
1SciENtiFic REPOrTS |         (2018) 8:17002  | DOI:10.1038/s41598-018-35323-5

www.nature.com/scientificreports

Integrated PTR-ToF-MS, GWAS and 
biological pathway analyses reveal 
the contribution of cow’s genome 
to cheese volatilome
Sara Pegolo   1, Matteo Bergamaschi1, Flavia Gasperi2, Franco Biasioli2, Alessio Cecchinato   1 
& Giovanni Bittante1

Volatile organic compounds (VOCs) are small molecules that contribute to the distinctive flavour of 
cheese which is an important attribute for consumer acceptability. To investigate whether cow’s genetic 
background might contribute to cheese volatilome, we carried out genome-wide association studies 
(GWAS) and pathway–based analyses for 173 spectrometric peaks tentatively associated with several 
VOCs obtained from proton-transfer-reaction mass spectrometry (PTR-ToF-MS) analyses of 1,075 
model cheeses produced using raw whole-milk from Brown Swiss cows. Overall, we detected 186 SNPs 
associated with 120 traits, several of which mapped close to genes involved in protein (e.g. CSN3, GNRHR 
and FAM169A), fat (e.g. AGPAT3, SCD5, and GPAM) and carbohydrate (e.g. B3GNT2, B4GALT1, and 
PHKB) metabolism. Gene set enrichment analysis showed that pathways connected with proteolysis/
amino acid metabolism (purine and nitrogen metabolism) as well as fat metabolism (long-term 
potentiation) and mammary gland function (tight junction) were overrepresented. Our results provide 
the first evidence of a putative link between cow’s genes and cheese flavour and offer new insights into 
the role of potential candidate loci and the biological functions contributing to the cheese volatilome.

Cheese quality depends on many related, interacting factors, ranging from compositional, functional, sensory 
and safety characteristics to nutritional, psychological, convenience, processing and economic factors1. Consumer 
acceptability of dairy products is highly dependent on sensory characteristics2, particularly flavour, an important 
determinant of quality. During the manufacture and ripening of cheese, enzymes from various sources (native milk 
enzyme, rennet, lactic acid bacteria, secondary microflora and exogenous enzyme preparations) are responsible for 
the breakdown of macronutrients (fat, proteins and lactose) into fatty acids, amino acids and lactic acid, the major 
precursors of volatile organic compounds (VOCs), which play a significant role in determining cheese flavour3,4.

Several studies aimed at characterizing the volatile fraction of various cheeses have been conducted5–7, most 
of them using solid-phase micro-extraction (SPME)-GC-MS equipment. Proton-transfer-reaction time-of-flight 
mass spectrometry (PTR-ToF-MS), however, is a more time-efficient and sensitive method for characterising 
the cheese VOC fingerprint8,9. Several factors (e.g. dairy system, herd, individual cow characteristics) have been 
shown to affect the cheese volatilome9,10 and evidence for the existence of an exploitable genetic variation in the 
cheese VOC profile has also recently been put forward11, suggesting there is potential to modify cheese flavour 
through selective breeding in order to improve cheese quality.

Genome-wide association studies (GWAS) have been widely used to disentangle the genomic architecture 
underlying complex traits in dairy cattle12–14. It has become common to couple GWAS with biological pathway 
analysis to extract biological information from the GWAS data and overcome the limitations of this method, 
such as the its reduced ability to detect small-effect loci and its poor replication15–17. The genomic and biological 
information thus acquired makes it possible to elucidate the genetic basis and molecular mechanisms underlying 
complex traits on the one hand, and, on the other hand, to increase the accuracy of genomic prediction when 
incorporated into prediction models18,19.
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Herein, we investigated whether cow’s genetic background contributes to variability in the cheese volatilome 
and, therefore, might play a role in determining cheese flavour. The potential existence of a genomic control for 
VOC profile in cheese would be of considerable significance given the economic importance of cheese quality to 
the dairy industry. To our knowledge, there is no existing information on whether there is a relationship between 
the cow’s genome and the cheese VOC profile, nor on the biological functions that may be involved in regulating 
the cheese volatilome. The aim of this study, therefore, was i) to perform GWAS analyses for milk and cheese com-
position traits in dairy cows, and for cheese VOC profiles determined by proton-transfer-reaction time-of-flight 
mass spectrometry (PTR-ToF-MS), and ii) to carry out pathway analyses on the SNP markers, in order to identify 
genomic regions and biological mechanisms that contribute to the variability in cheese volatilome.

Results
Descriptive statistics and genomic heritability estimates for milk and cheese composition are reported in Table 1. 
We found milk fat percentage to have a relatively low heritability (0.08), and confirmed protein percentage as 
being under strong genetic influence (0.40). Lactose percentage was moderately heritable (h2 = 0.22), while her-
itability estimates were, instead, close to 0 for the milk fat to protein ratio, and cheese fat and protein, which 
depend mainly on the cheese-making procedure. Table 2 shows the concentrations and heritabilities for some of 
the spectrometric peaks associated with the VOCs of model cheeses measured by PTR-ToF-MS. Among the ten-
tatively identified spectrometric peaks, those associated with dimethylsulfone m/z 95.017 (0.22), alkyl fragment 
(terpenes) m/z 81.070 (0.15), butan-1-ol/pentan-1-ol, heptan-1-ol m/z 75.080 (0.14) and hexanal/nonanal m/z 
83.086 (0.10) had moderate heritabilities. Among the unknown compounds, the peaks at m/z 85.029 (0.22), m/z 
135.134 (0.18), m/z 66.063 (0.18), m/z 48.053 (0.17), m/z 44.980 (0.15), m/z 83.071 (0.15) and m/z 169.044 (0.15) 
had the highest heritabilities.

Results of the GWAS analyses of milk and cheese composition and cheese VOCs are summarised in Table 3 
and Supplementary Table S1. Overall, we detected 186 significant SNPs (P < 5E-05) across all Bos taurus auto-
somes (BTAs), which were associated to 120 traits. One SNP had an unknown position on the genome, which was 
significantly associated with m/z 131.107 (P = 1.04E-05). Most of the significant associations were one SNP-one 
trait (80%).

