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From Merkel Cell Polyomavirus
Infection to Merkel Cell Carcinoma
Oncogenesis

Nathan A. Krump † and Jianxin You*

Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States

Merkel cell polyomavirus (MCPyV) infection causes near-ubiquitous, asymptomatic

infection in the skin, but occasionally leads to an aggressive skin cancer called Merkel

cell carcinoma (MCC). Epidemiological evidence suggests that poorly controlled MCPyV

infection may be a precursor to MCPyV-associated MCC. Clearer understanding of host

responses that normally control MCPyV infection could inform prophylactic measures in

at-risk groups. Similarly, the presence of MCPyV in most MCCs could imbue them with

vulnerabilities that-if better characterized-could yield targeted intervention solutions for

metastatic MCC cases. In this review, we discuss recent developments in elucidating

the interplay between host cells and MCPyV within the context of viral infection and

MCC oncogenesis. We also propose a model in which insufficient restriction of MCPyV

infection in aging and chronically UV-damaged skin causes unbridled viral replication that

licenses MCC tumorigenesis.

Keywords: Merkel cell polyomavirus, Merkel cell carcinoma, persistence, innate immune response, integration,

dysbiosis, oncogenesis

INTRODUCTION

Merkel cell polyomavirus (MCPyV) infection can be detected on the skin of most healthy adults
(Tolstov et al., 2009; Schowalter et al., 2010), yet details of its virology and infectious cycle remain
sparse. Evidence from serological studies suggests that MCPyV infects most people during early
childhood with exposure to the virus increasing as populations age (Chen et al., 2011; Viscidi
et al., 2011; Martel-Jantin et al., 2013). A vast majority of MCPyV infections are asymptomatic
(Tolstov et al., 2011), but some result in an aggressive neuroendocrine skin cancer called Merkel
cell carcinoma (MCC) (Feng et al., 2008; Gjoerup and Chang, 2010; Harms, 2017; Schadendorf
et al., 2017). The etiology of over 80% of MCC tumors can be traced to MCPyV by the presence of
integrated MCPyV genomic sequence in the cellular DNA (Feng et al., 2008; Santos-Juanes et al.,
2015).

Though MCC cases are rare, the incidence of MCC has tripled over the last two decades and is
projected to increase further in the future (Fitzgerald et al., 2015; Paulson et al., 2018a; Stang et al.,
2018; Freeman et al., 2019; Jacobs et al., 2020). MCC has a high rate of mortality with 5-year overall
survival around 51% for patients presenting with local disease at the time of diagnosis, and worse
prognoses for those with more advanced stages of disease (Harms K. L. et al., 2016). Primary MCC
malignancies are combatted by surgical resection, sentinel lymph node biopsy, and/or adjuvant
radiation (Cassler et al., 2016). In metastatic MCC, chemotherapies have thus far failed to produce
durable responses (Iyer et al., 2016; Cowey et al., 2017). Promisingly, a recent bourgeoning of anti-
PD1 and anti-PDL1 treatments forMCChas yielded prolonged responses in patients with advanced
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disease, though a significant proportion of patients do not
respond and the durability of responses varies (Iyer et al., 2016;
Becker et al., 2017; D’angelo et al., 2018; Nghiem et al., 2019). The
pursuit of more targeted and effectiveMCC therapies necessitates
a better understanding of the oncogenic underpinnings of MCC
and the role of MCPyV in tumorigenesis.

Despite the status of MCPyV as a member of the human skin
virome and its relevance to human disease, much is unknown
about its biology. For instance, while it is clear that MCPyV
integration and oncogene expression enable MCC cell growth,
the conditions that lead to MCPyV integration are not known.
Neither has a consensus been reached regarding the MCC cell
of origin. Most pressingly, methods of limiting MCPyV infection
and thereby preventing MCC onset have yet to be discovered. In
recent years, however, efforts have been aimed at exploiting the
presence of MCPyV oncoproteins in MCCs to develop targeted
therapies for virus-positive MCC tumors (Chapuis et al., 2014;
Gavvovidis et al., 2018; Longino et al., 2019; Sarma et al., 2020).
The potential for expanding on these opportunities to provide
prophylactic or therapeutic interventions for a highly lethal skin
cancer should not be overlooked.

Merkel Cell Carcinoma
MCC was first described in 1972 by Cyril Toker, MD (Toker,
1972). He and his colleagues discovered that the tumors arose
in the dermis or lower subcutis layers of the skin and that
they metastasized readily via the lymphatic system. Because
the malignancies shared neuroendocrine markers with Merkel
cells, such as cytokeratin-20 (CK20) and neuron-specific enolase
(NSE), the disease was named Merkel cell carcinoma (De Wolff-
Peeters et al., 1980; Gu et al., 1983; Moll et al., 1992).

The next breakthrough in characterizing MCC came in
2008 when the Chang and Moore group identified a novel
polyomavirus genome monoclonally integrated in the DNA of
MCC tumor cells (Feng et al., 2008). Previously, they had
correctly predicted the viral etiology of AIDS-associated Kaposi’s
sarcoma (KS) (Chang et al., 1994), hypothesizing that the altered
immune status of these individuals engendered dysbiosis between
the host and virus to trigger oncogenesis. Following the same
principle, they suspected viral involvement in MCCs given the
knowledge that MCCs were far more likely to occur in HIV-
positive individuals (Engels et al., 2002). Probing MCC primary
tumors and metastases by digital transcriptome subtraction and
viral genome walking revealed the presence and sequence of the
MCPyV genome, respectively (Feng et al., 2008).

As a result of their discovery, assays to determine the
status of MCPyV have provided definitive markers and more
assured diagnosis for a subset of MCCs (Buck and Lowy, 2009;
Decaprio, 2009; Duncavage et al., 2009; Haugg et al., 2014;
Starrett et al., 2020). Moreover, it is now widely acknowledged
that immunocompromised individuals are more likely to develop
virus-driven cancers (Ellerbrock et al., 2000; Weber et al., 2006;
Chadburn et al., 2013; Ponce et al., 2014; Schadendorf et al.,
2017). The discovery of MCPyV also opened the opportunity to
research the role of MCPyV oncogenes in MCC carcinogenesis
and to inform our understanding of human cancer.

