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Abstract The outer-membrane of Gram-negative bacteria is critical for surface adhesion,

pathogenicity, antibiotic resistance and survival. The major constituent – hydrophobic b-barrel

Outer-Membrane Proteins (OMPs) – are first secreted across the inner-membrane through the Sec-

translocon for delivery to periplasmic chaperones, for example SurA, which prevent aggregation.

OMPs are then offloaded to the b-Barrel Assembly Machinery (BAM) in the outer-membrane for

insertion and folding. We show the Holo-TransLocon (HTL) – an assembly of the protein-channel

core-complex SecYEG, the ancillary sub-complex SecDF, and the membrane ‘insertase’ YidC –

contacts BAM through periplasmic domains of SecDF and YidC, ensuring efficient OMP maturation.

Furthermore, the proton-motive force (PMF) across the inner-membrane acts at distinct stages of

protein secretion: (1) SecA-driven translocation through SecYEG and (2) communication of

conformational changes via SecDF across the periplasm to BAM. The latter presumably drives

efficient passage of OMPs. These interactions provide insights of inter-membrane organisation and

communication, the importance of which is becoming increasingly apparent.

Introduction
Outer-membrane biogenesis in Gram-negative bacteria (reviewed in Konovalova et al., 2017)

requires substantial quantities of protein to be exported, a process which begins by transport across

the inner plasma membrane. Precursors of b-barrel Outer-Membrane Proteins (OMPs) with cleavable

N-terminal signal-sequences are targeted to the ubiquitous Sec-machinery and driven into the peri-

plasm by the ATPase SecA and the trans-membrane proton-motive force (PMF) (Brundage et al.,

1990; Collinson, 2019; Lill et al., 1989; Cranford-Smith and Huber, 2018). Upon completion, the

pre-protein signal-sequence is proteolytically cleaved (Josefsson and Randall, 1981; Chang et al.,

1978), releasing the mature unfolded protein into the periplasm. The emergent protein is then

picked up by periplasmic chaperones, such as SurA and Skp, which prevent aggregation

(McMorran et al., 2013; Sklar et al., 2007), and somehow facilitate delivery to the b-Barrel Assem-

bly Machinery (BAM) for outer-membrane insertion and folding (Voulhoux et al., 2003; Wu et al.,

2005).

In Escherichia coli, BAM consists of a membrane protein complex of subunits BamA-E, of known

structure (Bakelar et al., 2016; Gu et al., 2016; Iadanza et al., 2016). The core component, BamA,

is a 16 stranded b-barrel integral membrane protein, which projects a large periplasmic stretch of 5
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POlypeptide TRanslocation-Associated (POTRA) domains into the periplasm. BamB-E are peripheral

membrane lipoproteins anchored to the inner leaflet of the OM. In spite of the structural insights,

the mechanism for BAM-facilitated OMP insertion is unknown (Ricci and Silhavy, 2019).

The bacterial periplasm is a challenging environment for unfolded proteins, so complexes span-

ning both membranes are critical for efficient delivery through many specialised secretion systems

(Green and Mecsas, 2016). How do enormous quantities of proteins entering the periplasm via the

general secretory pathway (Sec) efficiently find their way through the cell envelope to the outer-

membrane? From where is the energy derived to facilitate these trafficking processes some distance

from the energy transducing inner-membrane, and in an environment lacking ATP? Could it be

achieved by a direct interaction between chaperones, and the translocons of the inner (Sec) and

outer (BAM) membranes?

The core-translocon, SecYEG, does not possess periplasmic domains of sufficient size to mediate

such an interaction (Van den Berg et al., 2004). However, the Holo-TransLocon (HTL) contains the

ancillary sub-complex SecDF and the membrane protein ‘insertase’ YidC (Duong and Wickner,

1997; Schulze et al., 2014), both of which contain periplasmic extensions potentially large enough

to reach the POTRA domains of BamA.

SecDF is a member of the so-called root nodulation division (RND) superfamily of PMF-driven

transporters (reviewed in Tseng et al., 1999). It is a highly conserved component of the bacterial

Sec translocon, wherein it has long been known to facilitate protein secretion (Duong and Wickner,

1997; Economou et al., 1995; Pogliano and Beckwith, 1994). While fellow component of the HTL

– YidC – is essential for membrane protein insertion, and thus indispensable (Samuelson et al.,

2000; Scotti et al., 2000), mutants of secD and secF are not fatal but severely compromised and

cold-sensitive (Gardel et al., 1987), presumably due to deficiencies in envelope biogenesis. The

cause of this has been ascribed to a defect in protein transport across the inner membrane.

In keeping with other members of the RND family, like AcrB (Eicher et al., 2014), SecDF confers

PMF stimulation of protein secretion (Arkowitz and Wickner, 1994). Different structures of SecDF

show the large periplasmic domains in different conformational states (Furukawa et al., 2017;

Mio et al., 2014; Tsukazaki et al., 2011), affected by altering a key residue of the proton transport

pathway (SecDD519N – E. coli numbering) (Furukawa et al., 2017). On this basis, an elaborate mech-

anism has been proposed whereby PMF-driven conformational changes, at the outer surface of the

inner-membrane, pick up and pull polypeptides as they emerge from the protein-channel exit site of

SecY. Yet, ATP- and PMF-driven translocation across the inner-membrane does not require SecDF or

YidC; SecYEG and SecA will suffice (Brundage et al., 1990; Schulze et al., 2014). Evidently then,

there must be two PMF-dependent components of protein secretion: an early stage dependent only

on SecYEG/SecA and another later event regulated by an AcrB-like SecDF activity. This distinction

has not been fully appreciated.

This study explores the role of the ancillary components of the Sec machinery for protein secre-

tion, and for downstream trafficking through the periplasm for delivery to the outer-membrane and

OMP maturation. In particular, we examine the possibility of a direct interaction between the HTL

and BAM machineries to facilitate protein transport through the envelope. The basic properties and

structure of the inter-membrane super-complex are investigated, as well as its importance for OMP

folding and insertion. The implications of this interaction and its modulation caused by proton trans-

port through SecDF are profound. Thus, we consider their consequences for the mechanism of pro-

tein transport through the Sec and BAM machineries, and for outer-membrane biogenesis.

