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Prediction of acute kidney injury
in patients with femoral neck
fracture utilizing machine
learning
Jun Liu, Lingxiao Xu, Enzhao Zhu, Chunxia Han and Zisheng Ai*

Department of Medical Statistics, Tongji University School of Medicine, Shanghai, China

Background: Acute kidney injury (AKI) is a common complication associated
with significant morbidity and mortality in high-energy trauma patients.
Given the poor efficacy of interventions after AKI development, it is
important to predict AKI before its diagnosis. Therefore, this study aimed to
develop models using machine learning algorithms to predict the risk of AKI
in patients with femoral neck fractures.
Methods: We developed machine-learning models using the Medical
Information Mart from Intensive Care (MIMIC)-IV database. AKI was predicted
using 10 predictive models in three-time windows, 24, 48, and 72 h. Three
optimal models were selected according to the accuracy and area under the
receiver operating characteristic curve (AUROC), and the hyperparameters
were adjusted using a random search algorithm. The Shapley additive
explanation (SHAP) analysis was used to determine the impact and
importance of each feature on the prediction. Compact models were
developed using important features chosen based on their SHAP values and
clinical availability. Finally, we evaluated the models using metrics such as
accuracy, precision, AUROC, recall, F1 scores, and kappa values on the test
set after hyperparameter tuning.
Results: A total of 1,596 patients in MIMIC-IV were included in the final cohort,
and 402 (25%) patients developed AKI after surgery. The light gradient boosting
machine (LightGBM) model showed the best overall performance for
predicting AKI before 24, 48, and 72 h. AUROCs were 0.929, 0.862, and
0.904. The SHAP value was used to interpret the prediction models. Renal
function markers and perioperative blood transfusions are the most critical
features for predicting AKI. In compact models, LightGBM still performs the
best. AUROCs were 0.930, 0.859, and 0.901.
Conclusions: In our analysis, we discovered that LightGBM had the best
metrics among all algorithms used. Our study identified the LightGBM as a
solid first-choice algorithm for early AKI prediction in patients after femoral
neck fracture surgery.
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Introduction

Hip fracture, a major public health problem in the aging

population (1) causing a tremendous clinical and economic

burden on healthcare services (2, 3). Acute kidney injury

(AKI), also known as acute renal failure, is a common

postoperative complication in patients undergoing hip surgery.

It is related to increased risk of morbidity and mortality, as

well as a longer hospital stay, and higher medical costs (4, 5).

The previously reported incidence of AKI after hip fracture

surgery ranges from 8% to 24%, owing to postoperative care

conditions and the definition of AKI (6–8). Patients with AKI

have a higher risk of postoperative complications, such as

infection, transfusion, and death (9). One study on the

national incidence and outcomes of AKI in patients

undergoing total hip arthroplasties (THA) showed that

patients with AKI have a 7.52-fold increased risk of death.

Even a minor increase in creatinine levels after THA is

associated with a greater increase in healthcare utilization (10).

As there are no effective treatments for AKI, early

identification and management are critical. Identifying

patients at high risk of AKI prior to diagnosis appears to have

better outcomes than treating only diagnosed AKI (11).

However, early identification of AKI remains challenging, as

AKI is defined by increased creatinine or decreased urine output,

both of which are late, nonspecific indicators of the underlying

disease (12). Although partial models have been developed to

identify patients at high risk of AKI (13–16), these models rely

heavily on intensive care unit (ICU) data, which is unlikely to

be available at the time of admission (17). Typically, model

performance improves during ICU admission; however, many

patients with hip fractures are not admitted to the ICU. In

addition, most risk models are built using logistic regression,

which requires statistical assumptions regarding the linear

relationship between variables and outcomes. Excluding

features based on the aforementioned criteria can result in a

significant loss of information and omission of unanticipated

associations that could be used to increase predictive power.

Machine learning is now widely used in medicine to develop

predictive models for a large number of features and complex

nonlinear relationships. Because many postoperative patients

with AKI are not admitted to the ICU, this study aimed to

develop predictive tools to predict the risk of AKI in patients

with femoral neck fractures based solely on hospitalization data.
Materials and methods

Source of data

We enrolled a cohort of patients with femoral neck fractures

from the Medical Information Mart from Intensive Care
Frontiers in Surgery 02
(MIMIC)-IV version 1.0. MIMIC-IV (18), built upon the success

of MIMIC-III, is a real-world and publicly available clinical

database maintained by the Beth Israel Deaconess Medical

Center from 2008 to 2019 (19). The web-based course offered

by the National Institutes of Health was completed, and

certification (researcher certificate number: 9848944) was obtained.
Selection of participants