We identified significant associations on BTA4, BTA14, BTA23 and BTA27 for milk fat, with the highest peak 
corresponding to marker rs42435059 (P = 4.43E-06) located at 39,244,447 on BTA4. We also identified significant 
associations for milk protein and milk yield on BTA6, the highest signal being associated with milk protein and 
corresponding to the marker rs110239739 (P = 1.32E-07) located at 84,689,991 bp. Only 1 SNP (rs109429918) 
was significant for the fat-to-protein ratio and this was located on BTA15 at 55,488,319 Mbp. A significant asso-
ciation was found for lactose on BTA16 and corresponded to rs109818696 located at 12,963,666. Significant SNPs 
for cheese fat were mapped on BTA 14 (~26.17 Mbp) and BTA23 (~42.36 Mbp). We detected very high peaks 
for cheese protein on BTA16 and BTA20, corresponding to markers rs41798196 located at 21,772,991 on BTA16 
(P = 9.62E-08) and rs41631276 located at 46,296,840 on BTA20 (P = 3.76E-07). We found other significant asso-
ciations for cheese protein on BTA12 at ~15.45 Mbp.

Regarding cheese VOCs, we detected the strongest signals on BTA11 and BTA18. Marker rs41671173 located 
at 60,150,644 bp on BTA11 was significant for the spectrometric peak at m/z 78.001 (P = 5.30E-07). We detected 
another strong signal at 16,119,985 bp on BTA18 and corresponded to marker rs41867785, which was associated 
with the peak at m/z 135.134 (P = 1.10E-07). Overall, this marker was significant for 24 spectrometric peaks, 
three of which were tentatively associated with butan-1-ol/pentan-1-ol, heptan-1-ol9,11 m/z 75.080 (P = 1.97E-06), 
3-methyl-1-butanol/3-methyl-3-buten-1-ol/pentan-1-ol m/z 71.086 (P = 1.20E-05) and hexan-1-ol/hexan-2-ol 
m/z 85.101 (P = 1.61E-05). The largest regions of consecutive SNPs were located on BTA6 (~81.65–88.07 Mbp) 
and BTA21 (~40.72–45.33 Mbp). The spectrometric peaks with the highest number of significant SNPs were 
those associated with ethyl pentanoate (ethyl valerate)/ethyl-2-methylbutanoate/ethyl-3-methylbutanoate (ethyl 
isovalerate)/heptanoic acid m/z 131.107 (6), m/z 149.045 (5), m/z 48.053 (5), m/z 66.063 (5), the peaks associated 
with butan-1-ol/pentan-1-ol, heptan-1-ol m/z 75.080 (5), m/z 84.942 (5), m/z 105.039 (5), m/z 117.047 (5), m/z 
119.072 (5), m/z 121.122 (5) and m/z 169.044 (5). The chromosomes with the highest number of significant asso-
ciations were BTA1 (10), BTA3 (9), BTA4 (11), BTA6 (16), BTA16 (9) and BTA21 (14).

Trait Mean SD h2 #SNPa

Milk yield, kg/d 24.26 7.96 0.09 2

Milk composition

  Fat, % 4.19 0.67 0.08 5

  Prot, % 3.71 0.42 0.40 2

  Fat to prot 1.13 0.18 <0.01 1

  Lactose, % 4.85 0.20 0.22 1

Cheese composition

  Fat, % 38.11 4.23 <0.01 2

  Prot, % 27.08 4.04 <0.01 5

Table 1.  Descriptive statistics and genomic heritability (h2) for milk and cheese composition. a#SNP: number of 
significant SNP (5 × 10−5) for each trait.
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Measured 
mass(m/z)