Results

Co-fractionation and immunoprecipitation highlight an interaction
between the Sec and BAM machineries
Total E. coli membranes from cells over-producing either SecYEG or HTL were prepared and frac-

tionated by sucrose gradient centrifugation to separate the inner- and outer-membranes

(Figure 1a). We first sought to determine the precise locations of the respective inner- and outer-

membrane proteins in the fractions; SDS-PAGE analysis and staining for total protein revealed the

presence of SecY in the lighter inner-membrane fractions (Figure 1—figure supplement 1a, yellow

asterisk – left panel). Heating the fractions (required to unfold outer-membrane proteins) prior to
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SDS-PAGE helped reveal the location of the most highly expressed outer-membrane residents

(OmpC and OmpF; Figure 1—figure supplement 1a, yellow asterisk – right panel). Thus, in these

gradients fractions 1–2 mostly contain outer-membranes, and fractions 4–5 are composed mainly of

inner-membranes.

Immunoblotting confirmed the presence of the BAM components (BamA, BamB, and BamD), as

expected, in outer-membrane fractions (OM; Figure 1b). Likewise, the over-produced SecY and

SecE subunits mark the fractions containing the core-complex (SecYEG) in the inner-membrane frac-

tions (IM; Figure 1b, YEG"). However, when over-produced as part of HTL, there is a marked shift of

their migration peak towards the outer-membrane containing fractions (Figure 1b, HTL"). Interest-

ingly, the over-production of SecDF alone results in a similar effect (Figure 1c), where SecD, SecY,

and SecG all migrate into the outer-membrane containing fractions. An effect which was lost in com-

parable experiments where the periplasmic domain of SecD (P1) had been removed (Figure 1c).

Our interpretation of these experiments is that an interaction between the Sec and Bam complexes,

requiring at least the periplasmic domains of SecD (and most likely SecF and YidC), causes an associ-

ation of inner- and outer-membrane vesicles reflected in the shift we observe.

To further examine this interaction, we extracted native membranes with a mild detergent for

immuno-precipitation (IP) using a monoclonal antibody raised against SecG. The pull-downs were

then probed for native interacting partners by western blotting (Figure 1d,e; Figure 1—figure sup-

plement 1b). As expected, SecG (positive control) and SecD of HTL co-immuno-precipitated. Cru-

cially, BamA could also be detected. The specificity of the association was demonstrated by controls

omitting the SecG antibody or the SecG protein (produced from membranes extracts of a DsecG
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Figure 1. Identification of interactions between HTL and BAM. (a) Schematic representation of sucrose gradient centrifugation tube for fractionation of

E. coli total membranes. Numbers 1–6 indicate the fractions taken for SDS-PAGE and immunoblotting shown in (b, c and d). (b, c) Immunoblots of

fractions produced as shown in a for membranes of (b): E. coli C43 overproducing either SecYEG or HTL or for (c): E. coli C43 with no over-expression,

and those over-producing either SecDF or SecD
DP1F (lacking the periplasmic domain 1 (P1) of SecD). To help visualise migration shifts, blotting signal

was used to quantify relative abundances of proteins of interest in fractions, shown above or below blots as normalised bar charts, where bars from left

(pink) to right (yellow) indicate fractions 1 (OM) – 6 (IM), respectively. (d) Co-immunoprecipitations (co-IP) of SecG, SecD, and BamA – pulling with the

SecG antibody. Pull-downs were conducted with solubilised crude membrane extracts from E. coli C43 (WT), a strain lacking SecG (DsecG), and C43

over-producing BAM. Experiments were conducted in the presence (+CL) and absence (-CL) of cardiolipin. L = load (1% total material), W = final wash

before elution (to demonstrate complete washing of affinity resin, 17% of total material) and E = elution (17% of total material). (e) Quantification of IPs

shown in (d). Error bars represent SEM. An unpaired T-test was used to compare samples (p=0.05, n = 3, * = <0.05, ** = <0.01, p values from left to

right are 0.4874, 0.8083, 0.0041, 0.0249, 0.0241, and 0.0839). Quantification was performed for cells of E. coli C43 (WT) and the same but overproducing

BAM (BAM). (f) Affinity pull-down of recombinant BamA-His6, SecD, and SecG by nickel chelation all in the presence of cardiolipin. L, W, and E as

described in (d).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Raw western blots of co-immunoprecipitations and affinity pull-downs.
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strain; Nishiyama et al., 1994), wherein non-specific binding was either undetectable, or consider-

ably lower than the specific co-immuno-precipitant (Figure 1d). When BAM was over-produced the

yield of BamA recovered in the IPs increased accordingly (Figure 1d,e; Figure 1—figure supple-

ment 1b).

In a similar experiment, a hexa-histidine-tagged BamA was used to isolate BAM from cells over-

producing the complex. Western blots showed that BamA co-purified, as expected, with additional

components of the BAM complex (BamB and BamD), and crucially also with SecD and SecG of the

HTL (Figure 1f; Figure 1—figure supplement 1c). Again, controls (omitting Ni2+, or recombinant

His6-BamA) were reassuringly negative.

Interaction between HTL and BAM is cardiolipin dependent
The phospholipid cardiolipin (CL) is known to be intimately associated with energy-transducing sys-

tems, including the Sec-machinery, for both complex stabilisation and efficient transport

(Schulze et al., 2014; Corey et al., 2018; Gold et al., 2010). For this reason, the IP experiments

above were augmented with CL. On omission of CL, the interactions of SecG with SecD and BamA

were reduced approximately three- and fivefold, respectively (Figure 1d,e; Figure 1—figure supple-

ment 1b). This lipid-mediated enhancement of the SecG-SecD interaction is consistent with our pre-

vious finding that CL stabilises HTL (Schulze et al., 2014) and shows it also holds true for the HTL-

BAM interaction. Apropos, CL has been shown to be associated with the BAM complex

(Chorev et al., 2018).

