in CRB1 disease [11]. The severe macular
atrophy in the RDH12 phenotype is also consistent with the
increased susceptibility at the macula to light-induced
photoreceptor apoptosis that has been observed in RDH12
knockout mice [24], supporting evidence for the unique role
of this protein in the photoreceptor inner segment as a retinoid
regulator. The disease mechanism is also not solely dependent
upon loss of enzymatic function. It has been shown that some
missense mutations in RDH12 retain enzymatic function but
are believed to undergo accelerated degradation [51].

RDH12 mutations account for 7% of disease in the cohort
of patients with LCA or EORD at this institution, similar to
the frequency of CRB1 mutations in the same group of patients
[52]. This is higher than the previously published 2.7% [53].
This higher incidence and the number of novel changes may
reflect the use of the APEX microarray to identify known
changes and the use of detailed phenotypic data. Currently
there is no treatment for RDH12 associated disease. However,
would a future treatment become available, the optimum time

TABLE 3. IN SILICO ANALYSIS OF IDENTIFIED RDH12 MISSENSE VARIANTS.

  SIFT Polyphen-2 pMUT
Mutation Exon Prediction Tolerance

index
Prediction Human

Var score
NN output Reliability Prediction

p.T49M 2 Intolerant 0 PRD 0.951 0.4152 1 Neutral
p.T49K* 2 Intolerant 0.01 POS 0.888 0.6188 2 Pathological
p.C70Y* 3 Intolerant 0 PRD 0.998 0.9223 8 Pathological
p.L99I 3 Intolerant 0 PRD 0.991 0.1072 7 Neutral

p.H151D 5 Intolerant 0.01 PRD 0.992 0.3323 3 Neutral
p.F152I* 5 Intolerant 0 PRD 0.968 0.2127 5 Neutral
p.R161Q 5 Tolerant 0.38 Benign 0.018 0.513 0 Pathological

p.R161W* 5 Tolerant 0.18 POS 0.798 0.7723 5 Pathological
p.R169Q* 5 Intolerant 0 PRD 0.997 0.5161 0 Pathological
p.R169W* 5 Intolerant 0 PRD 0.999 0.8159 6 Pathological
p.S175L 5 Intolerant 0 PRD 0.997 0.2495 5 Neutral
p.Y200C 5 Intolerant 0 PRD 0.998 0.5467 0 Pathological
p.C201R 5 Tolerant 0.1 POS 0.769 0.5209 0 Pathological
p.S203R* 5 Intolerant 0 PRD 0.998 0.3381 3 Neutral
p.N207D 5 Intolerant 0.01 PRD 0.994 0.1661 6 Neutral
p.V233L 6 Intolerant 0.02 PRD 0.931 0.1899 6 Neutral
p.R239W 6 Intolerant 0 PRD 0.998 0.9122 8 Pathological

        Changes highlighted by an asterisk are novel missense mutations identified in this study. SIFT results are reported to be tolerant
        if tolerance index ≥0.05 or intolerant if tolerance index <0.05. Polyphen-2 appraises mutations qualitatively as Benign, Possibly
        Damaging (POS) or Probably damaging (PRD) based on the model's false positive rate. pMUT is based on the use of different
        kinds of sequence information to label mutations, and neural networks to process this information NN=neural network values
        from 0 to 1. >0.5 is predicted as a disease associated mutation. Reliability=values 0–9. >5 is the best prediction.
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of intervention should be at a young age, before the onset of
severe retinal pigmentation.
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Appendix 1. Clinical features of patients identified with RDH12 mutations.

To access the data, click or select the words “Appendix
1.” This will initiate the download of a compressed (pdf)
archive that contains the file. Abbreviations: CF represents
counting fingers; DS represents diopter sphere; EE represents
either eye; F represents female; HM represents hand

movements; LE represents left eye; M represents Male, N/A
represents not available; PCIOL represents posterior chamber
intra ocular lens; PL represents perception of light; PSCLO
represents posterior subcapsular lens opacification; RE
represents right eye; VF represents visual field.
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