ppb

h2 #SNPaMean SD

Volatile compounds

44.980 4.64 0.66 0.15 1

48.053 10.03 0.82 0.17 5

49.011 6.82 0.67 0.08 —

49.028 5.28 0.73 0.10 2

63.044 8.02 0.49 0.08 3

66.063 8.61 0.86 0.18 5

75.027 5.47 0.96 0.08 3

75.080 7.70 1.14 0.14 5

78.001 4.23 0.89 0.05 3

79.075 6.17 0.64 0.07 2

81.070 5.37 0.46 0.15 4

82.945 4.48 0.70 0.13 3

83.071 7.44 0.95 0.15 3

83.086 6.13 0.69 0.10 3

84.075 4.41 0.58 0.09 3

84.942 4.29 0.63 0.08 5

85.029 4.46 0.40 0.20 3

91.059 8.47 0.81 0.15 2

92.061 6.64 0.97 0.05 2

93.090 10.11 1.37 0.13 4

93.432 4.54 0.46 0.07 3

94.039 5.43 0.90 0.13 2

94.095 6.92 1.37 0.11 3

95.004 4.72 0.65 0.05 1

95.017 5.04 0.71 0.22 3

95.034 5.22 0.64 0.10 2

95.096 5.44 0.98 0.14 2

105.039 4.53 0.44 0.07 5

109.070 6.30 0.70 0.06 2

111.104 5.08 0.94 0.12 2

113.029 4.64 0.48 0.06 1

119.072 5.54 0.66 0.11 5

119.089 6.44 1.00 0.13 2

121.122 5.17 0.82 0.13 5

123.047 4.56 0.35 0.05 2

123.076 4.56 0.38 0.09 3

123.117 4.82 0.64 0.06 2

127.073 4.49 0.38 0.08 1

129.064 4.37 0.37 0.13 —

129.127 4.95 0.69 0.06 —

133.102 4.45 0.38 0.06 —

133.123 5.60 0.69 0.07 3

135.102 6.69 0.62 0.07 —

135.134 5.80 0.75 0.18 3

137.101 4.71 0.50 0.12 4

137.132 5.28 0.39 0.16 2

139.076 4.58 0.35 0.06 2

139.134 4.12 0.54 0.09 2

149.045 6.08 0.97 0.16 6

157.159 4.33 0.46 0.08 1

163.096 6.55 1.25 0.10 1

169.044 5.92 0.92 0.15 5

171.173 4.87 0.76 0.11 3

173.153 5.20 0.48 0.09 1

189.184 4.23 0.50 0.07 —

Continued
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Based on the similarity matrix generated with ExpressionCorrelation, we identified 8 sub-networks rep-
resented by ≥3 nodes (Fig. 1), within which ClusterOne identified 12 densely connected clusters (P < 0.05; 
Supplementary Table S2). Two clusters were detected in sub-network 1: one with 13 nodes, which included some 
spectrometric peaks tentatively associated with aldehydes and/or ketones, i.e. hexan-1-one/hexan-2-one/hexanal 
m/z 101.097, heptan-2-one m/z 115.112, octan-1-one m/z 129.127 and nonan-2-one m/z 143.143; the other with 
7 nodes, which included some spectrometric peaks associated with aldehydes, ketones or alcohols, i.e. propan-
2-one (acetone) m/z 59.049, 1,2-pentanediol m/z 105.091 and 2-methylbutanal/3-methylbutanal/pentan-2-one 
m/z 87.080. A cluster of 16 nodes was significant in subnetwork 2, which included the spectrometric peak asso-
ciated with butan-1-ol m/z 75.080. Sub-network 3 comprised 2 clusters with 7 nodes, which contained some 
spectrometric peaks associated with esters and/or alcohols, i.e. ethyl hexanoate/octanoic acid m/z 145.123, ethyl 
butanoate/ethyl-2-methylpropanoate (ethyl isobutyrate) m/z 117.091 and hexanoic acid m/z 99.081. Two clusters 
were detected in sub-network 4: the first with 4 nodes, including the spectrometric peak associated with acetates/
acetic acid m/z 61.028; the second also included the spectrometric peaks tentatively identified as 3-hydroxy-
2-butanone (acetoin) m/z 89.060 and butanoic acid m/z 71.049. Two clusters with 5 nodes were significant in 
sub-network 5, which included spectrometric peaks associated with the alkyl fragment m/z 43.054, m/z 41.039 
and m/z 57.070. Sub-network 6 contained a significant cluster which included the spectrometric peak associated 
with 2,6-dimethyl pyrazine m/z 109.070. Sub-networks 7 and 8 contained clusters of 4 and 3 nodes, respectively, 
neither of which included any tentatively identified spectrometric peaks.

Pathway analyses.  Of the total 37,568 SNPs used in this study, 17,006 were located 15 kb up- or 
down-stream of the coding regions. An average of around 900 genes were significant (P < 0.05) for the peaks 
tentatively associated with cheese VOCs. We carried out pathway analyses to shed light on the biological role of 
these genes and to identify potentially overrepresented pathways or molecular functions that might help explain 
the variability in the cheese volatilome.

Overall, pathways of 5 of the 45 tentatively identified compounds were significantly enriched (FDR < 0.05) 
(Fig. 2, Supplementary Table S3). Results showed that purine metabolism was enriched for the peak associated 
with phenol m/z 95.049 (FDR = 0.00017), while the tight junction pathway was overrepresented for the spectro-
metric peaks associated with heptan-2-one20 m/z 115.112 (FDR = 0.00013) and ethyl pentanoate (ethyl valerate)/
ethyl-2-methylbutanoate/ethyl-3-methylbutanoate (ethyl isovalerate)/heptanoic acid m/z 131.107. Furthermore, 
the nitrogen metabolism pathway was significantly enriched for the peak associated with ethyl pentanoate (ethyl 
valerate)/ethyl-2-methylbutanoate/ethyl-3-methylbutanoate(ethyl isovalerate)/heptanoic acid (FDR = 0.00019) 
m/z 131.107. Finally, the long-term potentiation pathway was enriched for the peaks associated with octan -1–one 
m/z 129.127 and nonan-2-one m/z 143.143 (FDR = 0.00023 and FDR = 0.00024, respectively).

Discussion
GWAS analysis.  In recent years, there has been growing concern about food quality and safety from both the 
demand and the supply sides. Given that flavour attributes play a crucial role in cheese quality21, better knowl-
edge of the key flavour components and pathways involved in the development and characterisation of cheese 
VOCs would provide a useful basis for defining cheese-making procedures more precisely, and improving cheese 
sensory characteristics. There is also increasing interest in the authentication of traditional cheeses with EU pro-
tected designation of origin classification, which are often linked to local breeds and help maintain farm animal 
biodiversity22. In this study, therefore, we first sought to investigate whether the cow’s genome organisation sig-
nificantly impacts on the cheese volatilome, and possibly cheese flavour.

Although plenty of GWAS studies for milk production traits13,23,24 and cheese-making properties25,26 in dairy 
cows have now been published, to our knowledge none has focused on identifying the genomic regions associated 
with cheese composition and quality traits. Despite the lack of GWAS analyses for cheese VOCs, the estimates 
of genomic heritability found in this study confirm previous findings supporting the existence of an exploitable 
genetic variation in cheese VOCs11. The main pathways involved in the formation of cheese VOCs are glycolysis 
(metabolism of lactose, lactate and citrate), lipolysis (and metabolism of fatty acids) and proteolysis (and catabo-
lism of amino acids)3. Accordingly, our GWAS analyses revealed a contribution of cow’s genes related to protein, 
fat and carbohydrate metabolism.