HTL and BAM interact to form an assembly large enough to bridge the
inner- and outer-membranes
To confirm the interaction between the Sec and BAM machineries, the purified complexes were sub-

jected to glycerol gradient centrifugation. When mixed together, HTL and BAM co-migrated

towards higher glycerol concentrations, beyond those attained by the individual complexes

(Figure 2a, yellow asterisk) and consistent with the formation of a larger complex due to an interac-

tion between the two. The interaction is clear but not very strong, wherein only a fraction of the HTL

and BAM associates. This low affinity is likely due to the required transient nature of the association

between the two translocons in vivo, and also because of the complete breakdown of the inner- and

outer-membranes by detergent – required for this experiment. When the experiment was repeated

with the individual constituents of HTL: SecDF and YidC, but not SecYEG, were also shown to inter-

act with BAM (Figure 2—figure supplement 1a–c, yellow asterisks). Again, the incomplete associa-

tion suggest their affinity for one another is not high.

Visualisation of the heavy fractions containing interacting HTL and BAM by negative stain electron

microscopy (EM) revealed a heterogeneous mixture of small and very large complexes (Figure 2—

figure supplement 2a, large complexes marked with white arrows). As noted above, this mixed

population is probably due to the expected transient nature of the interaction between the two

complexes, and/or due to super-complex instability caused by loss of the bilayer and specifically

bound phospholipids, for example CL, during purification (see above and below). Even though we

augment the material with CL, it is unlikely the full complement of lipids found in the native mem-

brane-bound state are restored.

To overcome this heterogeneity, we stabilised the complex by cross-linking, using GraFix

(Kastner et al., 2008; Figure 2—figure supplement 3a, left). Note that successful stabilisation of

the assembly by cross-linking was also demonstrated by size exclusion chromatography – performed

for sample preparation for cross-linked mass spectrometry (XL-MS) and cryo-EM (see next section).

We confirmed the presence of BAM and HTL constituents in the cross-linked fraction by mass spec-

trometry (Figure 2—figure supplement 3a, right, Figure 2—figure supplement 3—source data 1)

and subsequently analysed it by negative stain EM, which revealed a marked reduction in the num-

ber of dissociated complexes (Figure 2—figure supplement 2b). As expected, omitting CL from

the preparation results in dissociation of the majority of the large complexes, even with GraFix (Fig-

ure 2—figure supplement 2c), supporting the above findings regarding CL dependence of the

interaction (Figure 1e).

The subsequent single-particle analysis of the cross-linked material (Figure 2—figure supplement

3a, left, black asterisk; Figure 2—source data 1) revealed a remarkable structure large enough
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Figure 2. 3D characterisation of HTL-BAM by negative stain-EM and cryo-EM in detergent solution, and XL-MS analysis. (a) Silver-stained SDS-PAGE

gels of fractions from glycerol centrifugation gradients, with increasingly large complexes appearing in fractions of higher percentage glycerol, (from

left to right). Gels of BAM alone (top) HTL alone (middle) and HTL mixed with BAM (bottom) are shown. The fractions of furthest migration of the

individual components, as determined in the top two gels, are marked by vertical lines. HTL-BAM components in heavy fractions are marked with a

Figure 2 continued on next page
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(~300�250x150 Å) to contain both Sec and BAM machineries (Iadanza et al., 2016; Botte et al.,

2016), and with a height sufficient to straddle the space between the two membranes (Figure 2b;

Figure 2—figure supplement 3b), especially when considering the plasticity of the periplasm

(Zuber et al., 2008). Indeed, regions of SecDF and the POTRA domains of BamA have been shown

to extend ~60 Å (Furukawa et al., 2017) and ~110 Å (Ma et al., 2019) respectively, sufficient to

bridge this gap.

To assign the locations and orientations of the individual constituents of HTL and BAM, we com-

pared the 3D reconstructions of different sub-complexes: BAM bound to SecYEG-DF (without YidC)

(Figure 2—figure supplement 3c) or SecDF alone (Figure 2—figure supplement 3d). The differ-

ence analysis revealed the locations of YidC (Figure 2b, pink; Figure 2—figure supplement 3c, pink

arrow), SecDF (Figure 2b, green; Figure 2—figure supplement 3d, green arrow), and SecYEG

(Figure 2b, blue; Figure 2—figure supplement 3d, blue arrow) at the bottom of the assembly

(assigned as the inner-membrane region). The orientation of BAM relative to SecDF is different in

SecDF-BAM compared to HTL-BAM (Figure 2—figure supplement 3d, red arrows), possibly due to

its known ability to move (see below), and/or the absence of stabilising interactions with the missing

HTL components (SecYEG and YidC).

Removing BamB from the complex results in the loss of significant mass in the area designated as

the outer-membrane region (Figure 2b, orange; Figure 2—figure supplement 3e, orange arrow).

This confirmed the orientation of the respective inner- and outer-membrane-associated regions and

the assignment of the BAM complex as shown in Figure 2b. Interestingly, the complex lacking

BamB shows a diminishment of the density assigned as YidC (Figure 2—figure supplement 3e, pink

arrow), suggestive of a mutual interaction between the two.

Periplasmic domains of the Sec and BAM translocons associate to form
a large cavity between the bacterial inner- and outer-membranes
Despite heterogeneity in the sample, we were able to isolate a cross-linked HTL-BAM complex by

size exclusion chromatography and produce a low-resolution cryo-EM structure (Figure 2c; Fig-

ure 2—figure supplement 4; Figure 2—figure supplement 5a (a similar fraction was used to that

marked by the black asterisk) and Figure 2—source data 1) with an overall resolution of 18.2 Å.

Taken together with the difference map generated by negative stain-EM (Figure 2b; Figure 2—fig-

ure supplement 3), the structure reveals the basic architecture of the assembly and the arrangement

of constituent subunits.

The complexity of the image processing resulted in an insufficient number of particles of a single

class to attain high resolution. Many factors contribute to this problem: the dynamism of the com-

plex due to the limited contact surface between the HTL and BAM; its inherent mobility necessary

Figure 2 continued

yellow asterisk. (b) Negative stain analysis of the HTL-BAM complex (37.2 Å resolution) in four representative orthogonal views, with the orientation with

respect to the inner and outer membranes inferred. BAM (grey), BamB (orange), SecYEG (cyan), YidC (pink), and SecDF (green) are shown. (c) Three

orthogonal views of the cryo-EM HTL-BAM complex 3D reconstruction (18 Å resolution). Colours are as in (a), but with BamA in blue. (d) Side views of

the cryo-EM HTL-BAM complex showing the large cavity between the inner-membranes and outer-membrane complexes. (e) Close-up of the outer-

membrane region of the HTL-BAM complex. The cryo-EM structure (transparent surface) with BamABCDE atomic structures docked (pdb: 5d0q). The

position of BamB (orange) was determined directly by negative stain-EM (Figure 2—figure supplement 3e). BamA (blue), BamC (yellow), BamD (red),

and BamE (pink) are docked according to the HTL-BAM cryo-EM density and XL-MS data (Figure 2—figure supplement 5c). Green sphere atoms in

BamC and BamD show interacting points with SecD identified by mass apectrometry. (f) Lower threshold map of HTL-BAM overlaid with the standard

threshold (transparent grey), with the main components coloured as in (a). The lateral gate (LG) into the membrane and protein-channel both through

SecY and the central lipid pool of the HTL are highlighted.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Parameters of EM analysis of HTL and HTL-BAM structures.

