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Empirical prediction of variant-activated
cryptic splice donors using population-based
RNA-Seq data
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Predicting which cryptic-donors may be activated by a splicing variant in patient DNA is

notoriously difficult. Through analysis of 5145 cryptic-donors (versus 86,963 decoy-donors

not used; any GT or GC), we define an empirical method predicting cryptic-donor activation

with 87% sensitivity and 95% specificity. Strength (according to four algorithms) and

proximity to the annotated-donor appear important determinants of cryptic-donor activation.

However, other factors such as splicing regulatory elements, which are difficult to identify,

play an important role and are likely responsible for current prediction inaccuracies. We find

that the most frequently recurring natural mis-splicing events at each exon-intron junction,

summarised over 40,233 RNA-sequencing samples (40K-RNA), predict with accuracy which

cryptic-donor will be activated in rare disease. 40K-RNA provides an accurate, evidence-

based method to predict variant-activated cryptic-donors in genetic disorders, assisting

pathology consideration of possible consequences of a variant for the encoded protein and

RNA diagnostic testing strategies.
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Genetic variants affecting the conserved sequences of the
consensus splicing motifs can alter binding of spliceoso-
mal components and induce mis-splicing of precursor

messenger RNA (pre-mRNA)1, making them a common cause of
inherited disorders2–5. Splicing variants can simultaneously
induce different mis-splicing outcomes, including skipping of one
or more exons, activation of a cryptic splice-site(s), and/or
retention of one or more introns1. Whether induced mis-splicing
disrupts the reading frame or affects a region of known functional
(and clinical) importance, has significant diagnostic implications.
Therefore, knowing the specific mis-splicing outcome of genetic
variant is necessary to conclusively link it to a disease. While the
accuracy of in silico algorithms in predicting whether a variant
will cause mis-splicing has been comprehensively assessed6–9,
there is currently no reliable means to predict which mis-splicing
event(s) may occur in response to a variant that activates mis-
splicing. As a result of this and other factors, the vast majority of
splice site variants are classified as variants of uncertain sig-
nificance (VUS); a non-actionable diagnostic endpoint in geno-
mic medicine10.

We recently evaluated the accuracy and concordance of Spli-
ceAI (SAI)11 and algorithms within Alamut Visual® (Interactive
Biosoftware, Rouen, France)12,13, to predict splicing outcomes
arising from genetic variants identified in 74 families with
monogenetic conditions subject to RNA diagnostic studies (79
variants; 19% essential GT-AG splice-site variants and 71%
extended splice-site variants)14. Algorithmic predictions of the
strengths of activated cryptic splice sites were highly discordant,
especially for cryptic donors. SAI’s deep learning showed the
greatest accuracy in predicting activated cryptic splice-site(s)
(66% true positive with 34% false negative), whereas historical
algorithms within Alamut Visual® resulted in 34–69% false
negatives14.

In this study we focus on determining empirical features that
inform prediction of variant-associated spliceosomal selection of
a cryptic-donor, in preference to the annotated-donor and other
nearby decoy-donors (any GT or GC not used by the spliceo-
some). Through analysis of 4811 variants in 3399 genes, we show
that while splice-site strength and proximity to the annotated-
donor strongly influence spliceosomal selection of a cryptic-
donor, these factors alone are not sufficient for accurate predic-
tion. Importantly, we show that the most common mis-splicing
events seen at each exon-intron junction across 40,233 publicly
available RNA-seq samples compiled within the 40K-RNA
database, predict with accuracy which cryptic-donor will be
activated in rare disease.

Results
Reference database of variants activating a cryptic-donor. We
collate a database of cryptic-donor variants, defined as variant-
associated erroneous use of a donor other than the annotated-
donor. Variants were derived from several sources11,15,16 (Fig. 1a,
see methods). The genomic locations and extended sequences of
the annotated-donor, cryptic-donor(s), as well as any decoy-
donors (any GT/GC motif within 250 nucleotides (nt) of the
annotated-donor), were compiled for analysis. We define the
extended donor splice-site region as spanning the fourth to last
nucleotide of the exon (E-4, E= exon) to the eighth nucleotide of
the intron (D+8; D= donor), as constraint on sequence diversity
eases beyond this point (supplementary Fig. 1).