Building upon those earlier discoveries, recent research
has been aimed at comparing MCPyV-positive and MCPyV-
negative MCCs, which despite evidently different etiologies, have
similar disease presentation and prognoses (Fischer et al., 2010;
Handschel et al., 2010; Schrama et al., 2011). In virus-associated
MCC, MCPyV DNA is integrated into the tumor cell genome
in a manner that preserves expression of MCPyV genes called
tumor (T) antigens (Shuda et al., 2008, 2011; Cheng et al.,
2013). Expression of MCPyV T antigens drives oncogenesis in
virus-positive MCC tumors and is required for the growth of
the tumor cells (Houben et al., 2010, 2012; Shuda et al., 2011,
2014; Spurgeon and Lambert, 2013; Verhaegen et al., 2014;
Grundhoff and Fischer, 2015; Wendzicki et al., 2015). MCPyV T
antigens can supportMCC growth and survival despite otherwise
low chromosomal mutation burdens in MCPyV-positive MCCs
(Starrett et al., 2017). By contrast, virus-negative MCCs exhibit
a high, UV-related, mutation frequency indicating that pro-
oncogenic mutations arose as a direct result of chronic exposure
to UV-radiation (Harms et al., 2015; Wong et al., 2015; Goh et al.,
2016; Starrett et al., 2017). MCPyV-negative MCCs also have
higher levels of activation-induced cytidine deaminase (AID)
which could contribute to mutagenesis (Matsushita et al., 2017).
The gradual selection for transforming mutations may lead
to shared traits among MCPyV-negative cancers such as loss-
of-function mutations in Rb, NOTCH, PRUNE2, as well as,
activating mutations in PI3KCA and HRAS (Sihto et al., 2011;
Nardi et al., 2012; Harms et al., 2013, 2015; Cimino et al., 2014;
Sahi et al., 2014; Wong et al., 2015; Goh et al., 2016; Harms P. W.
et al., 2016).

Disparities between the etiologies of MCPyV-positive and
-negative MCCs extend to differences in their morphology.
MCPyV-containing malignances are more likely to have
regularly-shaped nuclei, low cytoplasm volume, and more
homogeneous cell types than those lacking MCPyV (Kuwamoto
et al., 2011; Iwasaki et al., 2013). They are also more
likely to display classical markers for MCC such as CK20
and neurofilament (Pasternak et al., 2018). Differences in
morphological phenotype between the two MCC types could be
a reflection of their alternative expression profiles in factors such
as cell adhesion molecules or miRNAs (Xie et al., 2014; Iwasaki
et al., 2016).

There are also disparities between these two types of
cancers that have more immediately discernible implications.
Virus-associated MCCs are more likely to occur in non-sun-
exposed areas than MCPyV-negative MCC (Dabner et al.,
2014; Leroux-Kozal et al., 2015) and on a population scale,
virus-negative MCCs occur in greater proportions in Australia,
where a significant population of individuals with low-melanin
concentrations are exposed to high levels of UV-radiation (Paik
et al., 2011). Moreover, MCC tumors in younger patients and
females are more likely to be virus-positive (Wang et al., 2017).
These trends suggest that while UV-exposure and advanced age
increase the incidence of both cancer types, MCPyV oncogenesis
is less dependent on these exogenous factors.

Beyond differences in oncogenic mechanism, morphology,
and incidence, there are an increasing number of reports that
MCPyV-positive MCC patient prognosis is statistically better
than those with MCPyV-negative MCC (Sihto et al., 2009;
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Laude et al., 2010; Higaki-Mori et al., 2012; Leroux-Kozal
et al., 2015; Moshiri et al., 2017). One reason for the improved
patient survival associated with MCPyV-LT-expressing MCC
tumors may be correlated with the presence of foreign T
antigens that enhance immunogenicity (Walsh et al., 2016). In
MCC patients undergoing PD-1 treatment, there is a greater
degree of B and T cell clonality in MCPyV-positive tumor
infiltrates than MCPyV-negative, reflecting the greater diversity
of neoantigens in the latter case (Miller et al., 2018). MCPyV-
positive MCCs also exhibit elevated expression of prokineticin-2,
an inflammatory and angiogenic signaling molecule, resulting
in enhanced T cell infiltration (Lauttia et al., 2014). Another
reason for better prognoses in MCPyV-positive MCC cases
could be that lower frequency of somatic mutations equate
to expression of wild type tumor suppressors like p53 that
support therapeutic interventions and native immune responses
in restricting cancer progression.

The juxtaposition of these two MCC subtypes informs our
understanding of both through comparative analysis, and can
guide the development of novel treatments. In MCPyV-driven
MCC, there exists the promise of truly targeted therapies toward
an aggressive solid tumor. What we learn about viral MCCs
can be applied to the more complicated and divergent cases of
MCPyV-negative MCC. These lessons can, in turn, broaden our
understanding of this family of rapidly metastasizing skin cancer.

MCPyV Genome and Encoded Genes
MCPyV Genome
MCPyV has a ∼5.4 kb circular dsDNA genome (Figure 1).
Like other polyomaviruses, existing evidence suggests that the
MCPyV genome remains episomal throughout the infectious
cycle (Gjoerup and Chang, 2010; Liu et al., 2016a,b). The viral
genome is divided into early and late regions by a non-coding
control region (NCCR) containing the viral origin of replication
and bidirectional promoters that drive early and late gene
transcription (Harrison et al., 2011). The early region expresses
alternatively spliced tumor antigens, termed large tumor antigen
(LT) and small tumor antigen (sT) that support replication, as
well as, 57kT and an alternate LT open reading frame (ALTO)
with functions that are less defined (Kwun et al., 2009; Carter
et al., 2013). Major and minor capsid proteins, VP1 and VP2,
respectively, are expressed from the MCPyV late region along
with a miRNA that has been proposed to modulate early gene
expression (Seo et al., 2009; Schowalter et al., 2011).

In MCPyV-positive MCC, the MCPyV genome is integrated
into the host DNA such that the functions of its early promoter
and partial expression of its T antigens are preserved (Feng
et al., 2008). Point mutations in other regions of the genome
and truncations of the MCPyV LT C-terminal domain, however,
are common in viral MCCs (Liu et al., 2016a). Expression of
the viral oncoproteins is largely driven by the preserved MCPyV
promoter rather than endogenous promoters, though there are
conflicting reports as to whether MCPyV is more likely to
integrate into specific regions of chromatin (Doolittle-Hall et al.,
2015; Czech-Sioli et al., 2020). Sequencing of integration sites
in multiple MCC tumors reveal that initial recombination of a
linearized MCPyV genome with the host genome could lead to

transient circularization and amplification of the viral genome
and neighboring host DNA (Starrett et al., 2017). The amount of
amplification and the site of DNA repair accounts for differences
in viral genome copy number and duplications of host sequences.

Large Tumor Antigen
In MCPyV infected cells, LT localizes to the nucleus where it
performs functions directly and indirectly supporting MCPyV
replication (Nakamura et al., 2010). Like T antigens in other
polyomaviruses, LT contains an origin binding domain (OBD)
and an ATP-dependent helicase domain by which it unwinds
MCPyV DNA for replication (Harrison et al., 2011). LT localizes
to replication foci containing high concentrations of nascently
synthesized MCPyV genomes (Liu et al., 2016b). In replication
foci, LT binds to G(A/G)GGC-like pentanucleotide sequences on
the MCPyV genome to initiate efficient replication in a manner
that requires the LT DnaJ domain and is supported by the
presence of sT (Kwun et al., 2009; Harrison et al., 2011).