Figure supplement 1. Glycerol centrifugation gradients of HTL and BAM components.

Figure supplement 2. Negative-stained EM micrographs of the HTL-BAM complex.

Figure supplement 3. 3D characterisation and subunit assignment of HTL-BAM by negative stain-EM in detergent solution.

Figure supplement 3—source data 1. Mass spectrometry (MS) analysis of the GraFix fractions for image processing.

Figure supplement 4. Image processing and classification strategy for the cryo-EM data of the HTL-BAM complex.

Figure supplement 5. Sample preparation and XL-MS analysis of HTL-BAM.
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for function; the presence of detergent surrounding the trans-membrane regions of the HTL and

BAM components accounting for most of the surface of the assembly; and finally, the absence of

inner- and outer-membrane scaffolds. The loss of the fixed double membrane architecture was par-

ticularly problematic; during image processing, we found different sub-populations where BAM piv-

ots away from its raised position towards where the inner-membrane would otherwise have been.

Obviously this would not happen if restrained by the outer-membrane.

Due to the limited resolution, we deployed cross-linking mass spectroscopy (XL-MS) to verify the

contacts between HTL and BAM responsible for inter-membrane contact points. The HTL and BAM

complexes were mixed together in equimolar quantities and cross-linked with the lysine-specific

reagent DSBU. The reaction mixture was then fractionated by gel filtration chromatography and ana-

lysed by SDS-PAGE. A single band corresponding to the cross-linked HTL-BAM complex was

detected (Figure 2—figure supplement 5a, lower band, black asterisk); note that the isolation of

the intact HTL-BAM complex by gel filtration chromatography provides further evidence of a genu-

ine interaction between inner- and outer-membrane translocons. The fractions containing the cross-

linked complex were combined and digested prior to LC-MS/MS analysis.

The analysis of mass spectrometry data enabled the detection and mapping of the inter- and

intra-molecular protein cross-links within the assembly. The results show an intricate network of inter-

actions, most of which are consistent with the cryo-EM structure, particularly at one side of the

assembly between SecD and BamBCD and on the other side between YidC and BamABCD (Fig-

ure 2—figure supplement 5b,c).

All the constituent proteins of HTL were cross-linked to BAM subunits with the exception of SecG

and YajC. Thus, the co-immunoprecipitation and affinity pull-down of SecG together with BamA

(described above; Figure 1d–f) must have been the result of an indirect interaction, presumably

bridged via SecDF-YidC, which interacts with both SecG and BAM. This is consistent with the lack of

an interaction of SecYEG alone with the BAM complex (Figure 2—figure supplement 1a), and the

assignment of the electron microscopy structures (Figure 2b,c) – also showing no direct connection

between SecYEG and BAM. In this respect, it is interesting to note in the structure that the periplas-

mic domains of SecD, YidC, and to a lesser degree SecF, extend to establish multiple interactions

with the BAM lipoproteins suggesting a pivotal role for these subunits in the formation of the HTL-

BAM complex (Figure 2c,d). This bridge between the two complexes also helps to define a very

large cavity between the inner- and outer-membrane regions (Figure 2d).

The BAM complex is recognisable in the cryo-EM structure at the outer-membrane with the

expected extensive periplasmic protrusions (Bakelar et al., 2016; Gu et al., 2016). Some compo-

nents of the BAM complex, such as BamB, can be unambiguoulsy docked into the cryo-EM structure

(Figure 2c), localised by negative stain difference mapping (Figure 2b and Figure 2—figure supple-

ment 3e), and its recognisable b-propeller shape (Bakelar et al., 2016; Gu et al., 2016). We also

suggest the locations of BamA, BamC, and BamD according to the cryo-EM density and the con-

straints of the XL-MS data (Figure 2e; Figure 2—figure supplement 5c).

The inner-membrane region of the HTL – while bound to BAM – is much more open than the pre-

vious structure of the isolated version (Botte et al., 2016). In the new open structure, the locations

of the core-complex SecYEG, SecDF, and YidC can be easily distinguished, in which the former two

are connected within the membrane by two bridges (Figure 2f, left). These connections could be

the binding sites of CL and the central lipid pool identified previously, required for structural stability

and translocon activity (Schulze et al., 2014; Corey et al., 2018; Martin et al., 2019). Within

SecYEG, the protein-channel can be visualised through the centre, along with the lateral gate

(LG, required for signal sequence binding and inner-membrane protein insertion) facing towards

SecDF, YidC, and the putative central lipid pool (Martin et al., 2019; Figure 2f, right).

Cardiolipin, required for super-complex formation, stabilises an ‘open’
form of the HTL
As mentioned above, the HTL bound to BAM in our EM structure (Figure 3, structure ii) seems to be

more open when compared to the previously published low-resolution cryo-EM structure

(Botte et al., 2016) (emd3056; Figure 3, structure i) and also displays a more prominent periplasmic

region. Preparations of HTL alone, made in this study, contain both a ‘compact’ state

(Figure 3, structure iii) similar to that of the previously published structure (Figure 3, structure i), as

well as a proportion of an ‘open’ state, with proud periplasmic domains, not previously described
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(Figure 3, structure iv) and apparently more similar to that seen in the HTL-BAM structure (Figure 3,

structure ii).