Cryptic-donor variants fall into three categories (Fig. 1b,
Box 1): A) Annotated-Modified (AM): a genetic variant modifies
the annotated-donor resulting in activation one or more
unmodified cryptic-donors (n= 2186) (Fig. 1c–e). AM-variants
which are SNVs and DNA insertions commonly affect the E-1,

D+1, D+2 and D+5 positions of the annotated-donor (Fig. 1c),
and AM-variants which are DNA deletions ranged from 1 to 57
nts in length (Fig. 1d). 89% of AM-variants result in use of a
single cryptic-donor, 9% activate 2 cryptic-donors and 2%
activate 3 or more cryptic-donors (Fig. 1e).

B) Cryptic-Modified (CM): a genetic variant modifies a cryptic-
donor and does not affect the annotated-donor (n= 2252)
(Fig. 1f, g). CM-variants most frequently affect the D+2 position
of the cryptic-donor (Fig. 1f), with 32% of all CM SNVs changing
the cryptic-donor essential splice motif from GC to GT (Fig. 1g).

C) Annotated-Modified/Cryptic-Modified (AM/CM): a genetic
variant that simultaneously modifies the annotated-donor and
nearby cryptic-donor (n= 373) (Fig. 1h–j). AM/CM-variants
which are SNVs and DNA insertions also most frequently affect
the D+2 position (122/373) of the cryptic-donor (Fig. 1h), with
31% of SNVs converting a GC to GT (Fig. 1i). AM/CM-variants
which are DNA deletions range from 1 to 36 nts in length
(Fig. 1j).

87% of cryptic-donors lie within 250 nt of the annotated-
donor. 99% of cryptic-donors activated by AM-variants and 71%
of cryptic-donors activated by CM-variants, lie within 250 nt of
the annotated-donor (87% collectively, Fig. 2a, b). By definition,
AM/CM-variants activate a cryptic-donor that spatially overlaps
the annotated-donor; 26% of AM/CM cryptic-donors lie at either
the E-4 or D+5 position (Fig. 2c). For exonic cryptic-donors
activated at E-4, the GT at D+1/+2 of the annotated-donor
becomes D+5/+6 of the cryptic-donor; conversely for intronic
cryptic-donors activated at D+5, the GT at D+5/+6 of the
annotated-donor becomes D+1/+2 of the cryptic-donor).

While decoy-donors are present everywhere, which ones are
selected as cryptic-donors by the spliceosome in the context of a
genetic variant appears strongly influenced by their proximity to
the annotated-donor (Fig. 2a, b), as shown by their enrichment at
proximal locations relative to all decoys present in the genome
(Fig. 2d). The steep decline in exonic decoys (Fig. 2d, left) is due
to the shorter lengths of exons limiting their frequency at these
distances (50th and 90th percentile for exon length shown).
Notably, each annotated-donor has on average 36 decoy-donors
within+ /−250 nt not used by the spliceosome – indicating that
features other than proximity to the annotated-donor define a
usable cryptic-donor (Fig. 2e).

Only 31–67% of1 cryptic-donors are stronger than the
annotated-donor. We examined the ability of four algorithmic
measures of splice-site strength to predict cryptic-donor activa-
tion (Fig. 3). We compared the performance of MaxEntScan
(MES)13, NNSplice (NNS)12 and SpliceAI (SAI)11 as well as our
own method termed Donor Frequency (DF) (see methods and
supplementary Fig. 1 for details, supplementary Fig. 2a–c for full
plots). DF measures donor strength based on how many
annotated-donors in the human genome have the exact same
sequence. DF calculates the median frequency of four consecutive
windows of nine nucleotides in length (between E-4 and D+8)
among all annotated-donors, converted to a cumulative frequency
distribution. For example, if an E-3 to D+6 sequence has a raw
frequency of 222, this combination of nine bases occurs at the
analogous position for 222 annotated-donors, corresponding to
the 35th percentile of a cumulative frequency distribution across
the human genome (see supplementary Fig. 1c). For these and all
further analyses, we excluded the 1113 cryptic variants in the
database derived from SAI predictions already validated on GTEx
RNA-seq data11. Our nomenclature of REF and VAR corre-
sponds to the reference (REF) or variant (VAR) donor sequence.
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Fig. 1 Reference database of variants activating a cryptic-donor. a Schematic of the cryptic-donor database. E= Exon, D=Donor. See methods. b Three
categories of cryptic-donor variants in the database: Annotated-Modified (AM-variants), Cryptic-Modified (CM-variants) and Annotated-Modified and
Cryptic-Modified (AM/CM-variants). c–e Characteristics of AM-variants (n= 2186, orange). Positions of AM (c) Single Nucleotide Variants (SNVs),
insertions and (d) deletions relative to the annotated-donor. In (d) each of the horizontal bars represents one deletion variant showing the position and
width of each deletion relative to the annotated-donor. e The number of cryptic-donors activated by each AM-variant. f–g Characteristics of CM-variants
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The four algorithms use different methods to measure the
intrinsic strength of a given donor splice-site. In the following
discussion we use the term stronger and weaker to denote a donor
that has a higher or weaker score, respectively, according to that
algorithm. Comparisons such as weaker by >50% denote that the
donor score has been reduced by more than half by the variant.