Protein metabolism.  A region of 9 SNPs on BTA6 covered the cluster of casein genes (~87.14–87.38 Mbp) 
and showed significant association with 12 traits, including milk protein. In particular, 4 spectrometric peaks - 
m/z 85.029, m/z 149.045, m/z 163.096 and m/z 169.044 - were associated with the marker rs41567942, which was 
located 0.4 Mb from the gene encoding for k-casein (CSN3), which is essential for milk coagulation and therefore 
largely influences milk coagulation properties27. Moreover, the marker rs29001782 was located on BTA6 at 4 kb 
from GNRHR, which signalling pathway has been shown to play a role in controlling milk protein synthesis and 
metabolism17. Interestingly, the markers rs110300263 and rs111018457, which had significant associations with 10 

Measured 
mass(m/z)

ppb

h2 #SNPaMean SD

191.163 4.35 0.32 0.07 —

201.184 4.34 0.41 0.07 2

Table 2.  Descriptive statistics and genomic heritability (h2) for some spectrometric peaks from PTR-ToF-MS 
analysis of model cheeses*. *Only the peaks with h2 ≥ 0.05 are presented. a#SNP: number of significant SNP 
(5 × 10−5) for each trait.
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BTAa #SNP Interval, Mbp Top SNP
Top SNP 
P-value

Top SNP 
location, bp

Top SNP 
MAF Trait(m/z)b

1 1 — rs110470451 2.43E-05 6846585 0.42 61.062

1 1 — rs109360740 2.50E-05 9601018 0.36 75.080, 48.053, 66.063, 84.075, 95.096

1 1 — rs110588394 4.87E-05 44569518 0.02 113.029

1 2 98.34–100.38 rs41585810 8.97E-06 100382840 0.07 91.059, 123.047,137.101, 139.076

1 1 — rs110086518 3.58E-05 119931878 0.12 55.055

1 1 — rs110442512 3.07E-05 131684053 0.25 115.077

1 1 — rs110224946 3.59E-05 136127682 0.47 51.044

1 2 146.59–147.58 rs109454192 3.79E-06 147582980 0.04 159.138, 83.052

2 1 — rs110662635 4.20E-05 24734064 0.34 43.054

2 1 — rs43304641 4.95E-05 32154806 0.02 103.075

2 1 — rs41573759 2.68E-05 52612052 0.04 93.432

2 1 — rs41643281 4.93E-05 135167307 0.43 43.054

3 1 — rs109805934 1.95E-05 26438136 0.45 105.071

3 1 — rs110682053 2.83E-05 29461800 0.22 105.091

3 1 — rs42824274 4.31E-05 47337477 0.15 63.044

3 3 79.73–81.77 rs43349836 2.87E-05 81774972 0.01 33.034, 51.044, 93.037

3 1 — rs29011217 3.87E-05 95279013 0.22 109.07, 95.034, 169.044

3 1 — rs43712201 4.87E-05 98450919 0.30 95.004

3 2 105.61–106.61 rs42791325 1.35E-05 105613230 0.46 95.034, 91.051

4 1 — rs110991247 6.18E-06 13148484 0.49 129.091, 155.144, 173.153, 201.184

4 3 20.69–22.62 rs109900996 7.78E-06 22618815 0.02 113.098, fatMILK

4 1 — rs42358265 1.18E-05 35447660 0.17 49.028,131.084

4 1 — rs42435059 4.43E-06 39244447 0.01 fatCHEESE

4 2 70.42–70.45 rs110731593 3.13E-05 70419951 0.02 95.081

4 2 93.71–93.74 rs110600059 3.00E-05 93709495 0.27 106.077

4 1 — rs43373704 1.84E-05 119552457 0.05 113.098

5 1 rs109438971 5.76E-06 27130695 0.05 92.061

5 1 rs43439308 4.73E-05 88311948 0.38 105.039

5 1 rs109173922 1.30E-05 110982640 0.33 105.091

5 1 rs110758831 4.06E-05 115561004 0.49 105.091

6 1 — rs110587419 1.64E-05 37019972 0.05 MY

6 1 — rs42005069 4.83E-05 55147990 0.21 63.044

6 2 73.25–73.82 rs41653762 4.50E-05 73254801 0.16 149.045, 123.076

6 9 81.65–88.07 rs110239739 1.32E-07 84689991 0.16 protMILK, MY,163.096,85.029, 149.045, 93.037, 
169.044, 75.027, 137.101, 123.047, 109.070, 91.059

6 1 — rs41591081 3.41E-05 91840239 0.21 89.060

6 1 — rs110986676 3.57E-05 99341521 0.14 116.078

7 1 — rs43506578 4.65E-05 24599167 0.19 115.112

7 2 65.47–67.20 rs110580802 1.37E-05 67202130 0.09 119.107, 111.119

7 1 — rs42383787 2.74E-05 76668676 0.21 44.058, 61.062

7 2 — rs41574792 3.42E-05 105537981 0.31 57.070, 82.945

8 1 — rs43097793 3.75E-05 4503268 0.06 105.039

8 1 — rs41654691 2.74E-05 49723924 0.11 137.132

8 2 68.44–69.53 rs41589887 3.13E-05 69525276 0.09 48.053, 135.134, 99.039

8 1 — rs110002748 1.94E-05 74997682 0.28 117.047

8 2 98.88–99.05 rs109263494 2.38E-05 98881581 0.01 75.08, 48.053, 66.063, 93.09
111.104, 119.089, 46.031

9 1 — rs43584258 2.44E-05 16023448 0.36 81.070

9 2 59.57–59.60 rs43602597 3.05E-05 59571491 0.07 119.072

9 1 — rs41631588 2.14E-05 66997852 0.05 125.132, 157.159, 171.173

9 1 — rs41594175 2.39E-05 75484456 0.18 171.173

9 1 — rs43606008 1.87E-05 86919266 0.38 94.039

9 1 — rs110950497 2.29E-05 90690991 0.42 109.099, 125.095

10 2 11.42–11.71 rs42889844 3.35E-06 11707725 0.17 73.027, 75.044

10 1 — rs109423971 3.66E-05 16460889 0.36 73.027

10 1 — rs109393781 7.00E-06 30265387 0.04 83.086

10 1 — rs43626086 2.89E-05 46923030 0.02 95.017

Continued
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BTAa #SNP Interval, Mbp Top SNP
Top SNP 
P-value