The HTL sample used here is extremely pure, of known subunit composition and not prone to oli-

gomerisation (Schulze et al., 2014). So, we can rule out that this larger form, assigned as an ‘open’

state, of HTL is not due to the presence of contaminants, unknown additional partner proteins, or

dimerisation. Lipid content within the HTL is critical for proper structure and function, and CL is par-

ticularly important for protein translocation through the Sec machinery (Schulze et al., 2014;

Corey et al., 2018; Gold et al., 2010; Hendrick and Wickner, 1991). Depletion of these core lipids,

for instance by detergent extraction, might be expected to cause a collapse of the complex. There-

fore, the reason for the presence of these different populations of the HTL – ‘compact’ and ‘open’

states – is likely due to varying interactions with lipids, including CL. In line with this hypothesis, aug-

menting the HTL with CL during purification increased the proportion of the ‘open’ state (from 8%

to 17%), which could be enriched by glycerol gradient fractionation (to 32%), and further stabilised

by cross-linking (to 40%) (Figure 3—figure supplement 1).

Evidently then, it seems likely that the open conformation (Figure 3, structure iv) is the state

capable of interacting with the BAM complex (Figure 3, structure ii). The ‘open’ structure, and the

‘compact’ structure seen before (Botte et al., 2016), may reflect different functional states of the

translocon. Presumably, the HTL would be closed when idle in the membrane and would be opened

to various degrees depending on the associated cytosolic partners (e.g. ribosomes or SecA), peri-

plasmic factors (chaperones, BAM, etc), and various substrates (e.g. globular, membrane, or b-bar-

rels). Thus, it is not suprising that when free of the constraints of the membrane, and in the harsh

environment of a detergent micelle, that these various states can be adopted – explaining the

observed heterogeneity.

Figure 3. EM structures of HTL in ‘compact’ and ‘open’ states. Structure and docking of a previously published

cryo-EM structure of HTL in the compact state (i) (Botte et al., 2016), the HTL-BAM complex (ii), HTL in the

‘compact’ state (iii) and HTL in the ‘open’ state (iv); structures (ii - iv) are from this study.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. EM field of wild type HTL in different conditions.
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Increasing the distance between inner- and outer-membranes weakens
the HTL-BAM interaction
The dimensions of the HTL-BAM structure are sufficient to span roughly the distance between the

inner- and outer-membranes, but only just. Thus, increasing the thickness of the periplasm might

therefore be expected to stymie formation of HTL-BAM complexes, as previously observed for other

trans-periplasmic complexes (Asmar et al., 2017; Cohen et al., 2017). To test this prediction, we

increased the thickness of the periplasm by manipulating the width-determining lipoprotein Lpp,

which separates the outer-membrane from the peptidoglycan layer. Increasing the length of lpp

increases the width of the periplasm, from ~250 Å for wild type lpp to ~290 Å when an additional 21

residues are added to the resultant protein (Lpp+21) (Asmar et al., 2017; Figure 4a).

The experiments described above (Figure 1d,e) were repeated: extracting total membranes in

the presence of CL for IP by antibodies raised against SecG. Blotting for SecD and BamA then pro-

vided a measure for interactions within HTL and between HTL and BAM, respectively (Figure 4b,c;

Figure 4—figure supplement 1). Consistent with our model, when the inter-membrane distance

was increased, the integrity of the HTL in the inner-membrane was unaffected, but the recovery of

HTL-BAM was reduced more than threefold (Figure 4b,c; Figure 4—figure supplement 1).

PMF stimulation of protein translocation through the inner-membrane
by SecA and SecYEG is not conferred by proton passage through SecD
It has been known for many years that SecDF plays a critical role in protein secretion. The results

above show that the periplasmic domains of HTL, and in particular those of SecDF, mediate the

recruitment of the BAM complex, likely to facilitate the onward journey of proteins to the outer-

membrane. Therefore, we decided to re-evaluate the precise role and activity of this ancillary sub-

complex. Experiments were established to investigate: (1) the role of SecDF in SecA dependent pro-

tein transport through the inner-membrane via SecYEG and (2) the consequences of its interaction

with the BAM machinery for outer-membrane protein maturation. In particular, we set out to explore
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Figure 4. Effect of increasing periplasmic distance on the HTL-BAM interaction. (a) Negative-stain EM model of

HTL-BAM (from Figure 2a), annotated with membranes at the experimentally determined distances between the

inner- and outer- membranes of E. coli strains containing wild-type lpp and mutant lpp+21 (Asmar et al., 2017). (b)

Co-immunoprecipitation of SecG, SecD, and BamA when pulling from an anti-SecG monoclonal antibody. Co-IPs

were conducted in the presence of cardiolipin as in Figure 1d, but with solubilised membranes of strains

described in (a). (c) Quantification of IPs from (b). Error bars represent SEM. An unpaired T-test was used to

compare samples (p=0.05, n = 3, * = <0.05, *** = <0.001, p values from left to right are 0.0170, 0.0990, and

0.0006).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Raw western blots of IPs investigating how periplasmic width effects the HTL-BAM

interaction.

Alvira, Watkins, et al. eLife 2020;9:e60669. DOI: https://doi.org/10.7554/eLife.60669 9 of 24

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.60669


the possibility of an active role in these events for the proton translocating activity of the SecDF sub-

complex.

secDF null mutants exhibit a severe export defect and are only just viable (Pogliano and Beck-

with, 1994). To explore this phenotype further, we utilised E. coli strain JP325, wherein the expres-

sion of secDF is under the control of an ara promoter: the presence of arabinose or glucose results

in production or depletion, respectively, of SecDF-YajC (Economou et al., 1995; Figure 5a; Fig-

ure 5—figure supplement 1a). To begin with, we grew cultures of JP325 containing either an empty

vector, recombinant secDF or secDD519NF overnight in permissive (0.2% arabinose) conditions. The

following morning excess arabinose was washed away by centrifugation and resuspension, before
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Figure 5. Effects of SecD depletion upon cell growth, OmpA transport across the inner-membrane, and maturation. (a) Western blot illustrating

depletion of SecD in E. coli JP325 whole cells when grown in the presence of arabinose or glucose. t = 0 represents the time at which an overnight

culture (grown in arabinose) was used to inoculate a secondary culture containing either arabinose or glucose. (b) Growth of E. coli JP325 transformed

with empty vector (pTrc99a, 1 + 2), pTrc99a-secDF (3 + 4), and pTrc99A-secDD519NF (5 + 6). Primary cultures were prepared in permissive conditions

(arabinose). Cells were then washed and plated onto LB-arabinose (left panel) or LB-glucose (non-permissive, right panel). (c) Classical SecA-driven

in vitro import assay with E. coli inverted inner-membrane vesicles (IMVs) and proOmpA. IMVs contained over-produced protein as stated on the x-axis.