For AM-variants, activation of a cryptic-donor typically occurs
in the context of a variant that weakens the annotated-donor to
less than half of its original strength (Fig. 3a, dark blue). While
many AM cryptics are stronger than the annotatedVAR (Fig. 3c,
example shown in Fig. 3b), a substantial subset are not the
strongest decoy-donor within 250nt (Fig. 3d). In fact, many
activated cryptic-donors are not recognised as bona fide donors
by the respective algorithms, notably NNS (Fig. 3e).

Intuitively, for most CM-variants the cryptic is strengthened by
the variant (Fig. 3f, orange, example shown in Fig. 3g). However,
less than half of activated cryptics are stronger than the
annotated-donor (Fig. 3h). Along similar lines, for a majority of
AM/CM-variants the annotated-donor is weakened (Fig. 3i, blue)
while the adjacent cryptic is strengthened by the variant (Fig. 3j,
orange, example shown in Fig. 3k). However, only 29–67% of
AM/CM-crypticsVAR are stronger than the annotated-donorVAR
(Fig. 3l). Despite similar overall performance for each algorithm,
they showed discordance in variant outcome predictions (Fig. 3M,
N) and measures of splice-site strength (Supplementary Fig. 2d).

In summary, four independent algorithms concur that cryptic-
donor activation typically occurs in response to weakening of the
annotated-donor (85–99% of variants) or strengthening of the
cryptic-donor (67–98% of variants). However, only 35–70% of
activated cryptic-donors are stronger than the annotated-
donorVAR, and for unmodified cryptic-donors, 29–62% are not
the strongest decoy-donor within 250 nt. Thus, while relative
strength of the annotated- and cryptic-donor influence spliceo-
somal use, there are other factors at play.

Competitive decoy-donors are depleted close to annotated-
donors. Decoy-donors of comparable or greater strength to the
annotated-donor rarely occur within 150 nt (Fig. 4a, red).
However, exonic and intronic regions around donors have
characteristic single and dinucleotide frequencies which may
contribute to the rarity of decoy-donors (supplementary Fig. 3).
In particular, the first 50 nt of the intron often shows enrichment
in G and T dinucleotides, with distinct patterns: 1) G repeats are
enriched in the shortest of introns and T repeats in the longest
(supplementary Fig. 3c); 2) Introns with G (or C) at the D+3

position are enriched in G dinucleotides whereas introns with A
(or T) at the D+3 position are enriched in T dinucleotides
(supplementary Fig. 3d); 3) Introns with rare donors (low DF) are
enriched in T-repeats compared to introns with the most com-
mon donors (supplementary Fig. 3e). Therefore, we adapted a
previously used method17 which takes dinucleotide preferences
into account, to assess if decoy-donors occur more or less

commonly than expected by random chance (see Methods and
supplementary Fig. 4).

GT decoy-donors show increasing exonic depletion approach-
ing the annotated-donor, with out-of-frame decoys (red) depleted
more than in-frame decoy-donors (orange), while showing
negligible depletion in the intron (Fig. 4b). GC decoy-donors
show no depletion in either the exon or the intron (supplemen-
tary Fig. 5a).

We next assessed what proportion of decoy-donors in the
genome are used, albeit rarely, via unannotated splice-junctions
detected across 40,233 publicly available RNA-seq samples from
GTEx18 and Intropolis19 (40K-RNA). Unannotated splice-
junctions (representing stochastic mis-splicing), seen rarely in
RNA-seq samples aggregated across a population, constitute
empirical evidence that both splicing reactions can be executed
using a decoy-donor. Therefore, we mined 40K-RNA for splice-
junctions representing the use of cryptic-donors within 250 nt of
any annotated-donor, and ranked them according to the number
of samples they were present in (see methods). Overall, ~7% of all
unannotated decoy-donors are in fact present as rare, stochastic
mis-splicing events in 40K-RNA.

