
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16036  | https://doi.org/10.1038/s41598-022-20279-4

www.nature.com/scientificreports

Automated detection of enlarged 
extraocular muscle in Graves’ 
ophthalmopathy with computed 
tomography and deep neural 
network
Kaori Hanai1, Hitoshi Tabuchi2,3, Daisuke Nagasato2,3,4*, Mao Tanabe2, Hiroki Masumoto2, 
Sakurako Miya2, Natsuno Nishio2, Hirohiko Nakamura5 & Masato Hashimoto1

This study aimed to develop a diagnostic software system to evaluate the enlarged extraocular 
muscles (EEM) in patients with Graves’ ophthalmopathy (GO) by a deep neural network.This 
prospective observational study involved 371 participants (199 EEM patients with GO and 172 controls 
with normal extraocular muscles) whose extraocular muscles were examined with orbital coronal 
computed tomography. When at least one rectus muscle (right or left superior, inferior, medial, or 
lateral) in the patients was 4.0 mm or larger, it was classified as an EEM patient with GO. We used 222 
images of the data from patients as the training data, 74 images as the validation test data, and 75 
images as the test data to “train” the deep neural network to judge the thickness of the extraocular 
muscles on computed tomography. We then validated the performance of the network. In the test 
data, the area under the curve was 0.946 (95% confidence interval (CI) 0.894–0.998), and receiver 
operating characteristic analysis demonstrated 92.5% (95% CI 0.796–0.984) sensitivity and 88.6% 
(95% CI 0.733–0.968) specificity. The results suggest that the deep learning system with the deep 
neural network can detect EEM in patients with GO.

Graves’ ophthalmopathy (GO) is a chronic autoimmune disorder that affects the retrobulbar tissues and extraocu-
lar muscles with strong etiological links to autoimmune thyroid disease. Extraocular muscle dysfunction report-
edly occurs in approximately 40%–60% of patients with GO in actual clinical practice1,2 and has significant 
negative effects on the quality of life3. Early detection of extraocular muscle abnormalities on orbital imaging 
might thus be necessary for managing thyroid myopathy successfully. In actual clinical practice, orbital imaging 
is not likely to be performed unless the patient complains of double vision. Additionally, radiologists may not 
always be available to interpret the findings, especially in regions with a shortage of doctors4,5. In some regions 
of developing countries, facilities for adequate imaging might be scarcer than radiologists.

Supervised machine learning systems, known as neural networks, have been applied to medical research6. 
Many studies on the diagnostic and classification performance of deep learning (DL) systems with CT images 
have been conducted7–13. However, to the best of our knowledge, there has not been a report in which DL systems 
have classified enlarged extraocular muscle (EEM) images in patients with GO and normal extraocular muscle 
(NEM) images in normal subjects using CT images.

This research aimed to develop a diagnostic software system in which a DL system could evaluate the EEM 
in patients with GO with orbital CT images.
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Results
We used EEM images from 199 patients (56 men and 143 women) with GO (mean age, 55.9 ± 13.7 years) and 
NEM images from 172 controls (40 men and 132 women; mean age, 52.6 ± 18.4 years) in this analysis. We found 
no significant differences in age (p = 0.21) or gender (p = 0.85) between the two groups (Table 1).

Table 2 shows the right and left superior, inferior, medial, and lateral rectus muscles in the two groups. All 
right or left rectus muscle thicknesses differed significantly between the two groups (each p < 0.001).

In the test data, the area under the curve (AUC) diagnosis by the neural network was 0.946 (95% confidence 
interval [CI] 0.894–0.998), and receiver operating characteristic (ROC) analysis demonstrated 92.5% (95% CI 
0.796–0.984) sensitivity and 88.6% (95% CI 0.733–0.968) specificity (Fig. 1). For the test data, 276.2 s was needed 
to analyze the CT scans of 75 patients (3.6 s/patient).

Table 1.   Participant characteristics. Unless otherwise indicated, these data are expressed as means ± standard 
deviations. EEM enlarged extraocular muscle, NEM normal extraocular muscle.