Top SNP 
location, bp

Top SNP 
MAF Trait(m/z)b

10 1 — rs110842319 4.13E-05 86155673 0.27 45.033

11 1 — rs41569328 2.75E-05 49824565 0.21 83.086

11 1 — rs41671173 5.30E-07 60150644 0.01 78.001

11 1 — rs109825961 3.67E-05 78755260 0.02 94.074

11 1 — rs110622288 3.05E-05 93635833 0.46 94.039

12 2 15.44–15.46 rs29015221 3.23E-05 15462779 0.41 protCHEESE

12 3 56.69–57.90 rs41582811 2.63E-05 57020102 0.49 44.98, 123.117, 141.129, 60.045

12 1 — rs41620203 2.04E-05 60134810 0.22 105.039

12 2 64.87–65.09 rs110564951 1.31E-05 65092442 0.34 74.051, 75.027

13 1 — rs42283006 4.78E-05 6600008 0.26 49.028

13 1 — rs41693645 4.70E-05 45112117 0.15 121.122

13 2 72.93–74.05 rs41712280 3.32E-05 74054238 0.25 81.070

14 1 — rs110323135 2.88E-05 19316702 0.38 133.123, 201.184

14 3 26.00–26.95 rs42304786 7.12E-06 26168147 0.04 fatMILK, fatCHEESE, 67.058

14 1 — rs109230206 3.33E-06 44029634 0.26 121.122, 147.134

14 1 — rs29024078 9.75E-06 47996787 0.10 83.086

14 2 81.20–81.31 rs109731285 4.96E-05 81309300 0.35 96.961

15 1 — rs110215534 2.61E-05 23426546 0.18 33.034

15 1 — rs43716972 4.71E-05 31193819 0.24 95.017

15 1 — rs109429918 3.69E-05 55488319 0.01 fat_to_protMILK

15 1 — rs42530896 3.40E-05 62849070 0.18 113.098

15 1 — rs41568418 3.09E-05 82388156 0.02 33.034

16 1 — rs109818696 2.85E-05 12963666 0.06 lactose

16 1 — rs41798196 9.62E-08 21772991 0.05 protCHEESE

16 1 — rs41640566 2.63E-05 57239720 0.04 81.070, 137.132

16 1 — rs109033026 1.44E-05 60615012 0.03 78.001

16 1 — rs110311677 4.51E-05 68889225 0.13 protCHEESE

16 1 — rs109659498 1.14E-05 71431541 0.25 84.075, 119.072

16 1 — rs41634224 2.54E-05 75232924 0.19 46.031, 44.058

16 2 77.29–77.47 rs110300263 1.72E-05 77286529 0.08 75.08, 48.053, 66.063, 83.071, 93.09,93.432, 94.095, 
119.072, 93.090, 94.095

17 1 — rs109501184 2.86E-05 22820344 0.46 107.066

17 2 33.83–35.38 rs42436295 2.02E-05 33827641 0.04 82.945, 84.942

17 1 — rs41577510 2.03E-05 66671839 0.37 57.07

18 3 12.16–13.35 rs41606534 6.58E-06 13346768 0.11 111.119, 121. 122,71.086, 79.075, 121.122, 133.123, 
135.134

18 1 — rs41867785 2.40E-07 16119985 0.05

71.086, 75.08, 85.101, 48.053, 66.063, 70.064, 79.075, 
83.071, 84.075, 93.09, 93.432, 94.095, 95.096, 111.104, 
119.072
119.089, 121.122, 123.076, 133.123, 135.134,136.022
137.101, 139.076, 139.134

18 1 — rs41574692 3.12E-05 31226355 0.01 92.061

18 1 — rs110323820 1.75E-06 52739093 0.18 111.119

19 1 — rs110681423 2.59E-05 48933619 0.02 117.047

19 1 — rs110985836 4.41E-05 57213764 0.03 113.057

19 6 60.32–63.14 rs41572967 5.78E-06 61630610 0.23 57.033, 57.070, 117.047

20 2 6.94–6.97 rs43096354 5.41E-06 6935534 0.31 56.045, 119.107, 40.027

20 1 — rs110781147 3.66E-05 13653662 0.44 53.039

20 1 — rs41631276 3.76E-07 46296840 0.01 ProtCHEESE

21 1 — rs110768892 2.51E-05 11144985 0.01 123.076

21 1 — rs110582978 8.96E-06 20028323 0.01 57.033

21 3 29.25–30.49 rs41662776 9.19E-06 30485584 0.44 74.051, 125.132, 123.117, 171.173, 143.143

21 1 — rs42645046 4.13E-05 36843951 0.11 109.099

21 7 40.72–45.33 rs41984926 8.27E-06 43117013 0.21 131.107,105.071, 147.113

21 1 — rs110682144 61994597 0.16 44.058

22 1 — rs41586672 4.43E-05 3126680 0.26 44.022

22 1 — rs29010379 4.78E-05 20434643 0.14 95.081

22 1 — rs41608934 3.25E-05 25141851 0.03 84.942

Continued
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traits, were located in the region at ~77.29–77.47 Mbp on BTA16, which was close to a quantitative trait locus (QTL) 
for the milk protein and k-casein percentages28. Two markers, which were associated to m/z 56.045 and m/z 119.107 
(rs43096354) and m/z 40.027 (rs42353243), mapped on BTA20 at ~0.3 Mb from FAM169A which has been sug-
gested to be a key regulator of milk protein synthesis in dairy cattle17. Additionally, the region of 7 SNPs on BTA21 
included a known QTL for milk fat and protein yield and percentage from the Cattle QTL database information28.