The proportion of exonic GT decoy-donors present in 40K-
RNA (relative to all decoys) dramatically increases with proximity
to the annotated-donor, with intronic decoys showing only a
modest change (Fig. 4c). This mirrors depletion patterns (Fig. 4b)
and confirms that decoy-donors closer to the annotated-donor
are inherently more likely to be used by the spliceosome. Less
than 4% of exonic GC decoy-donors are present in 40K-RNA,
even very close to the exon/intron junction, in line with their
observed lack of depletion (Supplementary Fig. 5b).

The ability of DF to measure donor strength is evidenced by
Fig. 4d, e. While there is negligible depletion of decoy-donor
sequences that do not exist as a bona fide donor at any exon-
intron junction in GRCh37 (DF= 0, grey), there is clear depletion
of exonic decoy-donors closer in DF (50–90% DF, mid-blue), or
of similar or greater DF ( ≥90% DF, dark blue) (Fig. 4d, left),
relative to the annotated-donor. Depletion is even evident for
decoy-donors that have DF of only 10% relative to the annotated-
donor, and so we define a competitive decoy-donor as one above
this threshold. Interestingly, except for the most competitive
decoy-donors (≥90% DF; Fig. 4d, right, dark blue), decoy-donors
show no depletion in the intron. Concordantly, the proportion of
exonic decoy-donors present in 40K-RNA increases with
increasing relative DF, and to a lesser extent at the start of the
intron (Fig. 4e).

Why are intronic decoy-donors less likely to be used by the
spliceosome? The fact that intronic decoy-donors are less
depleted and less likely to be seen in 40K-RNA (Fig. 4b–e) was
initially perplexing, given that cryptic-donors are just as common
in the intron as in the exon (Fig. 2a, b). However, we reasoned
distinctive nucleotide preferences in the first ~50 nt of the intron

Box 1 | Glossary

Annotated-donor: A donor in an ensembl-annotated transcript.
Decoy-donor: Any essential donor dinucleotide (GT/GC) that is not an annotated-donor.
Cryptic-donor: A decoy-donor shown to be activated (i.e. used by the spliceosome) by a genetic variant.
Annotated-Modified (AM): A genetic variant modifies the annotated-donor resulting in activation one or more unmodified cryptic-donors.
Cryptic-Modified (CM): A genetic variant modifies a cryptic-donor and does not affect the annotated-donor.
Annotated-Modified/Cryptic-Modified (AM/CM): A genetic variant that simultaneously modifies the annotated-donor and nearby cryptic-donor.
Donor Frequency (DF): A measure of donor strength based on how many annotated-donors in the human genome have the exact same sequence.
Competitive decoy-donor: A decoy-donor with a DF score at least 10% the score of the nearby annotated-donor.
40K-RNA: An aggregated database of splice-junctions detected across 40,233 publicly available RNA-seq samples.
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Fig. 2 Cryptic-donor activation is influenced by proximity to the annotated-donor. a, b Distribution of cryptic-donors activated by (a) AM-variants and
(b) CM-variants. Location (x-axis) denotes the distance of the cryptic-donor from the annotated-donor, with negative values upstream into the exon and
positive values downstream into the intron. c (Bottom) Distribution of cryptic-donors activated by AM/CM-variants. (Top) Pictograms showing the
Reference (REF) and Variant (VAR) sequences for AM/CM-variants. Activated cryptic-donors are prevalent at E-4 (left) and D+5 (right) due to conserved
GTs at D+1/+2 and D+5/+6 of the conserved donor splice-site sequence. d Frequency of naturally occurring decoy-donors (any GT or GC) +/− 250 nt of
annotated-donors in the human genome. Dashed lines indicate the 50th and 90th percentile for exon length. The decline in exonic donors is due to
relatively fewer longer exons. e Distribution of the number of decoy-donors in the +/−250 nt surrounding each annotated-donor in the human genome.
Dashed line shows that there are an average of 36 decoy-donors within 250 nt of each annotated-donor.
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could affect measures of depletion, and/or, influence the usability
of decoy-donors in this region. For example, G-repeat splicing
regulatory elements (SREs) are abundant within the first ~50 nt of
the intron20–22.