Patients diagnosed with femoral neck fractures were included

according to the International Classification of Diseases (ICD)

version 9. The inclusion criteria were age ≥18 years,

experiencing a hip fracture for the first time, and undergoing

hip fracture surgery. Patients without sufficient serum creatinine

data to determine the occurrence of AKI were excluded. To

rule out patients with severe kidney problems, patients whose

initial serum creatinine ≥4.0 mg/dl were excluded based on

risk, injury, failure, loss, end-stage kidney disease (RIFLE) and

acute kidney injury network (AKIN) criteria (20, 21). The flow

chart of patient selection is shown in Figure 1.
Outcome (AKI)

According to the Kidney Disease: Improving Global Outcomes

(KDIGO) criteria (22), AKI following femoral neck fracture

surgery was defined during the first 7 days after the operation.

Urine output criteria for AKI were not included because of the

scarcity of urine output data from general hospital wards in the

MIMIC database. Postoperative AKI was defined as either an

increase in serum creatinine ≥0.3 mg/dl within 48 h or a greater

than 1.5-fold increase at baseline. The lowest measured

creatinine level during the previous 7 days was defined as the

baseline creatinine value. Our primary outcome was AKI within

24 h, and secondary outcomes were AKI within 48 and 72 h.
Predictors of AKI

Demographic characteristics, physiological indicators,

comorbidities, and relevant interventions are usually

considered predictor variables. Based on the KDIGO criteria

and literature (23, 24), the following variables were collected

from the general ward: patient demographics [age, sex,

ethnicity, and marital status] and laboratory index [anion gap

(mmol/L), bicarbonate (mEq/L), blood urea nitrogen (mEq/L),

calcium (mg/dl), chloride (mEq/L), creatinine (mg/dl), glucose

(mg/dl), hemoglobin (g/dl), mean corpuscular volume (fL),

platelet count (109/L), red blood cell count (1012/L), red blood

cell distribution width (%), white blood cell count (109/L),

potassium (mEq/L), and sodium (mEq/L)]. In addition,

comorbidities based on the recorded ICD versions 9 and 10
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FIGURE 1

Flow chart of patient selection.
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were collected, including chronic kidney disease, myocardial

infarction, congestive heart failure, liver disease, chronic

obstructive pulmonary disease, hypertension, diabetes mellitus,

dementia, and cancer. Lastly, medications known to affect

renal function include diuretics, nephrotoxic antibiotics, non-

steroidal anti-inflammatory drugs (NSAIDs), angiotensin-

converting enzyme inhibitors (ACEI), red blood cell

transfusion (RBCT), and mechanical ventilation (MV). We

also calculated the maximum, minimum, and mean values of

each physiological characteristic prior to the development of

AKI, which were treated as separate variables in the final dataset.
Data collection windows

This study considered three-time windows, 24, 48, and 72 h,

for AKI prediction. As shown in Figure 2, the data collection

window for patients with AKI was between the day of

admission and 24, 48, or 72 h before AKI diagnosis. The data

collection window for patients with non-AKI was between the

date of admission and 24, 48, or 72 h before discharge or death.
Statistical analysis

We used data extraction from the MIMIC-IV using

BigQuery. The baseline characteristics of the AKI and non-
Frontiers in Surgery 03
AKI groups were compared. Continuous variables were

reported as the mean and standard deviation (if normal) or as

the median and interquartile range (if non-normal).

Categorical variables were presented as numbers and

percentages (%). For comparisons of continuous variables, the

t-test or Mann-Whitney U test was used, and for the

comparison of categorical variables, the chi-square test or

Fisher’s exact test was used, as appropriate.

The imputation method was not used because the advanced

boosting machine learning method can handle missing values

automatically; in contrast, when training other models, the

missing values of continuous variables were imputed using

median values, and categorical variables were imputed using

mode values. First, the prediction performance of the 10

machine learning algorithms was compared using 10-fold

cross-validation using the PyCaret Python package (version

2.3.6). Next, we calculated the area under the receiver

operating characteristic curve (AUROC) and the accuracy for

each fold to evaluate the performance of the various models.

We then selected the top three performing models and used

the random search algorithm to tune the hyperparameters of

the models. Compared with grid search, random search is

faster and more suitable for larger hyperparametric search

space, which using the Scikit-Learn Python package (version

0.23.2). In this study, the best performing optimization model
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FIGURE 2

Data collection windows.
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was the final AKI prediction model, defined as the full model.

The Shapley additive explanation (SHAP) analysis was used to

evaluate the positive or negative effects of the relevant

features, which using a game theoretic approach to estimate

the importance of each feature in the validation set (25).

Based on the SHAP values, we selected important features

and retrained a more compact model, which may be more

useful in clinical circumstances.