Fat metabolism.  The contribution of fatty acid metabolism to cheese VOCs is corroborated by several 
significant associations. For instance, rs43283349, which was significant for 3-methylbutyl butanoate (isoamyl 
butyrate)/nonanoic acid m/z 159.138, was located on BTA1 at ~0.1 Mb from AGPAT3, a positional candidate 
gene for milk FA29. The marker rs110986676, which was located on BTA6 and was significant for m/z 116.078, 
corresponded to an intron variant of SCD5 which was associated to variation in milk FA composition in dairy 
cattle16,30. The marker rs110681423, which was associated with m/z 117.047, was located on BTA19 at ~0.2 Mb 
from GH1 which has been put forward as candidate gene for milk fat percentage and fat composition12,31. The 
marker rs110858406, associated to m/z 63.044, mapped on BTA26 at ~0.9 Mb from GPAM which is involved in 
the regulation of milk fat synthesis and composition in dairy cattle32,33. Finally, rs110820252, which had signifi-
cant associations with the spectrometric peaks associated with the alkyl fragment m/z 42.01 and propanoic acid/ 
propanoic ester m/z 75.044 mapped on BTA28 within 2 kb 5′ to AGT, which is the sole precursor of all angioten-
sin peptides. Interestingly, the renin-angiotensin system is believed to impact body-fat storage as well as lipid and 
carbohydrate metabolism34,35.

Carbohydrate metabolism.  A significant association was found between rs110002748 and m/z 117.047, 
which mapped on BTA8 at ~1 Mb from B4GALT1. This gene encodes an enzyme that participates in glyconjuga-
tion and lactose biosynthesis, which occurs exclusively in the mammary gland36. An increase in the expression 
of B4GALT1 was observed in transition milk samples, and is reflected in an increase in lactose biosynthesis dur-
ing the earlier stages of lactation37. The high signal detected on BTA11 (rs41671173) was located on BTA11 at 
~0.5 Mb from B3GNT2, which synthesizes a unique structure known as poly-N-acetyllactosamine (polyLacNAc), 
a linear carbohydrate polymer composed of alternating N-acetylglucosamine and galactose residues38. This SNP 

BTAa #SNP Interval, Mbp Top SNP
Top SNP 
P-value

Top SNP 
location, bp

Top SNP 
MAF Trait(m/z)b

22 1 — rs41584627 3.67E-05 50926015 0.46 127.073

22 2 56.11–56.92 rs109470329 2.66E-05 56916823 0.16 105.071, 75.08

23 1 — rs41633690 3.39E-05 42357362 0.14 FatMILK

23 4 50.14–51.86 rs109579577 9.47E-06 51795496 0.12 82.945, 96.961, 84.942, 100.954, fatCHEESE

24 1 — rs110415388 3.44E-05 57725812 0.05 66.063

25 1 — rs110298146 1.13E-05 6968865 0.02 84.942

25 1 — rs110206231 2.52E-06 16335767 0.43 39.023, 40.027

25 1 — rs109274795 4.88E-05 19082329 0.26 149.045

25 1 — rs109322753 2.48E-05 24785051 0.01 105.039, 169.044

25 1 — rs29012599 2.05E-05 29065778 0.01 95.017

26 1 — rs110625287 4.58E-05 20597976 0.36 78.001

26 1 — rs42096562 4.66E-05 26585557 0.01 139.134

26 1 — rs42704169 2.10E-05 29529492 0.03 113.057

26 1 — rs110858406 2.35E-05 32030774 0.28 63.044

27 1 — rs109663833 5.00E-06 42118037 0.03 fatMILK

28 1 — rs109853706 4.70E-05 22792613 0.26 95.049

28 1 — rs109412394 1.46E-05 28884068 0.19 127.112, 99.081, 44.022

28 1 — rs110929815 3.91E-05 39528421 0.30 83.071

28 1 — rs41600236 4.08E-05 42436188 0.01 105.039

28 1 — rs110820252 3.89E-05 46146720 0.32 42.010, 75.044

29 2 26.01–26.24 rs42173924 4.13E-05 26243702 0.31 60.021

29 1 — rs111007459 4.01E-06 37440150 0.15 57.033

29 1 — rs42192239 1.31E-06 47269419 0.02 60.045

Uc 1 — — 1.04E-05 — 0.27 131.107

Table 3.  Summary results of the genome wide association analysis for spectrometric peaks from PTR-ToF-MS 
analysis of model cheeses. #SNP = number of the single nucleotide polymorphisms significantly associated 
to the trait; Interval: The region on the chromosome spanned among the significant SNP(s) (in Mb); P-
value (range) = The P-value of the highest significant SNP adjusted for genomic control; Top SNP location 
(bp) = position of the highest significant SNP on the chromosome in base pairs on UMD3.1 (http://www.
ensembl.org/index.html); Top SNP MAF = minor allele frequency of the top SNP. aBTA: Bos taurus autosome. 
bMY: milk yield. Cheese volatile compounds are reported as measured mass (m/z). The trait with the highest P-
value in each genomic region is bolded. cU: Undefined chromosome and position on the genome.

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
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explained ~60% of additive genetic variance for m/z 78.001. Finally, the high signals on BTA18 corresponded to 
the marker rs41867785, which is annotated as an intron variant of PHKB. This gene has been associated with the 
carbohydrate metabolic process, the generation of precursor metabolites and energy, and energy reserve39.

Figure 1.  Similarity network among cheese volatile compounds generated using ExpressionCorrelation. The 
nodes corresponded to cheese VOCs and the edges represented the similarity between vectors of the additive 
effects of all SNPs. Only correlations with r > |0.80| and P < 0.01 are represented. Eight sub-networks of ≥3 
nodes were identified which contained significantly dense clusters of VOCs (P < 0.05) detected by ClusterOne. 
The width of the edge indicates the value of the correlation; a wider edge corresponds to a higher correlation in 
absolute value.