Characteristics EEM NEM p-value

Number of participants 199 172

Age (years) 55.9 ± 13.7 52.6 ± 18.4 0.21 (unpaired t-test)

Gender (male/female) 56/143 40/132 0.85 (Fisher’s exact test)

Table 2.   The difference in the maximum diameter between enlarged extraocular muscle (EEM) and 
normal extraocular muscle (NEM). Unless otherwise indicated, the EEM and NEM data are expressed as 
means ± standard deviations. EEM enlarged extraocular muscle, IRM inferior rectus muscle, LRM lateral rectus 
muscle, MRM medial rectus muscle, NEM normal extraocular muscle, SRM superior rectus muscle.

Eye EEM NEM p-value

Right

SRM 4.33 ± 1.47 3.06 ± 0.57 < 0.001

IRM 4.62 ± 1.44 3.19 ± 0.51 < 0.001

MRM 4.16 ± 1.22 3.24 ± 0.49 < 0.001

LRM 3.20 ± 1.21 2.76 ± 0.52 < 0.001

Left

SRM 4.17 ± 1.36 2.87 ± 0.56 < 0.001

IRM 4.69 ± 1.37 3.19 ± 0.50 < 0.001

MRM 4.09 ± 1.05 3.27 ± 0.46 < 0.001

LRM 3.09 ± 0.97 2.60 ± 0.48 < 0.001

Figure 1.   (a) Receiver operating characteristic (ROC) curve for the validation data. The area under the curve 
(AUC) for diagnosis by the neural network was 0.953, and ROC analysis revealed 89.7% sensitivity and 94.3% 
specificity. (b) ROC curve for the test data. The AUC for diagnosis by the neural network was 0.946, and ROC 
analysis revealed 92.5% sensitivity and 88.6% specificity.
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Figure 2 shows composite images where the representative orbital CT images of patients with GO and healthy 
participants were layered with the heat maps. The right and left rectus muscles in the orbital CT images are dis-
played in blue, indicating the parts of the image where the DL model focuses on distinguishing between EEM 
and NEM.

Discussion
We investigated whether a DL system could evaluate EEM in patients with GO. This system was able to classify 
both EEM and NEM with high AUCs, sensitivity, and specificity, indicating that the system distinguished images 
as belonging to participants with EEM or those with NEM on orbital CT images with nearly the same level of 
accuracy as that of doctors.

Our study defined the 4-mm thickness of the extraocular muscle diameter as abnormal. This cutoff value 
was determined based on previous reports of Dutton showing NEM thickness. However, Ozgen et al.14 reported 
that mean maximum diameters of the extraocular muscles measured using conventional CT were MR 4.2 (range 
3.3–5.0) mm, LR 3.3 (1.7–4.8) mm, SR 4.6 (range 3.2–6.1) mm, and IR 4.8 (range 3.2–6.5) mm. In their study, 
they used conventional CT. In this CT, individual variations in the chin-up posture of participants during coronal 
section imaging were observed, which may enhance the variability of extraocular muscle thickness. Conversely, 
spiral CT is used in our study. Spiral CT is created by reconstructing horizontal cross-sectional images, which 
are captured at the same angle due to participants’ constant posture during imaging. Therefore, our results 
showed less variation in extraocular muscle thickness in the control group compared to the findings of Ozgen 

Figure 2.   The computed tomographic (CT) slice image (a) and the heat map (b) for a healthy participant. The 
CT slice image (c) and the heat map (d) for a patient with Graves’ ophthalmopathy. Blue coloration indicates 
the strength of deep neural network attention. The color intensity is high at the area of the rectus muscles on the 
orbital coronal CT image. The deep neural network classifies the extraocular muscles as enlarged in the patient 
with Graves’ ophthalmopathy and as normal in the controls, focusing on the rectus muscles.
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et al. Therefore, we assumed that our extraocular muscle thickness results were consistent with Dutton’s, with 
an average thickness of less than 4 mm for each extraocular muscle.