Somatic genes also localize to MCPyV replication foci
and support LT-mediated replication. Bromodomain protein-
4 (BRD4) associates with LT in replication centers where it
amplifies MCPyV replication by recruiting replication factor C
(RFC) (Wang et al., 2012). Ataxia telangiectasia mutated (ATM)
and Rad3-related (ATR) DNA damage response (DDR) factors
also co-localize to MCPyV replication centers in a manner
dependent on the presence of LT and the MCPyV origin
(Tsang et al., 2014). These DDR proteins support efficient viral
genomic DNA synthesis, but may also be essential in limiting the
transforming potential of MCPyV T antigens. For example, ATM
phosphorylates LT in the C-terminal domain at Ser-816, leading
to increased apoptosis (Li et al., 2015). Alanine mutagenesis
at this site leads to enhanced colony formation in C33A cells.
Therefore, this LT-ATM interaction could both promote MCPyV
replication and limit rampant cellular growth. The delicate
balance of establishing an S-phase-like environment for the
production of new virions without causing the terminal fate of
cellular transformation can explain the duality of MCPyV traits.

The necessity of MCPyV to avoid terminating its infectious
cycle by transforming its host cell is underscored by the fact
that unlike other polyomavirus T antigens, LT neither binds nor
inhibits p53 (Lilyestrom et al., 2006; Cheng et al., 2013). In fact,
the studies by Li and colleagues showed that the helicase activity
in full-length LT, in the context of MCPyV DNA synthesis,
induces cell cycle arrest in a p53-dependent manner that limits
cellular proliferation (Li et al., 2013). This observation provided
an evolutionary explanation as to why MCPyV may have lost the
ability to inactivate p53, in that allowing p53 to guard cell cycle
progression could limit incidental progression to cancer and
abortive MCPyV infection. It also suggests why mature MCCs
invariably express a truncated variant of LT (LTT) lacking the C-
terminal helicase domain. In support of the protective nature of
the LT C-terminal domain, expression of LTT, but not full-length
LT, sensitizes cells to UV-DNA damage due to impaired cell cycle
arrest and DDR (Demetriou et al., 2012). Moreover, expression
of LTT promotes cell growth, while expression of the C-terminal
domain alone, or full-length LT, negatively regulates cell growth
(Cheng et al., 2013).
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FIGURE 1 | Map of MCPyV genome. NCCR, Non-coding control region; Origin, Origin of replication; LSD, LT stabilization domain; NLS, Nuclear localization signal;

MUR, MCPyV unique region; OBD, Origin binding domain.

The ability of MCPyV LTT to promote cellular proliferation
has been attributed to its ability to bind and inactivate Rb through
an LXCXE domain similar to other polyomaviruses (Houben
et al., 2012). This region is present in both wild-type LT and LTT.
The LT-Rb interaction results in enhanced E2F-transcriptional
activity; promoting growth in MCPyV-positive MCC cells (Sihto
et al., 2011; Hesbacher et al., 2016; Schrama et al., 2016).
The impact of LT-Rb binding was further illustrated by the
fact that silencing LTT expression in a xenograft MCC mouse
model resulted in tumor regression in an Rb-binding dependent
manner (Houben et al., 2012). The LXCXE-Rb interaction also
enhances entry into S-phase, cellular proliferation, and motility
in hTERT immortalized BJ human foreskin fibroblasts (BJ-
hTERT) (Richards et al., 2015). The functional significance of
MCPyV LTT inactivation of Rb in human populations is also
supported by the finding that MCPyV-negative MCCs frequently
contain mutations in the Rb gene, whereas MCPyV-positive
tumors usually express wild type Rb (Sihto et al., 2011).

LT-Rb binding domain could also be responsible for
increasing Sox2 and subsequent Atoh expression in MCPyV-
positive MCC cells (Harold et al., 2019). This is significant
because the activity of these transcription factors can confer
cells with markers of the shared phenotype between Merkel
cells and MCCs both in vitro and in vivo (Verhaegen et al.,

2017). Though sT has garnered more attention regarding cellular
transformation, it may be that LT alters the transcriptional
landscape of the original cell of MCC to imbue it with its
morphological characteristics.

Recently, it has been shown that the Rb inhibitory domain
of LT could indirectly activate p53 by upregulating ARF, an
inhibitor of the p53-degrading E3 ubiquitin ligase MDM2 (Park
et al., 2019). This assertion suggests that even without the
helicase domain, LTT would activate p53 in MCC cells, but
the investigators propose that the sT-MYC-EP400 transcriptional
complex counteracts p53 activity through upregulation ofMDM2
and the related enzyme MDM4 (Park et al., 2019).

Small Tumor Antigen
MCPyV sT consists of 186 amino acids, including a C-terminus
that is spliced out of the other MCPyV T antigens that confers
it with entirely unique functions. MCPyV sT localizes to the
nucleus and is able to support LT-mediated replication though
the exact mechanism remains unclear (Kwun et al., 2009). The
functions carried out by the C-terminal domain unique to
MCPyV sT is of critical importance because its expression is
necessary for MCC survival and appears to be the primary driver
of cellular transformation (Shuda et al., 2011).

Frontiers in Microbiology | www.frontiersin.org 4 September 2021 | Volume 12 | Article 739695

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Krump and You MCPyV Infection and MCC Cancer

MCPyV sT expression is capable of transforming rat
fibroblasts and epithelial cells in an in vivo mouse model
via a region incorporating amino acids 91–95 termed the
LT stabilization domain (LSD) (Shuda et al., 2011; Kwun
et al., 2015; Verhaegen et al., 2015). As its name implies,
MCPyV sT containing wild-type LSD increases LT protein
level, though the underlying mechanism is an area of active
investigation (Kwun et al., 2013; Dye et al., 2019). MCPyV sT
drives cellular transformation in rat fibroblasts by promoting
hyperphosphorylation of eukaryotic translation-initiation factor
4E-binding protein (4E-BP1) (Shuda et al., 2011; Wu et al.,
2015; Velasquez et al., 2016). The LSD domain was also linked
to activation of the non-canonical NF-κB pathway, induction
of a senescence associated secretory phenotype (SASP), and
enhanced MCC cell proliferation (Zhao et al., 2020). Besides
those functions attributed to the LSD domain, numerous other
oncogenic functions have been ascribed to MCPyV sT.