Figure 2.  Significantly enriched KEGG pathways using genes associated to spectrometric peaks with a 
tentative identification from PTR-ToF-MS analysis of model cheeses. Only the traits showing significantly 
enriched terms are reported (FDR < 0.05). EPE_E2MB_E3MB_HA: Ethyl pentanoate (ethyl valerate)-Ethyl-2-
methylbutanoate-Ethyl-3-methylbutanoate (ethyl isovalerate)-Heptanoic acid.
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Correlations among VOCs based on SNP additive effects.  A greater level of detail concerning the 
shared genomic basis of cheese VOCs might form the basis for more accurate prediction models to be developed 
in the context of genomic selection for possible modulation of cheese flavour. In a previous work, we estimated the 
genetic relationships among cheese VOCs based on pedigree information11. Here, we used ExpressionCorrelation 
to calculate pairwise correlations between VOCs based on the SNP additive genetic effects, and we clearly identi-
fied groups of VOCs sharing a common behaviour. Having tentatively identified some compounds, we sought to 
associate the largest sub-networks to biochemical pathways and possibly associated flavour notes. Sub-network 
1 contained mostly ketones and aldehydes and might, therefore, represent catabolism of amino acids and fatty 
acids. Branched-chain aldehydes originate from AA degradation, in particular 2-methylbutanal from isoleucine 
and 3-methylbutanal from leucine40, while ketones can be produced from β-ketoacids derived from β-oxidation 
of fatty acids41. Green/fruity/floral notes are mostly associated with the compounds included in this group20,40,42. 
The reaction between free fatty acids and alcohols from lactose and AA degradation yield esters43, common 
cheese VOCs, and this pathway might be represented in sub-network 3, including the spectrometric peaks asso-
ciated with hexanoic acid, ethyl hexanoate/octanoic acid and ethyl butanoate/ethyl-2-methylpropanoate (ethyl 
isobutyrate). Most esters (e.g. ethyl butanoate, ethyl hexanoate, ethyl-2-methylpropanoate) are associated with 
the sweet, fruity and floral characteristics of cheese44–46. Finally, sub-network 4 might represent the glycolysis 
pathway, and, in particular, lactate or citrate metabolism, since it included the spectrometric peaks associated 
with the acetate ester fragment/acetic acid, 3-hydroxy-2-butanone(acetoin) and butanoic acid. Lactose is metab-
olised by starter bacteria, mostly through the glycolytic pathway, into lactate, which might be further metabo-
lised into acetate by lactococci or into butyrate by Clostridium sp.47. Acetate is also the main flavour compound 
originating from citrate metabolism as well as acetoin47,48. Cheesy, rancid and sour milk notes are associated with 
3-hydroxy-2-butanone(acetoin) and butanoic acid45,49, while acetic acid has a typical vinegar odour50.

Pathway analysis.  Standard GWAS analysis allows individual loci and genes likely to play a role in con-
trolling the investigated traits. However, it lacks the power to establish whether the detected genes act in coop-
eration as part of a complex network to control specific biological functions. We therefore carried out pathway 
analyses to prioritize genes in associated loci that are part of the biological pathways and processes potentially 
contributing to the cheese volatilome.

These pathway analyses confirmed the importance of proteolysis and amino acid metabolism for the forma-
tion of cheese VOCs (i.e. nitrogen and purine metabolism). Phenol in cheese originates from the metabolism of 
protein (casein) and, in particular, from the catabolism of tyrosine3. Besides sugar and fat metabolism, amino acid 
metabolism also provides substrates for ester formation, which might explain the enrichment of nitrogen metab-
olism for the spectrometric peaks associated with ethyl pentanoate (ethyl valerate)/ethyl-2-methylbutanoate/
ethyl-3-methylbutanoate(ethyl isovalerate)/heptanoic acid m/z 132.109. The tight junction pathway was 
enriched for the spectrometric peaks associated with heptan-2-one and ethyl pentanoate (ethyl valerate)-ethyl-
2-methylbutanoate-ethyl-3-methylbutanoate (ethyl isovalerate)-heptanoic acid. In the mammary gland, the tight 
junction (TJ) state is closely linked to milk secretion51, as they are involved in the transcellular transport of lactose 
and K+ to the extracellular fluid, while Na+ and Cl− are transported to the milk52. TJ integrity is compromised 
during mammary involution and also as a result of mastitis and periods of mammary inflammation53. Among the 
genes identified within this pathway, we found three protein kinase C (PKC) family members: alpha (PRKCA), 
beta (PRKCB) and epsilon (PRKCE). Several PKC inhibitors affect both the assembly and disassembly of TJs, 
which means that PKCs may regulate the dynamics of TJ formation54. Interestingly, this pathway was enriched for 
the energy of the curd as a percentage of the energy of the milk processed, which is an indicator of cheese-making 
efficiency55. Finally, enrichment of the long-term potentiation pathway for the spectrometric peaks associated 
with two ketones, octan-1-one and nonan-2-one, might be connected to their biosynthetic pathway, which is 
related to fatty acid metabolism; indeed, this pathway was significantly overrepresented in a recent GWAS and 
pathway-based analysis of milk fatty acids in dairy cows16. Moreover, this pathway contained several genes coding 
for glutamate ionotropic receptors (GRI), including GRIA1; it is of note that previous findings assigned to this 
gene a significant SNP for C14:115.

In our study, we exploited the potential of PTR-ToF-MS to provide detailed spectral information to charac-
terise food quality and authentication, and this was integrated with the genomic and biological information pro-
vided by GWAS and pathway analyses. Results obtained increase our understanding of the metabolic pathways 
and biological functions likely involved in the formation of cheese VOCs, providing unprecedented insights into 
the potential contribution of the cow’s genes to cheese flavour. A more effective approach might be to more accu-
rately identify compounds using PTR-MS and to improve the quality of cattle genome annotations.

Methods
Ethics statement.  The cows in the current study belonged to commercial private herds and were not sub-
jected to any invasive procedures. Milk and blood samples were previously collected during routine milk record-
ing coordinated by technicians from the Breeders’ Association of Trento Province (Italy), hence certified by the 
local authority.