A nationwide survey of patients with GO in the United Kingdom revealed delays in diagnosis, wide variability 
of access to specialist centers, appropriate treatment, and overall low patient satisfaction with treatment15. The 
same study revealed that only 25% of patients had referrals to a specialist GO clinic and that referrals were typi-
cally late. In several studies on general health-related questionnaires about quality of life among patients with GO, 
the scores of these patients were lower than those of the healthy reference population16,17. Gerding et al. reported 
that quality-of-life scores among patients with GO were worse than those in patients with diabetes, emphysema, 
or heart failure16. In approximately 70% of adults with Graves’ hyperthyroidism, magnetic resonance imaging or 
CT scanning reveals EEM18. Physicians thus need to monitor patients for ocular signs, including lid edema, lid 
retraction, and proptosis on visual inspection, and EEM, as demonstrated on orbital imaging, in patients with 
Graves’ hyperthyroidism. We consider that early detection and treatment of thyroid myopathy may become 
possible if the DL software system evaluating EEM in GO plays a supporting role in the actual clinical practice.

The modified clinical activity score (CAS) is currently the most widely used index to determine the active 
phase of inflammation in GO19. However, a recent study of GO indicated that the CAS may not reflect the 
inflammatory activity of myopathy, especially in mild to moderate GO with low NOSPECS scores (no sign of 
thyroid disease, only eyelid signs, soft tissue involvement, proptosis, extraocular motility restriction, corneal 
involvement, and sight loss). This system classifies the clinical severity of GO with low exophthalmos values20,21. 
Nagy et al. reported that EEM does not imply the presence of edematous swelling, and the severity of diplopia is 
unrelated to the degree of ocular congestion and edema20. Kim et al. reported that 44.4% of patients with GO and 
progressive diplopia had low CASs and no typical symptoms of inflammation21. These findings may have arisen 
because the CAS reflects primarily ocular muscle involvement and acute orbital congestion, which represents 
inflammatory changes within orbital connective and adipose tissues. Ophthalmologists thus must detect EEM 
early in the course of GO.

In our heat maps showing the focus of DL, color intensity surrounding the rectus muscles on the orbital CT 
images increased. The areas in the orbital CT images that the DL system focused on were consistent with those 
that ophthalmologists focus on when using CT images, they confirm EEM. In other words, the generated heat 
maps suggest that DL systems can accurately detect EEM associated with GO on the orbital CT images. Our DL 
software system may be helpful in the ophthalmological assessment of patients with GO.

Our system had several limitations. First, our study was conducted within a single facility, and the model’s 
robustness must be evaluated prospectively with data from multiple facilities. Second, from the perspective of 
radiation exposure to the participants, images with a slice thickness of 2 mm were used during CT imaging in 
this study. Using images with finer slice thickness may improve accuracy. Third, the judgment of EEM was based 
on measurements of the thickness of the muscles on two-dimensional CT images. The muscles’ volumetric meas-
urement must be evaluated on three-dimensional CT or magnetic resonance images. Finally, DL’s performance 
and versatility should be evaluated extensively with larger samples and more images.

In conclusion, our results indicate that our DL system and orbital coronal CT had high accuracy for detecting 
EEM in GO. DL systems to screen orbital coronal CT images may yield useful information about early treatment 
for EEM patients with GO.

Methods
Patients.  This prospective observational study complied with the Declaration of Helsinki. The study pro-
tocol followed the ethics committees of Nakamura Memorial and Tsukazaki Hospital. The patients provided 
written informed consent for the publication of this study and accompanying images. All experimental protocols 
were approved by the licensing committees of these hospitals.

In this study, we examined data from patients with GO and healthy normal subjects who had orbital CT 
scans at Nakamura Memorial Hospital between February 2017 and November 2019. An experienced neuro-
ophthalmologist diagnosed GO using Bartley and Gorman’s criteria22. Patients with orbital tumors, blowout 
fractures, immunoglobulin G4-associated ophthalmopathy, or idiopathic orbital inflammation were excluded 
from this study.

Extraocular muscles were analyzed with orbital images obtained using a whole-body CT system (SOMATOM 
Definition AS+; Siemens, Erlangen, Germany) without contrast. Axial scans were obtained at an angle of − 10° 
to − 15° to the orbitomeatal line, and coronal scans in a paraxial plane 90° to the orbital axis were reconstructed 
from the axial scans (slice thickness, 2 mm). We measured the diameter of all rectus muscles shown on six slices 
from the globe’s posterior margin to the orbital apex (Fig. 3). The maximum diameter was defined as the thick-
est diameter of each muscle on the six slices. The spindle-like spreading of the rectus muscles without tendon 
involvement was identified morphologically as EEM23. Diameters of the superior, inferior, medial, and lateral 
rectus muscles were measured on coronal scans. The inferior and superior oblique muscles were excluded because 
their course is oblique to the coronal plane.