Statistical Package for the Social Sciences (SPSS) (version

26.0) was used for comparison of baseline characteristics, and

P < 0.05 was considered statistically significant. The models

were developed using Python (version 3.8.5).
Results

Baseline characteristics

As shown in Supplementary Table S1, for all 2,229 patients

with femoral neck fracture in the MIMIC-IV, 1,596 were

enrolled in the final cohort. During their hospital stay, 402

patients developed AKI, while 1,194 did not. Patients with

AKI were more likely to be older (median age, 83.00 years vs.

80.00 years; P = 0.001), have longer ICU stay time (2.26 days

vs. 1.82 days; P = 0.013), have a high laboratory value, and

have more comorbidities. In addition, patients who develop
Frontiers in Surgery 04
AKI are more likely to require medical intervention and

treatment, such as blood transfusion and mechanical

ventilation.
Comparison of 10 models

The data collected in each time window were separated into

training (70%) and validation sets (30%). Then, the training set

from each time window was used to construct models using 10

machine-learning algorithms and to make preliminary

comparisons. The predictive performance of each model is

presented in Table 1. As shown, for the 24 h prediction, the

performance of the logistic regression was acceptable

(accuracy: 0.864; AUROC: 0.870). The ensemble algorithms

outperformed others in terms of accuracy and AUROC, such

as light gradient boosting (LightGBM) (accuracy: 0.904;

AUROC: 0.924), extreme gradient boosting (XGBoost)

(accuracy: 0.891; AUROC: 0.920), and gradient boosting

decision tree (GBDT) (accuracy: 0.887; AUROC: 0.913). As

the prediction time window increases, the performance of

each model decreases. According to the 48 h prediction

models, the risk of AKI could be predicted with an accuracy

of 0.815 to 0.887 and an AUROC of 0.681 to 0.858.

According to the 72 h prediction models, the risk of AKI

could be predicted with an accuracy of 0.831 to 0.931 and an
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AUROC of 0.717 to 0.885. The 48 and 72 h prediction models

increase the accuracy, but this comes at the cost of lowering the

AUROC value. For each time window, we selected the three best

models and optimized them in the following stage.

For 24 and 48 h predictions, the hyperparameters of the

LightGBM, XGBoost, and GBDT models were adjusted. For

72 h prediction, random forest, GBDT, and LightGBM models

were selected and optimized in the next step. Table 2 lists the

performance of the models in the validation set after tuning

each time window. The LightGBM model had the most

powerful discrimination for AKI prediction in all time

windows. The ROC curves of each model after parameter

adjustment are shown in Figure 3. In addition, the ROC
TABLE 1 Internal validation performance of various models.

Models 24 h 48 h 72 h

Accuracy AUC Accuracy AUC Accuracy AUC

LightGBM 0.904 0.924 0.886 0.857 0.927 0.819

XGBoost 0.891 0.920 0.887 0.855 0.923 0.828

GBDT 0.887 0.913 0.882 0.857 0.931 0.837

Ada boost
Classifier

0.876 0.894 0.861 0.810 0.906 0.788

Random
Forest

0.872 0.907 0.876 0.858 0.926 0.857

LDA 0.858 0.862 0.873 0.836 0.912 0.866

Logistic
Regression

0.864 0.870 0.870 0.831 0.897 0.833

Extra
Trees
Classifier

0.863 0.900 0.877 0.855 0.922 0.885

Naive
Bayes

0.822 0.824 0.833 0.781 0.831 0.816

Decision
Tree

0.788 0.718 0.815 0.681 0.894 0.717

LightGBM, light gradient boosting machine; XGBoost, extreme gradient

boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant

analysis; AUC, area under receiver operating characteristic curve.

The bold values represent the model that perform best in each time window.

TABLE 2 Performance of full models in the validation set.

Full model Accuracy A

24 h Light Gradient Boosting Machine 0.898 0
Extreme Gradient Boosting 0.875 0
Gradient Boosting Decision Tree 0.894 0
Logistic Regression 0.858 0

48 h Light Gradient Boosting Machine 0.875 0
Extreme Gradient Boosting 0.857 0
Gradient Boosting Decision Tree 0.854 0
Logistic Regression 0.843 0

72 h Light Gradient Boosting Machine 0.945 0
Random Forest Classifier 0.942 0
Gradient Boosting Decision Tree 0.942 0
Logistic Regression 0.921 0