Error bars represent SEM (n = 3). (d) Periplasmic fractions of E. coli JP325 immunoblotted for OmpA. Folded OmpA (bottom band fOmpA) and

unfolded OmpA (top band, yellow asterisk; ufOmpA) are shown. Also shown are control lanes containing E. coli whole cells with over-produced, mainly

‘folded’ OmpA (fOmpA, bottom band) and the same sample, but boiled, to produce ‘unfolded’ OmpA (ufOmpA, top band). For (e–g), samples were

prepared from various cell cultures; see key (inset (e)) for strains used. Error bars represent SEM (n = 3 for experimental samples grown in glucose). (e)

Quantification of SecD from western blots such as those shown in (a) (Figure 5—figure supplement 1a). Values are normalised to JP325-pTrc99a at

t = 0. (f) Culture growth curves. (g) Analysis of western blots such as those from (d) and Figure 5—figure supplement 1d showing the quantity of

ufOmpA as a fraction of the total OmpA in the periplasmic fraction. (h) Representative western blots of co-immuno-precipitations conducted as in

Figure 1d in the presence of CL, but with solubilised membranes prepared from E. coli JP325 grown in the presence of glucose and cloned with

variants of pTrc99a, as stated in the figure. (i) Quantification of BamA pull-down from co-IPs shown in (h). Error bars represent SEM. An unpaired T-test

was used to compare samples (p=0.05, n = 3, * = <0.05, p values from left to right are 0.0449 and 0.6412).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Raw western blots and control quantifications accompanying SecD depletion experiments from Figure 5.
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applying to plates containing either arabinose or glucose, for continued production or depletion of

endogenous SecDF-YajC, respectively.

Depletion of SecDF-YajC results in a strong growth defect (Figure 5b, panels 1 and 2), which can

be rescued by recombinant expression of wild-type secDF (Nouwen and Driessen,

2002; Figure 5b, panels 3 and 4). In contrast, expression of secDD519NF, which results in the produc-

tion of a complex incapable of proton transport (Furukawa et al., 2017), did not complement the

defect (Figure 5b, panels 5 and 6). This phenotype is consistent with a general secretion defect,

shown previously (Gardel et al., 1987).

In order to determine if this secretion defect is due to a problem in translocation through the

inner-membrane (HTL), or beyond, we set up a classical in vitro transport assay: investigating SecA-

driven proOmpA transport into inverted inner-membrane vesicles (IMVs) containing either over-pro-

duced native HTL, or the defective version of HTL (containing SecDD519NF). Both sets of vesicles con-

tained similar concentrations of SecY (Figure 5—figure supplement 1b), yet despite the blocked

proton pathway through SecDF, there was little difference in the efficiencies of transport

(Figure 5c). The lower quantities of transported pre-protein compared to experiments conducted

with IMVs made from cells over-producing only the core-complex (SecYEG), seen also previously

(Schulze et al., 2014), most likely reflects the reduced quantities of SecYEG in the IMVs made from

HTL-producing cells, measured by blotting for SecY (Figure 5—figure supplement 1b).

Most importantly, the results demonstrate that SecA mediated ATP- and PMF-driven protein

translocation through the inner-membrane via HTL does not require a functional proton wire through

SecDF (Figure 5c). In this respect, SecYEG and SecA are sufficient (Brundage et al., 1990). There-

fore, the proton translocating activity of SecD, needed for general secretion and cell survival, must

be required for something downstream of protein transport through the inner-membrane.

Interaction between the Sec and BAM complexes is required for
efficient OmpA folding
The most obvious function of an interaction between the Sec and BAM machineries would be to

facilitate efficient delivery and insertion of OMPs to the outer-membrane. We therefore reasoned

that disrupting this interaction might compromise OMP delivery to BAM, leading to the accumula-

tion of unfolded OMPs in the periplasm – particularly when high levels of outer-membrane biogene-

sis are required, such as in rapidly dividing cells.

Elevated levels of unfolded OmpA (ufOmpA) in the periplasm are a classical signature of OMP

maturation deficiencies (Sklar et al., 2007; Bulieris et al., 2003). It can be easily monitored by SDS-

PAGE and western blotting: folded OmpA (fOmpA) does not denature fully in SDS unless boiled; it

therefore runs at a lower apparent molecular mass compared to ufOmpA when analysed by SDS-

PAGE (Figure 5d, left; Figure 5—figure supplement 1c; Sklar et al., 2007; Bulieris et al., 2003).

Importantly, we confirm the distinct identities of ufOmpA and fOmpA bands in the western blots by

the analysis of native (folded) and boiled OmpA (unfolded). We also show the unfolded and folded

forms also migrate differently from the precursor – proOmpA (Figure 5—figure supplement 1c).

Therefore, the subsequent periplasmic analysis could not have been confused by un-secreted pre-

protein – potentially from contaminating cytosol.

Based on the above results, SecDF looks like the most important mediator of the Sec-BAM inter-

action. We therefore used the SecDF depletion strain (JP325) as a basis for functional assays. To

overcome the growth defect (Figure 5b, panels 1 and 2) and produce sufficient cells to analyse,

overnight cultures of the strains used above were grown in permissive media (arabinose). Cells were

then washed thoroughly to remove arabinose and transferred to new media containing glucose

(non-permissive), or maintained in arabinose as a control, then resuspended to give an OD600nm =

0.05 (marked as t = 0 in Figure 5a,d,e–g). Samples were taken from the growing cultures at regular

intervals and the ratio of unfolded to folded OmpA determined (Figure 5d,g), along with cell den-

sity (Figure 5f) and SecD levels (Figure 5e). Under SecDF depletion

conditions (Figure 5e, red squares), high levels of unfolded OmpA accumulate in the periplasm, par-

ticularly during the exponential phase when the demand for outer-membrane biogenesis is highest

(Figure 5d, yellow asterisk; Figure 5f,g; Figure 5—figure supplement 1d). Meanwhile, under per-

missive conditions (Figure 5e–g, arabinose, orange circles), a more modest increase in ufOmpA is

observable after 1.5 hr, but it recovers fully by 3 hr. Notably, this change is accompanied by a tran-

sient decrease in SecDF levels (Figure 5e, orange circles).
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We know that these experiments were not compromised by the precursor proOmpA, which was

not present in the periplasmic samples (Figure 5—figure supplement 1c). However, in some cases,

a spurious band appeared in the OmpA western blots between the unfolded and folded forms (Fig-

ure 5—figure supplement 1c, red asterisk; Figure 5—figure supplement 1d). The band was only

apparent in samples derived from overnight cultures grown in the presence of arabinose, including

in the wild-type parent strain MC4100 (Figure 5—figure supplement 1c, far right lane, red asterisk).