MCPyV sT expression may promote cellular growth by
activating c-Jun downstream of MEK/ERK factors (Wu et al.,
2016). In addition, MCPyV sT expression in normal fibroblasts
elevates aerobic glycolysis via modulation of the host cell
transcriptome, including upregulation of monocarboxylate
lactate transporter SLC16A1 (MCT1), likely contributing to
oncogenic potential (Berrios et al., 2016). Still another way
in which sT could enhance metastatic potential is through
disruption of inter-cellular junctions via upregulation of A-
disintegrase-and-metalloproteinase (ADAM) 10 and 17, which
are more highly expressed in MCPyV-positive MCCs (Nwogu
et al., 2018). The manner in which MCPyV sT might be affecting
transcriptional changes described above is by recruiting aMYCL-
MAX heterodimer to the EP400 complex (Cheng et al., 2017).
This interaction was elegantly shown to promote cell viability in
MCPyV-positive cell lines, MKL-1 and WaGa, as well as, confer
a transforming phenotype in keratinocytes (Cheng et al., 2017).
Two genes that are upregulated by this transcriptional program
are MDM2, which promotes p53 proteasomal degradation,
and lysine-specific histone demethylase 1A (LSD1), which is
necessary for maintaining plasticity and proliferative capacity of
MCC cells (Park et al., 2019, 2020; Leiendecker et al., 2020).
Importantly, inhibition of MDM2 and LSD1 induces cell death
in MCC cells and reduces the growth of MCC tumor in mice,
demonstrating the therapeutic potential of using MDM2 and
LSD1 inhibitors in treating this highly aggressive skin cancer
(Park et al., 2019, 2020; Leiendecker et al., 2020).

MCPyV sT contains protein phosphatase 2A (PP2A) binding
sites similar to other polyomaviruses, but this binding activity is
not required for transformation of rat fibroblasts (Kwun et al.,
2015). It has been suggested that these PP2A binding sites are
involved in the interaction with protein phosphatase 4C (PP4C)
(Griffiths et al., 2013; Kwun et al., 2015). In addition to findings
mentioned earlier, one group found that sT targets NEMO
through interaction with its regulatory subunit (PP4R1) to
disrupt NF-κB mediated inflammatory signaling (Griffiths et al.,
2013; Abdul-Sada et al., 2017). The sT-PP4C interaction has also
been implicated in loweringmicrotubule stability through altered
expression of cellular proteins like stathmin, as well as, Rho
GTPase-mediated actin remodeling, leading to an enhanced cell

motility phenotype (Knight et al., 2015; Stakaityte et al., 2018).
These broad changes resulting from the sT-PP4C interaction
have been recently ascribed to upregulated p38 MAPK signaling
via MKK4 (Dobson et al., 2020). MCPyV sT related motility
might therefore confer transformed cells with invasive and
metastatic properties.

Our group found that the proposed PP2A binding sites
might also serve as iron-sulfur (Fe/S) cluster domains (Tsang
et al., 2015). This discovery had significance because proteins
containing Fe/S domains often modulate helicase activity (Pugh
et al., 2008; Wu and Brosh, 2012). The function of MCPyV sT
Fe/S clusters was linked with its localization to LT-containing
replication foci and enhanced MCPyV DNA synthesis without
increasing LT protein stability. Moreover, MCPyV sT was able
to coordinate Fe/S much more efficiently than sT proteins from
SV40, HPyV6, and HPyV7. Another group recently found that
expression of MCPyV sT in HEK 293 cells elevated several
markers of DNA damage, and at a higher rate than HPyV6 and
HPyV7 sT proteins (Wu et al., 2019). Given these findings, the
supportive role of sT in LT-mediated MCPyV replication could
be direct, through sT activity in replication centers, or indirect,
through activation of ATM and subsequent phosphorylation of
LT Ser816.

57kT and ALTO
A third alternatively spliced T antigen is that of 57kT (Figure 1).
57kT does not appear to support MCPyV replication, and
its specific function in infection or in MCC oncogenesis is
unclear (Kwun et al., 2009). Because it shares the MCPyV
unique region (MUR) with LT, but lacks the helicase and origin-
binding domains, it is reasonable to hypothesize that 57kT
indirectly supports MCPyV infection, but does not directly
support replication as LT does. Similar to LTT, 57kT could bolster
pro-oncogenic functions associated with Rb-binding without
helicase-related cell cycle arrest or DNA damage.

Carter and colleagues discovered an overprinting gene
product expressed from the early region that they termed
alternate Large T open reading frame (ALTO) (Carter et al.,
2013) (Figure 1). This transcript utilizes a start codon that is
+1 nucleotide frame-shifted relative to the second exon of LT.
The authors hypothesize that overprinting genes such as these
evolve in viruses as a strategy to maximize the coding potential
of relatively small genomes (Carter et al., 2013). Recently,
several ALTO-encoding circular RNAs have been identified
in MCPyV-positive MCC cell lines and tumor tissues (Yang
et al., 2021). MCPyV ALTO translated from these circular
RNAs has the ability to transactivate recombinant promoters,
as well as, a number of key cellular genes involved in MCPyV
pathogenesis. Therefore, MCPyV ALTO protein may be able to
modulate MCPyV infectious and tumorigenic potential through
transcription regulation (Yang et al., 2021).

VP1, VP2, and miR-M1
The MCPyV late promoter drives expression of the capsid
proteins VP1 and VP2, as well as, a miRNA, MCPyV miR-
M1 (Figure 1). VP1 and VP2 encapsidate MCPyV DNA during
packaging and mediate cell surface interactions that activate
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entry and trafficking (Schowalter et al., 2011; Neu et al.,
2012; Schowalter and Buck, 2013). Attachment to cell surfaces
is mediated through interactions between VP1 capsomeres
and sulphated polysaccharides while subsequent viral entry
requires the interaction between VP1 and sialic acid (Neu
et al., 2012; Bayer et al., 2020). In A549 cells, MCPyV entry
was mediated through caveolar/lipid raft endocytosis (Becker
et al., 2019). Subsequent MCPyV trafficking is carried out by
the endosomal-to-ER pathway requiring microtubule transport
activity (Becker et al., 2019). By comparison, VP2 mediates post-
attachment phases of MCPyV entry and is necessary for native
MCPyV infection, if not the formation of pseudo-virus particles
(Schowalter and Buck, 2013).

Another late region gene product MCPyV miR-M1 likely
regulates MCPyV early gene expression. In MCPyV-transfected
neuroectodermal tumor (PFSK-1) cells, highly expressed miR-
M1 transcripts down-regulated the expression of MCPyV T
antigens and MCPyV replication (Theiss et al., 2015). The
function of miRNA-M1 to restrain MCPyV replication and gene
expression enabled a low level of detectable MCPyV to persist in
cells for several months. Thus, the MCPyV miRNA could drive a
persistence mechanism by which the virus maintains a limited
infection in human hosts for prolonged periods. In addition,
it was found that expression of a synthetic MCPyV-miR-M1
in HEK293 or MCC cells targets the cellular host gene SP100
thereby lowering CXCL8 expression and neutrophil chemotaxis
(Akhbari et al., 2018). In principle, this anti-inflammatory effect
could be protective in the setting of MCPyV infection. Unlike
analogous miRNAs in animal polyomavirus tumors, however,
the MCPyV miRNA is not highly expressed in MCC tumors,
suggesting that the function for which it is selected in MCPyV
infection does not, in turn, promote tumor fitness (Chen et al.,
2015).