Frontiers in Surgery 05
curve of the logistic regression was added to facilitate

comparison.
Compact models

Supplementary Figure S1 plots the bar chart of the SHAP

values for each model, which sorts features by the mean of the

SHAP value. The figure shows that the top 20 features of

different prediction models at 24, 48, and 72 h affected the

output of the models strongly. Thus, we summarized the

important features given by the 9 models, deleted the repeated

features, and constructed the important feature data set (58

features). Next, the compact models were built based on these

selected features. Figures 3B,D,F shows the ROC curves for

each compact model. Finally, Table 3 shows the performance

of the compact models in the validation set. The performance

of the compact models was similar to those of the full model

but considered to be more practical in clinical practice.
Model interpretation

Figure 4 shows a SHAP summary plot of the LightGBM on

the full model output to reveal the distribution of the effects of

each feature. Every row in the figure indicates a feature; the

horizontal coordinate represents the SHAP value, and a point

represents a sample. The redder the color, the greater the

value of the feature itself. The minimum BUN value before

AKI was important for model prediction. The higher the

minimum BUN level, the more likely the patient would

develop AKI after surgery. Postoperative blood transfusions

also showed the importance of model prediction. In most

patients without postoperative transfusion, the SHAP values

are concentrated around 0; however, in patients with blood

transfusion, the SHAP values are much higher than 0,

showing a positive influence. Other laboratory values related

to renal function and metabolism, such as RBC, RDW,
UC Recall Prec. F1 Kappa

.929 0.680 0.904 0.776 0.712

.903 0.696 0.798 0.744 0.661

.912 0.688 0.878 0.771 0.703

.874 0.656 0.766 0.707 0.614

.862 0.478 0.843 0.610 0.542

.849 0.444 0.755 0.559 0.481

.841 0.422 0.760 0.543 0.464

.822 0.467 0.667 0.549 0.457

.904 0.448 0.867 0.591 0.565

.900 0.345 1.000 0.513 0.490

.904 0.448 0.813 0.578 0.549

.761 0.345 0.588 0.435 0.395
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FIGURE 3

ROC curves of four prediction models using all features (A,C,E) and important features (B,D,F).
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TABLE 3 Performance of compact models in the validation set.

Compact model Accuracy AUC Recall Prec. F1 Kappa

24 h Light Gradient Boosting Machine 0.896 0.930 0.672 0.903 0.771 0.705
Extreme Gradient Boosting 0.875 0.909 0.664 0.822 0.735 0.654
Gradient Boosting Decision Tree 0.889 0.909 0.704 0.846 0.769 0.697
Logistic Regression 0.858 0.885 0.640 0.777 0.702 0.610

48 h Light Gradient Boosting Machine 0.870 0.859 0.433 0.867 0.578 0.511
Extreme Gradient Boosting 0.859 0.853 0.611 0.671 0.640 0.552
Gradient Boosting Decision Tree 0.868 0.853 0.511 0.767 0.613 0.538
Logistic Regression 0.872 0.856 0.511 0.793 0.622 0.549

72 h Light Gradient Boosting Machine 0.948 0.901 0.414 1.000 0.585 0.563
Random Forest Classifier 0.945 0.897 0.448 0.867 0.591 0.565
Gradient Boosting Decision Tree 0.933 0.899 0.517 0.652 0.577 0.541
Logistic Regression 0.930 0.743 0.414 0.667 0.511 0.475

FIGURE 4

Distribution of the impact that each feature has on the full 24 h
prediction model output estimated using the SHapley Additive
exPlanations (SHAP) values. The plot sorts features by the sum of
SHAP value magnitudes over all samples. The color represents the
feature value (red high, blue low). The x axis measures the impact
on the model output (right positive, left negative). BUN, blood
urea nitrogen; ICU, intensive care unit; RBC, red blood cell; RDW,
red blood cell distribution width; SCr, serum creatinine, WBC,
white blood cell count; AG, anion gap.
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hemoglobin, WBC, glucose, and sodium, displayed strong

clinical predictive power.

Figure 5 shows the predicted results for two concrete

examples. The risk and protective factors are shown as red

and blue bars, respectively. The longer bars indicate important

features. Figure 5A shows an example of a high-risk patient.

Although the patient was not admitted to the ICU, she had

high levels of BUN, WBC, and potassium values and had a

long waiting time before surgery. The model correctly
Frontiers in Surgery 07
predicted that a patient would develop AKI. In Figure 5B, the

patient did not receive a blood transfusion and was not

admitted to the ICU. The patient’s condition was mild, our

model predicted that he would be less likely to develop AKI.
Discussion

AKI has been reported to occur in 15%–40% of high-energy

trauma patients (25–28). A few published studies have found

that AKI occurs in 15%–24% of patients with hip fractures (4,

7, 29). In this study, the prevalence of AKI was similar to that

reported in previous studies (25%). We also found that

patients with postoperative AKI had higher in-hospital

mortality (7.5% vs. 0.7%; P < 0.001) and longer hospital stay

(162 days vs. 115 days; P < 0.001) than those without AKI. As

there is no effective treatment available for AKI, early

recognition and management are critical. Although several

models have been developed for the early AKI prediction,

they are mostly used for emergency patients. Currently, there

is no accurate AKI predictive tool for patients undergoing

orthopedic surgery.