We defined competitive decoy-donors as those with a DF of at
least 10% that of the associated annotated-donor (see Fig. 4d, e).
In the first 50 nt of the intron, competitive decoy-donors
overlapping G-triplets show no depletion and conversely appear
enriched (Fig. 5a, intron- orange). In contrast competitive decoy-
donors not overlapping G-triplets are depleted (Fig. 5a, intron-
grey). Additionally, a higher proportion of intronic decoy-donors
not overlapping G-triplets are seen in 40K-RNA than those
overlapping G-triplets (Fig. 5b, intron- grey). The reciprocity in
these data is consistent with a masking effect of intronic G-repeat

motifs on (competitive) decoy-donors, likely due to RNA
secondary structure and/or RNA binding proteins preventing
their use.

Figure 5c shows an example variant in gene GAA
(NM_000152.3:C.2646+ 2 T > A) identified in an individual
affected with glycogen storage disease type II23 that induces
splicing to an exonic cryptic-donor 21 nt upstream of the
annotated-donor. NNS, MES, and DF rank the decoy-donor at
+57 as the strongest donor - however this donor is enveloped
within a G-repeat rich region which may mask it, and accordingly
is not present in 40K-RNA. SAI instead predicts use of the
cryptic-donor at −21. Notably, this cryptic-donor is present in
137 samples in 40K-RNA, providing empirical evidence that
despite its weak primary motif, it can be used by the spliceosome.
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SAI in silico mutagenesis of the cryptic-donor at -21 and
decoy-donor at +57 show that SAI deep-learning perceives the
negative impact of the G-repeats on the usability of the +57
decoy-donor (Fig. 5d). Intronic G-repeats are known examples of
SREs20,24 (see Fig. 5 and additional examples supplementary
Fig. 5c–f). Whether or not a cryptic donor can be used is
influenced by a constellation of features: the consensus donor
sequence, as well as proximal and more distal splicing regulatory
elements. Regulatory elements are not factored by many
algorithms, though may be identified by SAI, likely underpinning
its enhanced capabilities in recognition of usable (cryptic) splice-
sites. In contrast, 40K-RNA uses empirical evidence from RNA-
Seq data that reveals which cryptic splice-sites are usable in the
context of the specimens tested.

90% of cryptic-donors in AM-variants are present in 40K-RNA.
We assessed whether 40K-RNA provides a viable means to
prioritise cryptic-donors likely to be activated in the context of a
genetic variant affecting the annotated-donor (i.e. AM-variants).
90% of AM-variant activated cryptic-donors are present in 40K-
RNA, while 91% of unused decoy-donors are absent. Therefore,
40K-RNA provides potent predictive information with respect to
both true positives (cryptic-donors) and true negatives (decoy-
donors). Notably, while cryptic-donors were observed in multiple
independent samples across 40K-RNA, they were typically very
low frequency splice-junctions (44% had a maximum of 4 reads
or less in any one sample, supplementary Fig. 6b).

We chose the top 4 40K-RNA events at each splice-junction (or
all events if there were less than 4 detected) as our predicted

cryptic-donors as this maximised sensitivity (87%) without
compromising specificity (95%) (Fig. 6a). Use of 40K-RNA had
a higher sensitivity than all four algorithms assessed (Fig. 6a, b,
supplementary Fig. 6a). The sensitivity of 40K-RNA is inherently
influenced by read-depth of the target transcript: more than 85%
of cryptic-donors are detected in transcripts with a read depth of
>250 for the annotated exon-exon splice-junction (normal
splicing); whereas only 29% of cryptic-donors are detected in
40K-RNA in transcripts where normal splicing had a maximum
read count of <100 (supplementary Fig. 6c). Consequently, we
assessed SAI as a complementary approach for situations where
our empirical method is underpowered or not well suited.

We define SAI prediction of cryptic-donor activation as a
donor-gain Δ−score of 0.1 or greater, which accurately predicts
75% of cryptic-donors and inaccurately predicts only 1% of
decoy-donors (Fig. 6b). SAI showed higher sensitivity then NNS,
and comparable sensitivity to MES and DF, while greatly
improving on their specificity (supplementary Fig. 6a). However,
the sensitivity of SAI is compromised for cryptics at increasing
distance from the annotated-donor - only 55% of cryptic-donors
further than 100 nt from the annotated splice site had a Δ-score
above 0.1 (supplementary Fig. 6d, e). If we take the union of SAI
and 40K-RNA cryptic-donor predictions (i.e., cryptics predicted
by either of the two methods), we accurately predict 2210/2389
(93%) of cryptic-donors (Fig. 6c) and inaccurately predict 6% of
unused decoy-donors.