MCPyV Tropism and a Model of Infection
Epidemiological evidence suggests that MCPyV establishes
asymptomatic, persistent infections in most people. As many as
88% of healthy adults are positive for MCPyV-specific antibodies
(Kean et al., 2009; Pastrana et al., 2009; Tolstov et al., 2009; Touze
et al., 2011). Serological activity against the MCPyVmajor capsid
protein increases as populations age, from about 10% in early
childhood to about 80% in adults (Chen et al., 2011; Tolstov
et al., 2011; Viscidi et al., 2011). MCPyV-specific antibody titers
positively correlate with viral load as measured by MCPyV DNA
encapsidated in viral particles shed from healthy skin, suggesting
that MCPyV positivity rates could also increase as populations
age (Schowalter et al., 2010; Pastrana et al., 2012).

Within a given healthy individual, MCPyV antibody titers
remain relatively stable over a period of at least 15 months
(Pastrana et al., 2012). By comparison, neutralizing antibody
titers to MCPyV, but not other human polyomaviruses, are
significantly higher in patients with MCPyV-positive MCC
despite the fact that MCC tumors do not express capsid protein
(Pastrana et al., 2009). Together, these findings suggest that
MCPyV has the capacity to persist, and that MCPyV expansion
within a host correlates with disease propensity. Inadequate
restriction of MCPyV may be a critical factor in enabling

MCC development. This hypothesis is supported by the fact
that chronic UV-exposure, advanced age, and HIV-related or
iatrogenic immunosuppression pose significant risk for MCC
(Heath et al., 2008; Bertrand et al., 2013; Ma and Brewer, 2014).

Direct evidence of the natural host reservoir cells that
maintain latent MCPyV infection remains elusive. To take steps
in establishing the cellular context of MCPyV infection, we
discovered that primary human skin dermal fibroblasts support
productive MCPyV infection in vitro and ex vivo (Liu et al.,
2016b). While developing the in vitro model, we found that
the addition of modulatory factors present in the skin could
greatly enhance MCPyV proliferation. Specifically, viral entry is
stimulated during the first 2 days of infection in the absence
of serum and in the presence of collagenase. This is analogous
to the inflammatory skin in which matrix metalloproteinases
(MMPs) digest collagen fibers and activate chemokines (Werner
and Grose, 2003; Gill and Parks, 2008). Subsequently, MCPyV
replication is boosted by priming human dermal fibroblasts with
epidermal and fibroblast growth factors and a WNT activator,
which induce fibroblast proliferation and MMP expression (Liu
et al., 2016b). That these same conditions are found in the skin
wounding response suggests that the MCPyV infection cycle
could be linked to damage to the skin by way of abrasions
or UV-damage.

The picture of MCPyV infection is far from complete, yet
inferences can be made from distinct sources of evidence.
In ex vivo skin culture, MCPyV preferentially infects dermal
fibroblasts underlying the basal layer of the epidermis and
those surrounding hair follicles (Liu et al., 2016b). Furthermore,
MCPyV virions are readily detected in eyebrow hair bulbs
sampled from healthy human volunteers (Peretti et al., 2014;
Bellaud et al., 2015; Hampras et al., 2015). It is possible that
MCPyV infects the dermal cells surrounding the hair follicle and
subsequently uses the follicular space as a means to disseminate
to the skin surface and access new hosts. In addition, migration
of MCPyV-infected fibroblasts to wound sites could represent
anothermode of transmission from reservoir cells into the deeper
layers of the skin.

MCPyV may also infect cells at body sites other than the
skin to establish a reservoir (Salakova et al., 2016). For instance,
MCPyV DNA was detected in buffy coats of healthy blood
donors and inflammatorymonocytes ofMCCpatients, indicating
that the virus may establish latent infection in peripheral blood
leukocytes (Mertz et al., 2010; Pancaldi et al., 2011). In two
MCPyV-positive patients with prior history of MCC and active
non-melanoma/non-MCC skin cancers respectively, MCPyV
DNA was detected in inflammatory, but not resident monocytes
(Mertz et al., 2010). Presence of MCPyV in inflammatory
monocytes of patients with distinct medical histories suggests
that the virus may reside in these cells and use them to spread
throughout the body (Mertz et al., 2010).

There is no animal model for MCPyV infection; a goal
which has proven to be challenging due to the narrow host
range of the virus (Liu et al., 2018). Lack of an animal model
for MCPyV infection presents a major obstacle for identifying
potential reservoirs and elucidating the MCPyV infectious
cycle. Generation of MCPyV chimeras with mammalian
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polyomaviruses may provide a solution to overcome its narrow
host range in the future (Liu et al., 2018).

MCC Cell of Origin
Though named for similarities to Merkel cells, the true original
cell of MCC is rigorously debated. The proposition that MCC
arises from differentiated Merkel cells is in question because
these cells are post-mitotic, and thereby have limited oncogenic
potential, and because they arise in the epidermis, while MCCs
almost always occur in the dermis or subcutis layers (Toker,
1972). In response, it has been suggested that MCCs could arise
from Merkel cell progenitor cells present at the hair follicle (Zur
Hausen et al., 2013; Sauer et al., 2017; Narisawa et al., 2019).
Similarly, progenitor cells derived from the neural crest have been
pointed to since MCPyV-positive MCC cell lines cocultured with
keratinocytes undergo neuronal morphological differentiation in
a manner dependent on MCPyV LT upregulation of Sox2 and
Atoh1 (Harold et al., 2019).

Some also propose that MCC could have an epithelial origin
since on rare occasions, epithelial MCCs have been reported
(Narisawa et al., 2020; Navarrete-Dechent et al., 2020; Song
et al., 2020). One group advocating for an epithelial origin of
MCC points to a case of a combined MCC and trichoblastoma
tumor that shared somatic mutations (Kervarrec et al., 2019).
They propose that this mixed tumor could represent a transition
from early to late MCC carcinogenesis in cells with integrated
MCPyV genome beginning to predominate. The same group
also found that expressing MCPyV sT and GLI1 in keratinocytes
results in an MCC-like phenotype, including expression of
CK20 (Kervarrec et al., 2020). Another group has developed a
mouse model for MCC, by expressing MCPyV sT and Atoh
in keratinocytes, that results in the epidermal layer developing
severalMCCmarkers and characteristics (Verhaegen et al., 2017).