Anatomically, the rectus muscles are typically 2.5–4.0 mm thick at the midpoint24. Therefore, we classified 
rectus muscles > 4.0 mm thick as enlarged. On this basis, this study involved 371 participants (199 patients with 
EEM and 172 controls with NEM). All 199 EEM patients were diagnosed with GO.

The DL model and its training.  The DL algorithm consists of four main processes: (1) extraction of the 
retrobulbar region from the CT image; (2) trimming of the orbital area on the CT image; (3) classification of the 
presence or absence of hypertrophied extraocular muscle; and (4) evaluation of extraocular muscle abnormality 
in GO. For down-sampling and up-sampling, the neural network architecture for segmentation was obtained 
through Residual Network-5025 (Supplementary Fig. S1). First, the globe was segmented on coronal CT slices, 
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and the orbital region posterior to the segmented globe was segmented and trimmed using Residual Network-50 
(Fig. 4). The code is provided in the supplemental data. Next, all rectus muscles judged by the neuro-ophthal-
mologist to be abnormal on coronal CT were tagged. For classification, we used the Visual Geometry Group-1626 
as the neural network and trained the DL system using the tag (Supplementary Fig. S2). The neural network 
generates the probability for each slice’s category (e.g., 0.1 for normal and 0.9 for abnormal). If the probability of 
“abnormal” exceeds a certain threshold, the slice is considered abnormal. We calculated this threshold from the 
validation data. Additionally, we calculated the proportion of slices considered abnormal by the neural network. 
If the proportion exceeded a certain threshold, the CT data as a whole was judged to reveal extraocular muscle 
abnormalities.

Figure 3.   Coronal scans in a paraxial plane 90° to the orbital axis were reconstructed from the axial scans (a). 
Sequential six slices (2-mm thickness) from the posterior margin of the globe toward the orbital apex on the 
coronal scans were used (b).

Figure 4.   The coronal slice (a) and the result (b) used for the segmentation of the eyeball. The coronal slice 
(c) and the result (d) were used for the orbit segmentation. The coronal slice (e) and region of interest (the area 
inside the blue squares) (f) used when Residual Network-50 recognized the retrobulbar region from (b) and (d).



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16036  | https://doi.org/10.1038/s41598-022-20279-4

www.nature.com/scientificreports/

For all model training, the loss function was the sum of binary cross-entropy and dice loss, batch size was 16, 
and epochs was 100. These details are included in the supplemental codes.

For training data, we used coronal scans from 120 patients with EEM and 102 controls with NEM; for valida-
tion data, we used scans from 39 patients with EEM and 35 controls with NEM; and for test data, we used scans 
from 40 patients with EEM and 35 controls with NEM.

Statistical analysis.  We used Fisher’s exact test and the unpaired t-test to compare differences between 
EEM and NEM. We constructed ROC curves and the proportion of CT slices judged as abnormal by the neu-
ral network based on the diagnostic imaging data. Then, we calculated the AUC of the ROC curve, the point 
at which the ROC curve was closest to the upper left (100% sensitivity, 100% specificity), and the sensitivity 
and specificity. The 95% CI of the AUC was calculated assuming a normal distribution27; the Clopper–Pearson 
method was used to calculate the 95% CIs for sensitivity and specificity28.

All statistical analyses were performed using the Python library SciPy (https://​www.​scipy.​org/). Significance 
was expressed by p < 0.05.

Heat map.  The two main types of explainability in machine learning technology are intrinsic explainability 
and post hoc explainability29. In this study, we used Score-CAM (score-weighted class activation mapping), a 
type of post hoc visual explanation method30, to construct heat maps for indicating the areas where images in 
the convolutional neural network were focused. The target layer was the block5_conv2 layer of Visual Geometry 
Group-16. The heat maps revealed that the model focused more on the blue parts of the image.

Data availability
The CT images and the image data sets used in this study are available upon reasonable request from the cor-
responding authors.
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