In this study, various machine learning models for early

AKI prediction were developed, which were used to predict

AKI in three-time windows: 24, 48, and 72 h prior to AKI

detection. Accuracy, AUROC, recall, precision, F1 score, and

kappa value were used to evaluate each model’s performance.

The results showed that logistic regression had the worst

performance, whereas the XGBoost and GBDT algorithms

displayed satisfactory performance. In general, the LightGBM

showed the best results. In addition, LightGBM was found to

perform best in AKI prediction among the models

constructed from important features. Even 3 days before the

onset of AKI, the compact model constructed with LightGBM

could accurately predict AKI development (accuracy: 0.948;

AUROC: 0.901). The proposed models provide early AKI

prediction from 1 to 3 days, allowing for prompt intervention
frontiersin.org
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FIGURE 5

Explanation of the prediction results for specific instances. The base value (−3.865) is the average value of the predictive model; the output values are
the predicted AKI risks. The bars in red and blue represent risk factors and protective factors, respectively; longer bars mean greater feature
importance. Here, these values are the model outputs before the SoftMax layer, and therefore, they are not equal to the final predicted
probabilities. This figure shows the explanation for a high-risk instance (A) and a low-risk instance (B). BUN, blood urea nitrogen; RBC, red blood
cell count; WBC, white blood cell count; RDW, red cell distribution width; CCI, charlson comorbidity index; ICU, intensive care unit.
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in patients at high risk of AKI, thereby improving patient

outcomes.

In our study, we discovered that gradient boosting models

outperformed other algorithms in predicting AKI. In brief,

Gradient boosting, a powerful machine learning technique,

aims to increase the emphasis on observations that are poorly

modeled by a set of existing base learners by repeatedly

training them (30). LightGBM is an efficient and scalable

implementation of tree-based gradient-boosting approaches

for machine learning. A histogram-based algorithm is used in

the LightGBM to reduce memory utilization and speed up

training. In addition, it uses a leaf wise split strategy, rather

than a level wise split strategy to build significantly more

complicated trees, which is the major element in obtaining

greater accuracy. However, this can lead to overfitting, which

can be prevented by increasing the maximum depth option. It

is distributed and effective, with the following benefits: faster

running speed, lower memory usage, higher efficiency,

improved accuracy, large-scale data processing capabilities,

and support for parallel and GPU learning, as well as direct

input categorical features (without one-hot coding) (31).

In general, the more valuable the variables, the better the

model will discriminate, but the clinical usability will be

worse. Therefore, in this study, two models were developed.

The full models were developed based on 86 clinical variables,

and the highest AUROC was obtained. However, gathering 86

clinical features and applying them to the full models is

difficult. Therefore, using the complete model in hospitals

with modern electronic health record systems is

recommended. Therefore, compact models based on

important features were developed to be suitable for most

clinical situations, which have similar performance to the full

model but are easier to apply in clinical practice.

The SHAP values were also used for the interpretability of

the models. As shown in Figure 4, positive effects were seen

for most of the top features, which implies that the higher the
Frontiers in Surgery 08
feature value, the greater the likelihood of developing AKI. In

this study, renal function indicators (BUN) were the most

important predictors of AKI, followed by perioperative blood

transfusion. The SHAP value was very high in patients who

received blood transfusions, indicating a higher risk of AKI.

In addition, the length of ICU stay, preoperative waiting time,

and laboratory test results (such as RBC count and RDW)

can help predict imminent AKI. Furthermore, as shown in

Figure 5, the prediction results are also presented at the

individual level, which enables our model to visually analyze

individual risk factors.

Our study had several limitations. First, AKI was

determined based only on serum creatinine levels according to

the KDIGO criteria. Urinary output, an indication of AKI,

was not included because general ward hospitalization did not

contain urine volume data. Previous studies have reported

that the absence of urine output data prevents a more precise

AKI definition (32, 33), while urinary output may be a more

sensitive marker than serum creatinine for early AKI

detection (34). Second, we only analyzed data from a single

center with a relatively small number of participants. There

were not enough cases (32 patients developed stage II AKI or

higher after surgery) to develop robust models for different

stages of AKI. In terms of model evaluation, although we

adopted a 10-fold cross-validation for model evaluation, it is

imperative to validate the models externally to prevent

overfitting for large datasets with various patient

characteristics and standards of care. Third, the majority of

features were extracted manually from the MIMIC-IV

database, we are constructing an automated electronic health

record system that can gather patient data from various

sources in real-time. Using these techniques, the prediction

models based on machine learning algorithms could be useful

in clinical practice. Finally, since the models are trained based

on the input features, which not take into account ICU-

generated or overlooked features, some hidden relationships
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may be missed. Future prospective studies are required to

construct models for different stages of AKI and evaluate the

use of predictive models in clinical settings.
Conclusions

In conclusion, based on machine-learning algorithms, we

successfully developed a predictive tool for postoperative AKI

prediction in patients with femoral neck fractures within 72 h.