Use of 40K-RNA has caveats for CM-variants and AM/CM-
variants, and cannot be used for variants that create a GT (or GC)
motif. However, for the subset of CM-variants and AM/CM-
variants where the variant modifies the extended splice site region
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of an extant GT/C decoy-donor (1525 variants, Fig. 6d, top- blue),
76% are present in 40K-RNA, with 56% in the top 4 events.

40K-RNA is least sensitive for variants that most significantly
impact the strength of the cryptic-donor: For D+2 CM-variants,
only 32% of the cryptic-donors are present in the top 4 events, as
compared to 85% for E-3 variants (supplementary Fig. 6f; E-3 is
the third to last exonic base). Accordingly, even if a GC decoy-
donor is not present in 40K-RNA, conversion by a variant to a
GT donor presents high risk for cryptic-activation. SAI
performed well for CM-variants and AM/CM-variants, correctly
predicting 96% of variants that created an essential donor motif
and 90% which modified an existing essential motif (Fig. 6d).

Discussion
The ultimate goal of splicing predictions is to determine if and
how a genetic variant will induce mis-splicing of pre-mRNA.
Even for essential splice-site variants that almost invariably cause
mis-splicing, consideration of probable consequences of the
variant is critical for pathology application of the ACMG-AMP
code PVS125 (null variant due to presumed mis-splicing of the
pre-mRNA) and of equal importance to strategise functional
testing for RNA diagnostics14. While activation of a cryptic-donor
6 nucleotides away will remove or insert two amino-acids,
activation of a cryptic-donor 4 nucleotides away will induce a
frameshift, with vastly different implications for pathology
interpretation.

We learned five key lessons from our analyses of 4811 cryptic-
donor variants in 3399 genes: (1) Decoy-donors that show evi-
dence of natural stochastic use by the spliceosome in population-
based RNA-Seq data (i.e., are present in 40K-RNA) have the
greatest probability of activation as cryptic-donors. (2) Decoy-
donors closer to the annotated splice site are inherently more
likely to be used by the spliceosome, likely due to the presence of
all required sequence features that are facilitating use of the
annotated donor.

(3) Cryptic-donors do not necessarily need to be stronger than
the annotated-donor to present substantive risk for mis-splicing,
with decoy-donors only 10% of the strength of the annotated-
donor able to compete for spliceosomal binding. (4) Intronic
G-repeats can diminish the likelihood of spliceosomal recognition
and use of intronic decoy splice sites. (5) SAI’s deep-learning
appreciates the broader sequence context determining spliceoso-
mal usability of a cryptic-donor, though less accurately predicts
activation of more distal cryptic-donors (>100 nt from the
annotated-donor).

SAI’s deep learning presents a major improvement in pre-
dicting cryptic-donor activation. However, use of SAI in a
pathology context is limited by the challenge of deriving a
clinically-meaningful interpretation of a number on a 0–1 scale,
without independently verifiable evidence. In contrast, 40K-RNA
provides an accurate, evidence-based means to rank cryptic-
donors likely to be activated by genetic variants.

Brandão et al.26 used deep sequencing of twelve major cancer
susceptibility genes to catalogue all alternative and aberrantly
spliced transcripts. They found variant-activated cryptic splicing
was often seen at much lower levels in disease controls, suggesting
that the dominant transcript in rare disease may be seen as a
stochastic mis-splicing event in other samples. We use this
insight, mining the breadth of publicly available RNA-seq data
across numerous tissues to comprehensively catalogue stochastic
cryptic splicing events across all genes.

The heightened sensitivity and empirical nature of using 40K-
RNA is of vital importance for pathology assessment of variants
affecting the essential donor splice-site, as not considering a likely
cryptic-donor activated can lead to profound complications in

variant interpretation. Prospectively, the sensitivity of 40K-RNA
can be enhanced by ultra-deep sequencing. It is also easy to
envisage extending the method to predict other mis-splicing
events such as exon skipping, and mis-splicing events at the
acceptor splice site. 40K-RNA can reliably identify distal cryptic-
donors with high likelihood of activation, which may not be
identified by SAI. Conversely, SAI can reliably identify cryptic
donors with high likelihood of activation not detected in 40K-
RNA, due to low read depth of the target gene.