It has also been argued that pre/pro B cells are the source
of MCC because MCC cells consistently express a number of
B-lymphoid lineage markers, like Pax5 and TdT (Zur Hausen
et al., 2013; Sauer et al., 2017). Cell expression similarities
may be coincidental however, since it has also been proposed
that epigenetic changes in the cell of origin could lead to a
dramatic transcriptional and phenotypic changes culminating
in Merkel cell resemblance. It has even been proposed that
MCPyV-positive and -negative carcinomas have distinct cells
of origin, and that through epigenetic reprogramming they
converge on a common phenotype (Sunshine et al., 2018). Under
normal developmental conditions, loss of polycomb repressive
complex 2 (PRC2) and subsequent reduction H3K27me3 marks
enables the differentiation of Merkel cells in mice (Bardot et al.,
2013; Perdigoto et al., 2016). Given this information, one group
reasoned that the development of MCC may involve a similar
change in the epigenome of the unknown cell of origin. They
found that pure MCPyV-positive MCCs were more likely to have
lower H3K27me3 than MCPyV-negative tumors (Busam et al.,
2017). Other researchers, however, found contradicting evidence
that virus-negative MCCs, especially those with combined
squamous cell carcinomas, had lower H3K27me3 marks than
MCPyV-positive MCCs (Matsushita et al., 2019).

Immune Responses to MCC
Immune function is relevant to every aspect of MCC progression.
Incidence of MCC is greatly increased in immunocompromised
individuals, especially in those who areHIV-positive or recipients
of organ transplants (Koljonen et al., 2009; Ma and Brewer,
2014; Cook et al., 2019). Loss of adaptive immune competence
increases the risk of both MCPyV-positive and negative tumors,
implying that immune surveillance of nascently transformed
MCC cells is protective at early stages of the disease. There is also
evidence that adequate immune responses can lessen the severity
of MCC disease progression. For example, patients with chronic
inflammatory disease had higher rates ofMCC incidence, and the
tumors of those that developed MCC had higher expression of
the proliferative marker Ki-67, and a greater tumor size (Sahi
et al., 2017). Furthermore, systemic immune suppression has
been linked to greater incidence of MCC, as well as, lower
rates of survival in MCC patients (Paulson et al., 2013). These
epidemiological data suggest that immune restriction of MCC is
critical to patient outcomes at each stage of the disease.

Studies of the immunological interface in MCC tumors have
revealed further detail regarding the course of disease and the
ability of MCC to evade destruction. For example, circulating
MCPyV T antigen-specific antibody level positively correlates
with MCPyV-positive MCC recurrence and has prognostic value
(Samimi et al., 2016; Paulson et al., 2017). In MCC tumors,
CD8T cell and other immune cell infiltration is usually poor,
and those cases with better infiltration positively correlate with
patient outcomes (Sihto et al., 2012; Lipson et al., 2013; Wheat
et al., 2014; Feldmeyer et al., 2016; Miller et al., 2017). Moreover,
the MCPyV-specific T cells present in MCC tumors expressed
markers of exhaustion like PD-1 and Tim-3 (Afanasiev et al.,
2013). The same phenomenon could be found in vitro and
in a MCC xenograft mouse-model (Dowlatshahi et al., 2013).
Histopathology of MCC tumors indicate that immune cells
expressing exhaustion markers like PD-1 and CD33 congregate
in the areas surrounding the tumors, suggesting that MCC
acquires traits that suppress immune cell migration (Mitteldorf
et al., 2017).

Observations that tumor-experienced T cells were unable
to infiltrate MCC tumors led to recent efforts to introduce
immune checkpoint therapies in metastatic cases. A 2015 case
study showed a promising response in a patient with metastatic
MCC case treated with anti-PD1 antibodies (Mantripragada
and Birnbaum, 2015). In the years that followed, clinical
trials exploring safety and efficacy of anti-PD1 and anti-PDL-
1 infusions yielded significant response rates and relatively low
rates of adverse events given the severity of patient prognosis
(Iyer et al., 2016; Kaufman et al., 2016; Nghiem et al., 2019).While
the durability of responses varied, they could last well over a year
(Kaufman et al., 2018; Nghiem et al., 2019).

Given that there are no effective chemotherapeutic treatments
available for metastatic MCC, the introduction of immune
checkpoint inhibitors greatly benefitted patients (Colunga et al.,
2017; Paulson et al., 2018a). Still, a significant portion of
patients do not respond or have responses that are short-lived.
Moreover, patients with immunosuppression or autoimmune
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disease may not be eligible for immune-based therapy. It
also became clear that loss of durability or relapse is a
problem in long term treatment for MCC, even in MCPyV-
positive MCC cases where mutagenesis is low. A longitudinal
study revealed that HLA-I components were downregulated in
resistant tumor cells at the level of transcription as a result of
continued interaction with CD8T cells (Paulson et al., 2018b).
These shortcomings necessitate the development of alternative
strategies or combination of existing therapies to modulate
immunity to MCC.

One such strategy is to augment innate immunity at the
primary tumor site in order to enhance adaptive function
systemically. One group was able to achieve improved responses
at distal MCC metastases by injecting a TLR-4 agonist
intratumorally at the primary MCC site followed by standard-
of-care surgery and irradiation (Bhatia et al., 2019). They later
delivered IL-12 plasmids to MCC tumors via electroporation
that led to enhanced immunogenicity at primary and distal
tumors in all patients tested; 25% of which had responses
in the progression of their disease (Bhatia et al., 2020). Still
other means of activating intralesional innate inflammation have
proven effective. Administration of an oncolytic herpesvirus that
stimulates granulocyte-macrophage colony-stimulating factor
has led to durable complete responses in multiple patients
(Nguyen et al., 2019; Westbrook et al., 2019). A recent case study
involving an advanced-stage MCC patient resulted in complete
remission upon receiving a combination of radiation therapy and
anti-PD1 therapy (Bloom et al., 2019). This suggests that targeted
DNA damage at accessible lesions combined with activation of
immunity against a primary tumor could help train immune
responses against distant lesions.

While probing the cause of immune suppression
characterizing the MCC tumor microenvironment, our
group discovered that STING (stimulator of interferon genes)
is dramatically repressed in MCC cell lines and tumor cells (Liu
et al., 2020). Among these immortalized and primary MCC cells,
the marked reduction in STING expression was unique to those
that were MCPyV-positive (Liu et al., 2020). Since SV40 LT has
been shown to antagonize the STING signaling pathway (Lau
et al., 2015), it would be valuable to determine if MCPyV LTT
expressed in virus-positive MCC cells downregulates STING
expression. We also showed that rescuing STING expression
and activation in MCC cells led to greatly induced cytokine
expression, T cell migration, and MCC cell death (Liu et al.,
2020). Delivery of a mutant STING vector via AAV transduction
and subsequent activation with a selective agonist could achieve
the same results. Such a strategy has the potential to be highly
specific in humans without the danger of systemic inflammatory
pathology because the mutant-specific STING agonist does not
interact with native human STING (Liu et al., 2020).