The proposed models used demographics, physiological

indicators, comorbidities, medications, and relevant

interventions to detect AKI earlier than serum creatinine

levels alone. We also performed the SHAP analysis to assess

the positive and negative effects of important features on AKI

prediction, which improved model’s predictability. The

development of software to optimize the treatment for

patients with femoral neck fractures is ongoing, with the goal

of reducing the risk of AKI following surgery.
Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: The datasets are available in the

physionet (https://physionet.org/content/ mimiciv/0.4/).
Ethics statement

The studies involving human participants were reviewed

and approved by the Massachusetts Institute of Technology

(Cambridge, MA) and Beth Israel Deaconess Medical Center

(Boston, MA). Written informed consent for participation was

not required for this study in accordance with the national

legislation and the institutional requirements.
Frontiers in Surgery 09
Author contributions

JL and ZA designed the study. LX and EZ extracted and

consolidated the data. JL and LX performed the data analysis.

LX, CH, and JL prepared the tables and figures. JL and ZA

drafted and revised the manuscript. All authors contributed to

the article and approved the submitted version.
Funding

This study was supported by grant from the National

Natural Science Foundation of China (No. 81872718)
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fsurg.

2022.928750/full#supplementary-material.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the editors

and the reviewers. Any product that may be evaluated in this

article, or claim that may be made by its manufacturer, is not

guaranteed or endorsed by the publisher.
References
1. Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C, et al.
A systematic review of hip fracture incidence and probability of fracture
worldwide. Osteoporos Int. (2012) 23(9):2239–56. doi: 10.1007/s00198-012-
1964-3

2. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality
following hip fracture: a systematic epidemiological review. Osteoporos Int.
(2009) 20(10):1633–50. doi: 10.1007/s00198-009-0920-3

3. Bass E, French DD, Bradham DD, Rubenstein LZ. Risk-adjusted mortality
rates of elderly veterans with hip fractures. Ann Epidemiol. (2007) 17(7):514–9.
doi: 10.1016/j.annepidem.2006.12.004

4. Bennet SJ, Berry OM, Goddard J, Keating JF. Acute renal dysfunction
following hip fracture. Injury. (2010) 41(4):335–8. doi: 10.1016/j.injury.2009.07.009

5. Hobson C, Ozrazgat-Baslanti T, Kuxhausen A, Thottakkara P, Efron PA,
Moore FA, et al. Cost and mortality associated with postoperative acute kidney
injury. Ann Surg. (2015) 261(6):1207–14. doi: 10.1097/SLA.0000000000000732
6. Thongprayoon C, Kaewput W, Thamcharoen N, Bathini T, Watthanasuntorn
K, Salim SA, et al. Acute kidney injury in patients undergoing total hip
arthroplasty: a systematic review and meta-analysis. J Clin Med. (2019) 8
(1):66–79. doi: 10.3390/jcm8010066

7. Ulucay C, Eren Z, Kaspar EC, Ozler T, Yuksel K, Kantarci G, et al. Risk factors
for acute kidney injury after hip fracture surgery in the elderly individuals. Geriatr
Orthop Surg Rehabil. (2012) 3(4):150–6. doi: 10.1177/2151458512473827

8. Kateros K, Doulgerakis C, Galanakos SP, Sakellariou VI, Papadakis SA,
Macheras GA. Analysis of kidney dysfunction in orthopaedic patients. BMC
Nephrol. (2012) 13(101):1–6. doi: 10.1186/1471-2369-13-101

9. Rantalaiho I, Gunn J, Kukkonen J, Kaipia A. Acute kidney injury following
hip fracture. Injury. (2019) 50(12):2268–71. doi: 10.1016/j.injury.2019.10.008