The stationary state of these cultures, grown in permissive and native conditions – with no impedi-

ment, or high demand for OmpA maturation – should not induce a build up of unfolded OmpA. So,

it is unlikely that this spurious band represents an additional unfolded state of OmpA, and was

ignored in the analysis.

Clearly, the expression of secDF and levels of ufOmpA in the cell envelope are anti-correlated,

exacerbated during fast cell growth. These effects were not an indirect consequence of BamA loss,

which was unperturbed (Figure 5—figure supplement 1e). Taken together, the data show that

depletion of SecDF reduces the interaction between HTL and BAM, and thereby hampers transport

of b-barrel proteins to the outer-membrane resulting in a build-up of ufOmpA in the periplasm. A

backlog of unfolded OMP could compromise outer-membrane biogenesis and its integrity, and

thereby explain the cold-sensitivity of secDF mutants (Gardel et al., 1987). This seems the most

plausible explanation as transport through the inner membrane is unaffected by the absence of

SecDF (Schulze et al., 2014; Figure 5c).

Proton transport through SecD is required for efficient outer-
membrane protein maturation
Proton translocation through SecD is crucial for cell growth (Figure 5b, panels 5 and 6), but evi-

dently not for PMF-stimulated protein transport through the inner-membrane via SecYEG

(Figure 5c). To determine if this activity is required for downstream events – such as delivery of

OMP to the outer-membrane – we once again deployed the SecDF depletion strain, complemented

with wild type or mutant secDF (as above, Figure 5b, panels 3–6), wherein the mutant produced

SecD is incapable of proton transport (SecDD519N).

Comparable quantities of the respective SecD variants could be produced (Figure 5e, green and

purple; Figure 5—figure supplement 1a). The subsequent analysis showed the wild type, but not

the mutant, reduced unfolded OmpA in the periplasm to levels much closer to that of the strain

grown in permissive conditions (Figure 5g; green and purple, respectively; Figure 5—figure supple-

ment 1d). Therefore, proton transport through SecD is apparently required for efficient outer-mem-

brane protein folding.

To confirm the defective variant SecDD519NF still interacts with BAM, we repeated co-IP experi-

ments as before (Figure 1d,e) using membrane extracts derived from the SecDF depletion strains

grown in the non-permissive condition (glucose; Figure 5b), but complemented with plasmids driv-

ing the expression of the wild type or mutant secDF, or nothing at all (empty plasmid). Again, in

order to prepare sufficient material, overnight cultures were grown in media containing arabinose

and then transferred to new media containing glucose. At OD600nm = 1.0, the cultures were har-

vested and membranes were prepared and solubilised for IP with SecG antibodies (Figure 5h,i; Fig-

ure 5—figure supplement 1f,g). As expected the immuno-precipitated yields of SecG were

invariant, but the depletion of SecD (cells harbouring only the empty vector; Figure 5—figure sup-

plement 1g) reduced the recovery of BamA commensurately (Figure 5h,i). The levels of co-immuno-

precipitated SecG, SecD, and BamA were the same irrespective of complementation with the wild

type or mutant forms of secDF. Evidently then, the integrity of the HTL and its ability to interact with

the BAM complex do not require a functional proton wire through SecD. Therefore, the mutant’s

compromised OmpA maturation must be due to the loss of proton flow through SecD, rather than a

loss of contact between HTL and BAM.

HTL(SecDD519NF) adopts a different conformation to the native version
The PMF-dependent mobility of the periplasmic domain of SecD (Furukawa et al., 2017) seems like

it might be critical for its activity as part of the BAM-HTL complex. To test this, the variant of HTL

containing SecDD519N was produced for comparison with the native form. Electron microscopy was

used to assess the extent of ‘compact’ and ‘open’ forms of the HTL complex (Figure 3; Figure 6,
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respectively, structures i and ii). The 2D classification of HTL-SecDD519N shows the open state is pop-

ulated to a similar extent compared to the unmodified HTL (Figure 6—figure supplement 1).

The 3D analysis shows the compact states in both cases, similar to those seen before

(Botte et al., 2016; Figure 3, structure i; Figure 6, structures i and iv). However, the ‘open’ states

are significantly different: blocking the proton pathway in SecD results in a shorter extension of the

periplasmic domains of the HTL, compared to the native version (Figure 6, structures ii versus v).

This is consistent with the conformational change observed at atomic resolution in SecDF alone (Fig-

ure 6, structures iii versus vi) (Furukawa et al., 2017). Even at the current low-resolution description

of the HTL-BAM complex (Figure 2), it is clear that these observed PMF-dependent conformational

changes of SecD would be communicated to the outer-membrane.

Discussion
The in vivo and in vitro analyses described here demonstrate a direct, functional interaction between

the Sec and BAM translocons, mediated by the extended periplasmic domains possessed by BAM

(Ma et al., 2019), SecDF (Furukawa et al., 2017) and YidC (Kumazaki et al., 2015), but not SecYEG

(Van den Berg et al., 2004). Evidently, direct contact between HTL and BAM is required for efficient

OMP biogenesis in rapidly growing cells. The interaction could enable large protein fluxes to stream

through the periplasm, while minimising aggregation and proteolysis (Figure 7). The presence of

super-complexes that bridge both membranes appears to be a fundamental feature of the Gram

negative bacterial cell envelope – critical for a whole range of activities including the export of pro-

teins through a gamut of different secretion systems (e.g. type I, II, III, IV, and VI) (Green and Mec-

sas, 2016); now including the Sec machinery. The general importance of these inter-membrane

associations is only just coming to the fore (Rassam et al., 2015; Rassam et al., 2018).