Targeting distal MCCmetastases is also the aim of researchers
activating or genetically engineering immune cells for autologous
infusion. For example, one group showed that activation and
administration of genetically engineered T cells expressing
TCRs specific to naturally processed MCPyV T epitopes led to
tumor regression in mouse MCC xenografts (Gavvovidis et al.,
2018). In one human case study, a similar infusion procedure

using MCPyV T antigen-specific T cells that were expanded
ex vivo resulted in HLA upregulation, T cell recruitment, and
responses in most metastases (Chapuis et al., 2014). A recent
study developed a means of improving autologous CD8T cell
therapeutic vaccines for MCC by exposing those T cells to
cytokine-conditioned dendritic cells presenting LTT peptides
on both MHC-I and II surface receptors (Gerer et al., 2017).
MCPyV-positive tumor microenvironments can also be engaged
by engineered CD4T cells that recognize the LXCXE epitope of
LTT (Longino et al., 2019).

Immune Responses to MCPyV
Given that the risk factors for developing MCC, including
advanced age, UV exposure, and compromised adaptive
immunity, can each alter the immune environment in the
skin, it is possible that unmitigated proliferation of MCPyV
encourages oncogenesis (Stang et al., 2018). The possibility that
uncontrolled MCPyV activity leads to MCC cases agrees with
the ability of Chang and Moore to predict the viral etiology
of MCC due to its greater incidence in immune compromised
persons (Feng et al., 2008). The transition from low-level
MCPyV persistence to rampant proliferation could promote
carcinogenesis by increasing the frequency of integration events
or entry into the original host cell of MCC. Because nascently
transformed cells are also favored by loss of normal immunity, it
would be easy to conflate these two factors. Interestingly though,
there is increasing evidence that alterations to systemic and skin
immunity can exacerbate MCPyV infections.

A study in Japan found that MCPyV DNA prevalence and
viral load on sun-exposed skin increased sharply in individuals
over the age of 40 and remained high for the oldest groups
(Hashida et al., 2016a). Also, HIV-positive men more frequently
have detectable MCPyV DNA on their skin and in their sera,
and those with poorly-controlled HIV infection have higher
MCPyV antibody titers and DNA loads than those with better-
controlled infections (Wieland et al., 2011; Fukumoto et al., 2013;
Vahabpour et al., 2017). In kidney transplant recipients, MCPyV
DNA was more readily detected in the urine of those with
BKPyV-DNAemia and with histologically verified polyomavirus-
associated nephropathy (Signorini et al., 2014; Wang et al.,
2019). MCPyV DNA detection rates and loads were significantly
lower in patients with psoriasis compared to the skin of healthy
volunteers suggesting a potential inverse relationship between
chronic inflammation in the skin and MCPyV proliferation
(Hashida et al., 2019). MCPyV-positive MCC patients, however,
have higher MCPyV DNA loads shed from their skin and more
frequently produce MCPyV VP1-specific circulating antibodies
and at higher titers (Pastrana et al., 2009, 2012; Faust et al.,
2011; Touze et al., 2011; Hashida et al., 2016b). More recently,
it was found that higher MCPyV DNA load correlates with worse
survival outcomes in MCC patients (Von Der Grun et al., 2019).

These findings suggest that sudden loss of normal immune
functions could swing the balance between host and virus to
favor uncontrolled MCPyV proliferation (Figure 2). From the
perspective of the virus, however, MCPyV must have evolved
mechanisms of its own to evade host immunity since it can
persist and remain highly prevalent in the general population
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asymptomatically (Tolstov et al., 2009; Schowalter et al., 2010;
Foulongne et al., 2012). The mechanisms by which MCPyV
evades immune detection and/or destruction are not known.

Some examples of MCPyV gene products or transfected
MCPyV genomes interacting with cellular immunity have
been documented. For instance, LT expression reduces TLR-9
expression via downregulation of C/EBP transcription factors
in epithelial and MCC cell lines (Shahzad et al., 2013). This
observation agrees with in vivo data revealing that TLR-9
expression was significantly lower in MCPyV-positive MCC
tumors compared toMCPyV-negative tumors (Jouhi et al., 2015).
MCPyV sT expression was shown to inhibit NF-κB inflammatory
signaling through its interaction with PP4C and the adapter
NEMO (Griffiths et al., 2013; Abdul-Sada et al., 2017). In
addition, it has been shown that a MCPyV-miR-M1 mimic
specifically targeted SP100 for degradation (Akhbari et al., 2018).
This downregulation of SP100 reduced the secretion of CXCL8
in MCC cells treated with TNF-α (Akhbari et al., 2018). Notably,
depletion of the nuclear protein SP100 also enhances MCPyV
replication in H1299 cells (Neumann et al., 2016).

There are also examples of cells eliciting an immune response
to the expression of MCPyV genes and genomes. As mentioned
previously, MCPyV LT and sT expression in BJ-hTERT cells
led to upregulation of cellular growth and expression of genes
that increase motility (Richards et al., 2015). Accompanying this
phenotype was the dramatic induction of many inflammatory
response genes including interferon-stimulated genes (ISGs) like
OAS1 and ISG20; cytokines like IL-1β and IL-6; and chemokines
like CXCL1 and CXCL6 (Richards et al., 2015). Whether MCPyV
T antigens induce such a response in the context of infection
remains undetermined.

Despite the recent progress made in revealing the MCPyV-
host interface, the approaches used previously involved
transfection or transduction of MCPyV genes into established
cancer cell lines. In order to understand how these mechanisms
may contribute to MCPyV persistence, our group examined
the innate immune response to MCPyV in the context of
infection in human dermal fibroblasts, which plausibly model
MCPyV infection of human skin (Krump et al., 2021). After
establishing the MCPyV gene expression and replication kinetics
in infected cells, we found that late events in the infectious cycle
activated the cGAS-STING and NF-κB pathways and subsequent
expression of anti-viral ISGs as well as innate inflammatory
cytokines (Krump et al., 2021). CRISPR knockout of elements of
these immune regulatory pathways yielded significantly higher
levels of MCPyV replication per cell, suggesting that the innate
gene induction has the potential to restrict MCPyV replication,
even in the absence of cellular immune factors (Krump et al.,
2021).

A Model of MCPyV Dysbiosis Leading to
MCC Development
MCPyV infects and sheds from the skin of most people
without discernible symptoms (Pastrana et al., 2009; Schowalter
et al., 2010). The evolutionary strategies that allow MCPyV to
asymptomatically infect a large portion of the population, often

for prolonged periods of time, remain a mystery (Chen et al.,
2011). The auspicious discovery that human dermal fibroblasts
support MCPyV infection enabled our recent characterization of
theMCPyV infectious cycle and the consequences it poses for the
host cell (Liu et al., 2016b; Krump et al., 2021). By understanding
the scenarios in which MCPyV might fail to strike a balance
with the host immune system, we may be able to infer the events
preceding MCPyV integration and oncogenesis.

While direct observation of the interface between MCPyV
and systemic immune responses awaits development of an
animal model, it is currently possible to formulate a model
of MCPyV infection based on data from several sources: (1)
the epidemiology of MCC and MCPyV infections, (2) existing
research on fibroblast biology and wounding responses in human
skin, and (3) in vitro findings that establish the prerequisites
for MCPyV replication and gene expression (Liu et al., 2016b;
Krump et al., 2021). In a similar manner, by juxtaposing decades
of skin pathology research with observed cellular response to
MCPyV infection, we may be able to provide new insights
regarding dysregulated conditions that might lead to MCPyV-
driven MCC (Walder et al., 1971; Hardie et al., 1980; Ahmad
et al., 2014; Krump et al., 2021).