10. Singh JA, Cleveland JD. Acute kidney injury after primary total hip
arthroplasty: a risk multiplier for complication, mortality, and healthcare
utilization. Arthritis Res Ther. (2020) 22(1):31. doi: 10.1186/s13075-020-2116-3
frontiersin.org

https://physionet.org/content/ mimiciv/0.4/
https://physionet.org/content/ mimiciv/0.4/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.928750/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsurg.2022.928750/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsurg.2022.928750/full#supplementary-material
https://doi.org/10.1007/s00198-012-1964-3
https://doi.org/10.1007/s00198-012-1964-3
https://doi.org/10.1007/s00198-009-0920-3
https://doi.org/10.1016/j.annepidem.2006.12.004
https://doi.org/10.1016/j.injury.2009.07.009
https://doi.org/10.1097/SLA.0000000000000732
https://doi.org/10.3390/jcm8010066
https://doi.org/10.1177/2151458512473827
https://doi.org/10.1186/1471-2369-13-101
https://doi.org/10.1016/j.injury.2019.10.008
https://doi.org/10.1186/s13075-020-2116-�3
https://doi.org/10.3389/fsurg.2022.928750
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Liu et al. 10.3389/fsurg.2022.928750
11. Khwaja A. Kdigo clinical practice guidelines for acute kidney injury.
Nephron Clin Pract. (2012) 120(4):c179–84. doi: 10.1159/000339789

12. Flechet M, Guiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, et al.
Akipredictor, an online prognostic calculator for acute kidney injury in adult
critically ill patients: development, validation and comparison to Serum
neutrophil gelatinase-associated lipocalin. Intensive Care Med. (2017) 43
(6):764–73. doi: 10.1007/s00134-017-4678-3

13. Koyner JL, Adhikari R, Edelson DP, Churpek MM. Development of a
multicenter ward-based aki prediction model. Clin J Am Soc Nephrol. (2016) 11
(11):1935–43. doi: 10.2215/CJN.00280116

14. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a
machine learning inpatient acute kidney injury prediction model. Crit Care
Med. (2018) 46(7):1070–7. doi: 10.1097/CCM.0000000000003123

15. Qian Q, Wu J, Wang J, Sun H, Yang L. Prediction models for aki in icu: a
comparative study. Int J Gen Med. (2021) 14:623–32. doi: 10.2147/IJGM.S289671

16. Le S, Allen A, Calvert J, Palevsky PM, Braden G, Patel S, et al. Convolutional
neural network model for intensive care unit acute kidney injury prediction.
Kidney Int Rep. (2021) 6(5):1289–98. doi: 10.1016/j.ekir.2021.02.031

17. Shawwa K, Ghosh E, Lanius S, Schwager E, Eshelman L, Kashani KB.
Predicting acute kidney injury in critically ill patients using comorbid
conditions utilizing machine learning. Clin Kidney J. (2021) 14(5):1428–35.
doi: 10.1093/ckj/sfaa145

18. Mimic-Iv (Version 1.0). Physionet. doi: 10.13026/S6n6-Xd98. [Internet]. (2021).

19. Tao L, Zhou S, Chang P, An S. Effects of ondansetron use on outcomes of
acute kidney injury in critically ill patients: an analysis based on the mimic-Iv
database. J Crit Care. (2021) 66:117–22. doi: 10.1016/j.jcrc.2021.07.015

20. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis
Quality Initiative w. Acute renal failure - definition, outcome measures, animal
models, fluid therapy and information technology needs: the second
international consensus conference of the Acute Dialysis Quality Initiative
(Adqi) Group. Crit Care. (2004) 8(4):R204–12. doi: 10.1186/cc2872

21. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more
accurate method to estimate glomerular filtration rate from serum creatinine:
a new prediction equation. Modification of Diet in Renal Disease Study
Group. Ann Intern Med. (1999) 130(6):461–70. doi: 10.7326/0003-4819-130-6-
199903160-00002

22. Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes
Chronic Kidney Disease Guideline Development Work Group M. Evaluation
and management of chronic kidney disease: synopsis of the kidney
disease: improving global outcomes 2012 clinical practice guideline. Ann
Intern Med. (2013) 158(11):825–30. doi: 10.7326/0003-4819-158-11-
201306040-00007
Frontiers in Surgery 10
23. Zimmerman LP, Reyfman PA, Smith ADR, Zeng ZX, Kho A, Sanchez-Pinto
LN, et al. Early prediction of acute kidney injury following icu admission using a
multivariate panel of physiological measurements. Bmc Med Inform Decis. (2019)
19:1–12. doi: ARTN 1610.1186/s12911-019-0733-z

24. Gao W, Wang J, Zhou L, Luo Q, Lao Y, Lyu H, et al. Prediction of acute
kidney injury in icu with gradient boosting decision tree algorithms. Comput
Biol Med. (2021) 140:105097. doi: 10.1016/j.compbiomed.2021.105097

25. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From
local explanations to global understanding with explainable ai for trees. Nat Mach
Intell. (2020) 2(1):56–67. doi: 10.1038/s42256-019-0138-9