In conclusion, we define an accurate, evidence-based method to
predict cryptic-donor activation in the context of a variant affecting
the annotated-donor, based on stochastic mis-splicing events
observed in 40,233 publicly available RNA-seq samples (40K-
RNA). We provide a web resource that reports and ranks the most
commonly (mis)used cryptic donors proximal to every ensembl
annotated-donor27 (https://kidsneuro.shinyapps.io/splicevault-40k/
). Our research establishes that for AM-variants, if a cryptic-donor
is activated, in 87% of cases it will be among the top 4 events. We
hope this evidence-based method may improve clinical interpret-
ability of donor variants.

Methods
Creating a database of cryptic-donor variants. Variants were derived from
several sources: (1) 439 variants curated from literature, predominantly comprised
of 364 variants in DBASS515 and supplemented by curation from published lit-
erature of 75 additional variants28,29 (2) 4372 variants derived from RNA-seq
studies: Variant-associated aberrant cryptic-donor activation detected from RNA-
seq data identified by SAVnet in somatic tumor samples (n= 3259)16 and 1113
variants identified in GTEx samples by spliceAI and verified using RNA-seq data11.
The following inclusion criteria applied: (1) Variants had to occur within E-4-D+8

of the annotated or the cryptic-donor, otherwise they were excluded as outside the
bounds of this analysis. (2) annotated cryptic-donors were within the same exon/
intron as the variant (i.e., between the 5′ end of the exon and 3′ end of the intron
surrounding the affected donor). (3) The annotated cryptic-donor VAR sequence
had to have an essential GT/GC dinucleotide at D+1/D+2, to minimise mis-
annotated variants being included.

Annotating variant categories. We annotated variants with categories we defined– if
the variant occurred within E-4-D+8 of the annotated-donor, it was an AM-variant,
if it occurred within E-4-D+8 of the cryptic-donor it was a CM-variant, and if it
occurred within E-4-D+8 of both the annotated- and cryptic-donor it was an AM/
CM-variant. For 37/373 of AM/CM-variants, an additional unmodified cryptic-
donor was activated, in addition to the cryptic-donor modified by the variant- these
were excluded from analyses.

Compiling annotated-, cryptic- & decoy-donor sequences. The R package
BSgenome.Hsapiens.1000genomes.hs37d530 was used to extract (up to) 500 nt of
genomic sequence preceding and succeeding the annotated-donor (GRCh37). For
each variant in the cryptic-donor database, we extracted up to 250 exonic
nucleotides in the 5′ direction (i.e., if the exon was only 50 nt the window of
analysis would be 50 nucleotides), and up to 250 intronic nucleotides in the 3′
direction, in the same fashion (Fig. 1a).

From the (up to) 500 nt of sequence we pulled E-4-D+8 sequences for the
annotated- and cryptic-donor before and after each variant (REF and VAR
respectively). We also identified any other essential donor dinucleotides (i.e., GT or
GC) which were present in the sequence and extracted the E-4-D+8 sequence
surrounding them. These sequences we define as decoy-donor- sequences
containing the essential donor dinucleotides (i.e., a GT or a GC) but which weren’t
utilised by the spliceosome as a result of the variant (Fig. 1a, lower). For intronic
decoy-donors, we excluded any which would result in an intron too short to be
spliced (as defined by the 1st percentile for intron length in the human
genome= 80 nt)31. Importantly, without additional filtering, no cryptic-donors in
the database violated this rule.

Algorithms for splice site strength. We retrieved predicted scores for annotated-
donors, cryptic-donors and decoy-donors in the database in both the REF and
VAR sequence context, for four algorithms. (1) MaxEntScan (MES)13 scores were
retrieved using the perl script provided at http://hollywood.mit.edu/burgelab/
maxent/Xmaxentscan_scoreseq.html. MES scores below 0 were standardised to 0 as
predicted non-functional splice sites (2) NNSplice (NNS)12 scores were retrieved
using the online portal (https://www.fruitfly.org/seq_tools/splice.html), set to
human, with default settings (i.e., a minimum score of 0.4, with any scores below
predicting a non-functional splice site) (3) SpliceAI (SAI)11 scores were retrieved
using a script adapted from the SAI GitHub repository (https://github.com/
Illumina/SpliceAI) which allows spliceAI to score custom sequences. We rounded
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the scores to three decimal places, and scores at 0 when rounded as such (i.-
e., < 0.01) were termed non-functional splice site predictions. (4) Donor Frequency
(DF) calculates the median frequency among four 9 nt windows of sequence
spanning the donor (see supplementary Fig. 1b, c) converted to a cumulative
percentile distribution scale. DF measures donor strength based on how many
annotated-donors in the human genome have the exact same sequence. An
example of a DF calculation is shown in supplementary Fig. 1c, where a median DF
raw value of 179 lies at the 31st percentile of a cumulative frequency distribution.
After assessing several window lengths (supplementary Fig. 1a) we used 9nt win-
dows as optimally encompassing the splice site.