If indeed dermal fibroblasts are capable of supporting MCPyV
infection in vivo as they are ex vivo and in vitro (Liu et al., 2016b),
then a model of the course of MCPyV infection can begin to
take shape (Figure 2). For instance, healthy human hosts may
support a low basal rate of MCPyV activity in fibroblasts that
avoids immune recognition, as early events like viral entry and
trafficking in vitro failed to activate ISGs (Krump et al., 2021). In
the event that host skin is abraded or irradiated with UV light,
damaged keratinocytes release growth factors andWNT agonists
to induce MMP expression and expansion of fibroblasts (Gill
and Parks, 2008; Whyte et al., 2012). These tissue changes could
stimulate MCPyV early gene expression and DNA synthesis (Liu
et al., 2016b). In this scenario, MCPyV PAMPS and/or DAMPs
present during later stages of infection upregulate ISGs and
inflammatory cytokines in manner that restricts viral replication
(Krump et al., 2021). Serological evidence suggests that antibody-
related adaptive responses to elevated MCPyV loads could
also be a significant restriction factor (Faust et al., 2011).
Dermal fibroblasts proliferating and navigating to the wounded
tissue or shedding layers of sunburned skin could facilitate
MCPyV transmission to new hosts (Figure 2). The antiviral state
conferred by ISG induction, innate cytokine signaling, and likely
recruited immune cells at the wound site would restrict and clear
cells with high levels of MCPyV infection. A return to persistent,
low-level MCPyV infection could be achieved by those infected
resident skin cells that avoid immune detection (Figure 2).

Fluctuations in MCPyV load in dynamic equilibrium with
insults to the skin and immune responses could be evolutionarily
advantageous to MCPyV as it would only risk detection
when the opportunity to infect new hosts arises (Figure 2).
Should MCPyV activity correspond to skin damage and
repair, then chronic wounding, inflammation, or altered skin
architecture could represent the early events that promote
MCPyV DNA amplification and integration into host DNA
that lead to MCPyV-associated MCC (Figures 2, 3). This
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FIGURE 2 | Hypothetical model of in vivo MCPyV persistence and dysbiosis leading to MCPyV-positive MCC. Healthy individuals support both low and high MCPyV

loads, depending on external factors. U.V. irradiation or abrasion of the skin could cause infected dermal fibroblasts to upregulate MCPyV gene expression and

replication. Damaged and repairing skin could be a path by which MCPyV escapes the dermis to infect new hosts. Healthy immune responses may reduce the

MCPyV burden asymptomatically. In immunocompromised patients and those with years of chronic U.V. damage, the microenvironment of the skin may be altered in

a way that induces MCPyV entry into the original cell of MCC and integration into the host chromatin to drive MCC tumorigenesis.

possibility is supported by epidemiological studies showing
a strong correlation between immunosuppression, elevated
MCPyV genome loads, and increased risk for MCC (Heath et al.,
2008; Wieland et al., 2011). These studies suggest that faulty
immune control of MCPyV infection could disturb the balance
of MCPyV-host interaction to cause unbridled viral replication,
which can increase the chance of incidental integration of viral
DNA and MCC oncogenesis (Figures 2, 3). These observations
would also explain why certain populations have a higher risk of
developing MCC.

The molecular events linking MCPyV infection and
MCC development are reminiscent of those underlying the
malignancies driven by human papillomaviruses (HPVs). In
non-malignant human cells, HPVs, like MCPyV, normally
replicate and maintain their genomes as episomes (Longworth
and Laimins, 2004; You et al., 2004; You, 2010; Wang et al.,
2013) (Figure 3). During the course of persistent infection,
a compromised immune system and/or other pathologic
conditions could cause rampant viral replication to promote
integration of viral genomes into the host DNA. An additional
parallel betweenMCPyV andHPV oncogenic mechanisms is that
the integrated viral genomes typically lose the ability to replicate,
but the non-replicating viral genomes retain the capacity to
express viral oncogenes, such as LTT/sT (encoded by MCPyV)
and E6/E7 (encoded by HPV). These viral oncoproteins stimulate
cellular proliferation and malignant transformation by inhibiting
host tumor suppressor such as RB and p53 (Gaglia and Munger,
2018) (Figure 3). The uncontrolled cellular proliferation could

ultimately inflict oncogenesis by allowing virally induced
precancerous lesions to persist and expand (Figure 3). In
addition, viral oncogenes encoded by the integrated MCPyV and
HPV genomes also share the ability to induce genomic instability
(Li et al., 2013; Gaglia and Munger, 2018), which can introduce
more DNA breaks in the host genome to stimulate viral genome
integration. Hyperproliferation and DNA damage induced by
viral oncogenes and/or U.V. irradiation may allow the emerging
tumor cells to accumulate additional genetic mutations needed
to develop into invasive tumors (Figure 3).

Future Perspective
Over 90% of MCC patients are not immune-compromised by
clinical definitions, yet almost all are over the age of 50 and
have low melanin content in their skin (Heath et al., 2008).
Therefore, unraveling the impact of UV-radiation and aging to
the skin could reveal key aspects of early events in MCPyV-
associated MCC. Further elucidation of tactics employed by
MCPyV to manipulate the host immune system for promoting
its own propagation and driving cellular transformation will
likely offer new clues for understanding the mechanism driving
MCPyV tumorigenesis.

The bourgeoning of cancer therapies aimed at activating and
directing immune responses to malignancies give much cause
for hope for the treatment of MCC and other viral cancers. Still,
gaps in our understanding of the biology driving MCPyV-related
oncogenesis and MCC immune escape could widen the breadth
of patients that respond to treatments and the durability of
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FIGURE 3 | A common theme in MCPyV- and HPV-induced tumorigenesis. MCPyV and HPV both replicate as episomes in persistently infected cell. Failure of host

immune system may cause uncontrolled viral replication, which can stimulate viral DNA integration into the host cellular genome. The integrated viral genome

expresses viral oncogenes that can inhibit tumor suppressors to induce malignant transformation. Red line indicates the early region of the oncogenic viruses. EP,

Early promoter.

those responses. Addressing some of our gaps in knowledge will
require technological advances like improved detection of low-
copy number viral DNA genomes in tissue isolates or accurate
animal models of MCPyV infection. Until that time, we canmake
strides in our investigation using the wealth of knowledge on
human skin and cancer biology, and by expanding the model
of in vitro MCPyV infection. Applying this knowledge to re-
establish asymptomatic equilibrium between host andMCPyV in
at-risk individuals has the potential to prevent MCC cases from
occurring in the future.
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