26. Skinner DL, Hardcastle TC, Rodseth RN, Muckart DJ. The incidence and
outcomes of acute kidney injury amongst patients admitted to a level I trauma
unit. Injury. (2014) 45(1):259–64. doi: 10.1016/j.injury.2013.07.013

27. Eriksson M, Brattstrom O, Martensson J, Larsson E, Oldner A. Acute kidney
injury following severe trauma: risk factors and long-term outcome. J Trauma
Acute Care Surg. (2015) 79(3):407–12. doi: 10.1097/TA.0000000000000727

28. Bihorac A, Delano MJ, Schold JD, Lopez MC, Nathens AB, Maier RV, et al.
Incidence, clinical predictors, genomics, and outcome of acute kidney injury
among trauma patients. Ann Surg. (2010) 252(1):158–65. doi: 10.1097/SLA.
0b013e3181deb6bc

29. Azevedo VLF, Silveira MAS, Santos JN, Braz JRC, Braz LG, Modolo NSP.
Postoperative renal function evaluation, through rifle criteria, of elderly patients
who underwent femur fracture surgery under spinal anesthesia. Renal Fail.
(2008) 30(5):485–90. doi: 10.1080/08860220802060398

30. Zhang Z, Zhao Y, Canes A, Steinberg D. Lyashevska O, written on behalf of
AMEB-DCTCG. Predictive analytics with gradient boosting in clinical medicine.
Ann Transl Med. (2019) 7(7):152. doi: 10.21037/atm.2019.03.29

31. Dev VA, Eden MR. Formation lithology classification using scalable gradient
boosted decision trees. Comput Chem Eng. (2019) 128:392–404. doi: 10.1016/j.
compchemeng.2019.06.001

32. Koeze J, Keus F, Dieperink W, van der Horst ICC, Zijlstra JG, van Meurs M.
Incidence, timing and outcome of aki in critically ill patients varies with the
definition used and the addition of urine output criteria. BMC Nephrol. (2017)
18(1):1–9. doi: 10.1186/s12882-017-0487-8

33. Vanmassenhove J, Steen J, Vansteelandt S, Morzywolek P, Hoste E,
Decruyenaere J, et al. The importance of the urinary output criterion for the
detection and prognostic meaning of aki. Sci Rep-Uk. (2021) 11(1):1–9. doi: 10.
1038/s41598-021-90646-0

34. Allen JC, Gardner DS, Skinner H, Harvey D, Sharman A, Devonald MAJ.
Definition of hourly urine output influences reported incidence and staging of
acute kidney injury. BMC Nephrol. (2020) 21(1):1–8. doi: 10.1186/s12882-019-
1678-2
frontiersin.org

https://doi.org/10.1159/000339789
https://doi.org/10.1007/s00134-017-4678-3
https://doi.org/10.2215/CJN.00280116
https://doi.org/10.1097/CCM.0000000000003123
https://doi.org/10.2147/IJGM.S289671
https://doi.org/10.1016/j.ekir.2021.02.031
https://doi.org/10.1093/ckj/sfaa145
https://doi.org/10.13026/S6n6-Xd98
https://doi.org/10.1016/j.jcrc.2021.07.015
https://doi.org/10.1186/cc2872
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.7326/0003-4819-130-6-199903160-00002
https://doi.org/10.7326/0003-4819-158-11-201306040-00007
https://doi.org/10.7326/0003-4819-158-11-201306040-00007
https://doi.org/ARTN 1610.1186/s12911-019-0733-z
https://doi.org/10.1016/j.compbiomed.2021.105097
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1016/j.injury.2013.07.013
https://doi.org/10.1097/TA.0000000000000727
https://doi.org/10.1097/SLA.0b013e3181deb6bc
https://doi.org/10.1097/SLA.0b013e3181deb6bc
https://doi.org/10.1080/08860220802060398
https://doi.org/10.21037/atm.2019.03.29
https://doi.org/10.1016/j.compchemeng.2019.06.001
https://doi.org/10.1016/j.compchemeng.2019.06.001
https://doi.org/10.1186/s12882-017-0487-8
https://doi.org/10.1038/s41598-021-90646-0
https://doi.org/10.1038/s41598-021-90646-0
https://doi.org/10.1186/s12882-019-1678-2
https://doi.org/10.1186/s12882-019-1678-2
https://doi.org/10.3389/fsurg.2022.928750
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/

	Prediction of acute kidney injury in patients with femoral neck fracture utilizing machine learning
	Introduction
	Materials and methods
	Source of data
	Selection of participants
	Outcome (AKI)
	Predictors of AKI
	Data collection windows
	Statistical analysis

	Results
	Baseline characteristics
	Comparison of 10 models
	Compact models
	Model interpretation

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	Conflict of interest
	Publisher's note
	References