Phenotypes and genotypes.  Individual milk samples were collected from 1,075 Italian Brown Swiss cows 
from 72 commercial herds located in the Alpine province of Trento (Italy). Details of the animals used in this 
study and the characteristics of the area are reported in Cipolat-Gotet et al.56 and Cecchinato et al.57 Gross milk 
composition was measured using a MilkoScan FT6000 (Foss Electric A/S Hillerød, Denmark). Model cheeses were 
manufactured from the raw milk of individual cows, as described in detail in Cipolat-Gotet et al.56. We used a com-
mercial starter culture at a concentration 8 times higher than recommended in order to reduce the acidification 
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time to 90 min and minimise the role of milk microflora. After ripening (60d), the model cheeses were weighed 
and analysed for fat and protein contents using a FoodScan apparatus (Foss Electric, Hillerød, Denmark). The 
headspace gas of each model cheese (n = 1,075) was measured with a commercial PTR-ToF-MS 8000 instrument 
supplied by Ionicon Analytik GmbH, Innsbruck (Austria), as described in detail in Bergamaschi et al.10 Internal 
calibration and peak extraction was performed according to the procedure described by Cappellin et al.58 Absolute 
headspace VOC concentrations, expressed as parts per billion by volume (ppbv), were estimated using the formula 
described by Lindinger et al.59 Given that the distribution of all spectrometric peaks showed a strong positive 
skewness, the data were transformed: the fraction of each peak plus one was multiplied by 106 and expressed as a 
natural logarithm to obtain a Gaussian-like data distribution. After filtering out all peaks below a threshold of 1 
ppbv and interfering ions, 240 spectrometric peaks remained for the analyses. The fragmentation pattern of 61 rel-
evant compounds, representing 78.0% of the total spectral intensity of the compressed data set without interfering 
ions, were retrieved from available GC-MS data on the same model cheeses10 and from the literature60–62. Isotope 
removal (r > 0.95, P < 0.001) yielded 173 spectrometric peaks, of which 45 were tentatively associated with VOCs.

The Illumina BovineSNP50 v.2 BeadChip (Illumina Inc., San Diego, CA) was used to genotype 1,152 cows (blood 
samples were not available for all the phenotyped animals). Quality control excluded markers with call rates >95%, 
with minor allele frequencies >0.5%, and without extreme deviation from Hardy-Weinberg equilibrium (P > 0.001, 
Bonferroni corrected). After filtering, 1,011 cows and 37,568 SNPs were retained for subsequent analyses.

Genome-wide association study.  Genome-wide association analyses (GWAS) were conducted 
using single-marker regression and the three-step Genome-wide Association using the Mixed Model and 
Regression-Genomic Control (GRAMMAR-GC) approach63 implemented in the GenABEL R package64. In 
the first step, an additive polygenic model with a genomic relationship matrix is fitted; secondly, the residuals 
obtained from this model are regressed on the SNPs to test for associations; in the third step, genomic control 
corrects for the conservativeness of the procedure65. The polygenic model was:

β= + +y X a e, (1)

where y is a vector of the observed response (milk fat, protein and fat-to-protein ratio; cheese fat and protein; 
cheese VOCs); β is a vector with the fixed effects of (i) days in milk of the cow (classes of 30 days each), (ii) the 
parity of each cow (classes of 1, 2, 3, ≥4), and (iii) the herd-date effect (n = 72); X is an incidence matrix connect-
ing each observation to specific levels of the factors in β. The two random terms in the model were the animal and 
the residuals, which were assumed to be normally distributed as σ~a N G(0, )g

2  and σ~e N I(0, )e
2 , where G is the 

genomic relationship matrix, I is the identity matrix, σg
2 is the additive genomic variance and σe

2 the residual var-
iance. The G matrix was built in GenABEL64 using identity-by-state coefficients. We adopted a threshold of 
P < 5 × 10−5 to declare significant SNPs66.

The proportion of genomic variance explained by the SNPs was calculated as 2pqa2, where p and q were the 
allele frequencies and a was the allele substitution effect. Model (1) was also used to estimate the variance compo-
nents and the genomic heritability of the traits based on the genomic relationship matrix. Heritability was esti-
mated as =

σ

σ σ+
h2 g

g e

2

2 2
.

The results of the GWAS analysis without filtering for the P-value threshold were used to build a matrix 
of row-wise SNPs (n = 37,568) and column-wise phenotypes (i.e. cheese VOCs, n = 173) in which the value 
in the cell corresponded to the SNP additive effect. This matrix was fed into the ExpressionCorrelation plugin 
of Cytoscape67 to create a correlation matrix of pair-wise Pearson correlations between phenotypes based on 
the effect across all the SNPs included in the analysis. Only the high-confidence correlations with P < 0.01 and 
>|0.80| were selected. A similarity network was generated by ExpressionCorrelation, where the nodes corre-
sponded to the phenotypes and the edges represented the similarity between vectors of the additive effects of 
all SNPs. This network was analysed with the ClusterOne plugin of Cytoscape68 to identify significantly dense 
clusters of VOCs (Mann-Whitney test, P < 0.05).

Gene-set enrichment and pathway analyses.  Pathway analyses were carried out on the tentatively 
identified spectrometric peaks (n = 45) to shed light on the biological functions underlying the synthesis and/or 
metabolism of cheese VOCs. As detailed in Dadousis et al.55, the GWAS results were filtered for significance with a 
P-value < 0.05 to identify “relevant” and “non-relevant” SNPs. Using the BiomaRt R package69,70, we assigned “rel-
evant” SNPs to genes if they were located within the gene or within 15 kb up- or down-stream of the gene71 based 
on the Ensembl Bos taurus UMD 3.1 assembly. This made it possible to also capture those SNPs that are missed by 
standard GWAS, due to its stringent significance threshold, but that may help explain the variability in the observed 
phenotypes, which may play a role in organised pathways or biological functions. The Kyoto Encyclopaedia of 
Genes and Genomes (KEGG)72 and the Gene Ontology (GO) databases73 were used to define the functional cat-
egories associated with the gene sets. To avoid testing broad or narrow functional categories, only GO and KEGG 
terms with >10 and <1000 genes were considered. A Fisher’s exact test was used to test for overrepresentation of 
functional categories (FDR < 0.05). The gene-set enrichment analysis was performed with the R package goseq74.
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