Naturally occurring decoy-donors. Our set of naturally occurring human decoy-
donors were derived from the set of all canonical Ensembl transcripts (Release
75)27, with first and last introns and single exon transcripts removed. We filtered
the set so that junctions were within the open reading frame for the given gene, so
we knew that cryptic splicing here would affect the protein. We also removed exons
with alternative 5′ or 3′ ends already annotated in different transcripts. We used
these criteria to form a set of 142,014 canonical exon-intron junctions that are not
alternatively spliced (or at least not annotated as such). We extracted sequences
surrounding annotated-donors and extracted all decoy-donors just as for the
cryptic database (see methods section creating a database of cryptic-donor
variants).

Decoy-donor depletion. Decoy-donor depletion was calculated using a method we
adapted from a previous study17 that controls for dinucleotide frequencies (sup-
plementary Fig. 4). For exonic sequences, we took up to 150 nt or the maximum
length of the exon, whichever was shorter (and similarly for the intron, stopping
50nt from the acceptor). We limited analysis to 150nt of exonic sequence as the
majority of exons are shorter than this. We then shuffled exonic and intronic
sequences separately, maintaining dinucleotide frequencies (using shuf-
fle_sequences with euler method from the universal motif R package32). We per-
formed the shuffle 15 times and took the average count of decoy-donors at each
nucleotide position as our expected count at this position. The observed count of
decoy-donors was then divided by the expected count at each position.

Creating 40K-RNA. We had two sources of data for 40K-RNA- RNA-seq data
from Intropolis19 and GTEx18. Intropolis is a set of ~42M splice-junctions found
across 21,504 human RNA-seq samples from the Sequence Read Archive (SRA).
Samples were aligned using Nellore et al. annotation-agnostic aligner Rail-RNA33.
Intropolis was downloaded from its dedicated github repository (https://
github.com/nellore/intropolis). Per sample splice-junction files were obtained from
GTEx (phs000424.v8.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?study_id=phs000424.v8.p2]). Using Datamash34, splice-junction read
counts were summarised across all samples for each unique splice-junction and
translated from GRCh38 to GRCh37 using liftOver35.

For each set of splice-junctions (Intropolis and GTEx), we cross-referenced and
located junctions within ensembl transcripts. We filtered to cryptic-donor events
by scanning for any unannotated donors used between the 5′ end of the exon and
the 3′ end of the intron for that respective exon-intron junction, where the junction
also spliced to the next annotated acceptor. Events from the two sources were
merged, sample counts were tallied across the two datasets, and splice-junctions
present in at least 3 samples and representing cryptic-donor use within 250 nt of
any annotated-donor were retained.

Sashimi plots. For Fig. 5c, and S6b, c sashimi plots were generated using 3 GTEx
bam files for each example, each from the tissue with the highest TPM for the
respective gene. Sashimi plots were created using ggsashimi36.

SpliceAI in silico mutagenesis plots. For Fig. 5d and S6b, c we performed the in
silico mutagenesis method described by Jaganathan et al11. That is, the importance
score of each nucleotide was calculated as:

sactual �
sA þ sC þ sG þ sT

4
ð1Þ

where sactual is the score calculated on the genuine sequence, and sA, for example, is
the score calculated when an A is substituted at this position.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The variants used in the cryptic-donor database are provided in the Source Data file. 40K-
RNA is available as a web-resource at: https://kidsneuro.shinyapps.io/splicevault-40k/.
Additionally, the full dataset is available under restricted access to limit hosting costs. Access
can be obtained by creating a google cloud billing account and downloading at this link
using google cloud tools- https://storage.googleapis.com/misspl-db-data/
misspl_events_40k_hg19.sql.gz. The GTEx v8 data used in this study were obtained from

dbGaP accession number phs000424.v8.p2 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v8.p2]. Intropolis data used in this study were obtained
from the dedicated GitHub repository https://github.com/nellore/intropolis. Source data are
provided with this paper.

Code availability
All code required to replicate figures in the study are available in a GitHub repository:
https://github.com/kidsneuro-lab/cryptic_donor_prediction. Additionally, code required
to create 40K-RNA is available in a separate repository https://github.com/kidsneuro-lab/
40K-RNA.
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