Figure 6. Structural comparison of HTL and HTL519. Comparison of negative stain-EM structures of ‘compact’ (structures i and iv) and ‘open’ (structures

ii and v) conformations of HTL versus the counterpart containing SecDD519NF (HTL519), both in the presence of CL. Atomic structures of SecDF overlaid

with filtered maps at 5 Å are shown alongside for the I-form (structure iii, 3XAM) and F-form (structure vi, 3AQP), with the amino acid substitution

equivalent to the E. coli SecDD519N in 3AQP. The grey arbitrary mass indicates the approximate position and mass of SecYEG.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Negative-stain EM of the native HTL and the version containing SecDD519N (HTL519).

Alvira, Watkins, et al. eLife 2020;9:e60669. DOI: https://doi.org/10.7554/eLife.60669 13 of 24

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.60669


It has already been shown that the HTL encloses a lipid-containing cavity within the membrane,

presumably to facilitate membrane protein insertion (Botte et al., 2016; Martin et al., 2019).

Remarkably, in the super-complex between HTL and BAM there is a much larger extension of this

cavity opening into the periplasm (Figure 2). This would seem an obvious place for OMP passage

and for the interaction with chaperones (Figure 7) and is of sufficient size to do so. The cavity is situ-

ated such that a secretory protein could enter via the protein-channel through SecYEG, and then

exit accordingly into the periplasm, or into the mouth of the BAM complex.

It remains to be seen how the Sec-BAM complex and the periplasmic chaperones coordinate.

Perhaps these chaperones recognise emerging globular proteins at the Sec-machinery and shuttle

them into the periplasm, with or without the need for the BAM complex. Otherwise, they could facil-

itate passage of OMPs through the inter-membrane assembly for outer-membrane folding and inser-

tion by BAM (Figure 7). SurA is known to interact with BamA (Sklar et al., 2007), and an interaction

with the HTL also seems likely (Figure 7). Other ancillary factors of the Sec machinery have also

been implicated: YfgM and PpiD are thought to mediate interactions between emergent periplasmic

proteins and chaperones (Götzke et al., 2014); indeed, PpiD has also been shown to interact with

SecYEG and YidC (Jauss et al., 2019). Interestingly, yfgL and yfgM are in the same operon

(Blattner et al., 1997), the former encoding a subunit of the BAM complex (BamB) (Wu et al.,

2005). Moreover, a recent proteomic analysis of the E. coli ‘membrane protein interactome’ identi-

fies cross-membrane interactions involving SecYEG, BAM and the chaperones YfgM and PpiD

(Carlson et al., 2019). Clearly, understanding the interplay of various periplasmic chaperones during

OMP passage through the Sec-BAM assembly to the outer-membrane will require further attention.

From our data it is clear that the periplasmic domain of SecD is central to the physical HTL-BAM

interaction. Even more intriguing though is the requirement for a functioning proton wire through

the SecDF trans-membrane domain. The non-functioning SecDF is fully capable of conferring an

interaction with BAM but is presumably unable to transmit PMF-dependent conformational changes

relayed from the inner-membrane. This static interaction of HTL and BAM is insuffient to enable effi-

cient OMP maturation. The consequences of preventing PMF inducing dynamic interplay between

HTL and BAM are as severe as the disconnection induced by SecDF depletion. Presumably, the
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Figure 7. Schematic representation of the HTL-BAM machinery. Model of OMP transfer through the bacterial envelope, facilitated by HTL-BAM and

periplasmic chaperones, such as SurA, Skp, PpiD, and YfgM. From left to right: OMP precursors with an N-terminal signal sequence are driven across

the membrane by the ATPase SecA through the Sec translocon – this process is stimulated by the PMF (independent of SecDF). Late in this process,

the pre-protein emerges into the periplasm and the signal sequence is removed, releasing the mature protein. Presumably, globular proteins are then

guided into the periplasm, where folding will occur assisted by periplasmic chaperones. Otherwise, OMP-chaperone-HTL complexes are recognised by

the BAM complex, with interactions forming between BAM and both HTL (this study) and SurA (Sklar et al., 2007). The persistence and variety of

chaperones involvement at this stage is unclear (?). This conjunction enables the smooth and efficient passage of OMPs to the outer-membrane, which

is enabled by coupling of the inner-membrane proton-motive force with conformational changes in the periplasmic domain of SecDF (right).
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deletion of the periplasmic domain P1 of SecD, which also eliminates the interaction with the outer-

membrane, will have an equally severe effect.

The requirement for PMF-driven inter-membrane dynamic connectivity raises the intriguing pros-

pect of TonB-style energy-coupling from the inner-membrane (Celia et al., 2016): that is the trans-

mission of free energy available from the PMF via the Sec-machinery (Brundage et al., 1990;

Arkowitz and Wickner, 1994; Schiebel et al., 1991) for OMP folding and insertion at the outer-

membrane. We therefore propose that one of the primary roles of SecDF is in inter-membrane traf-

ficking and energy transduction. Indeed, we and others have shown that ATP- and PMF-driven trans-

port of proteins through the inner-membrane is dependent only on SecYEG and SecA

(Brundage et al., 1990; Schulze et al., 2014), whereas we show here that proton translocation

through SecD is crucial for efficient OMP folding and growth.

Thus, there appears to be two distinct requirements of the PMF in protein secretion: one for the

early stage – SecA-driven translocation through SecYEG at the inner-membrane, and another for

late stages of OMP maturation. The latter is facilitated by conformational changes in SecDF for

transduction of energy from the inner- to the outer-membrane. Here, we show that an ‘open’ state

of the HTL interacts with the BAM complex, and that the periplasmic regions of SecD can adopt dif-

ferent conformations, reminiscent of those previously characterised as the I- and F-forms

(Furukawa et al., 2017); when a key proton carrying residue of the inner-membrane segment of the

translocon is neutralised – SecDD519N – the periplasmic domain adopts the F-form (Furukawa et al.,

2017). Thus, successive protonation (approximated by SecDD519N) and deprotonation result in large,

cyclical movements – between the I- and F-forms – during PMF-driven proton transport from the

periplasm to the cytosol (Figure 7). Presumably then, the occurance of these conformational

changes, while connected to the BAM complex, results in long-range energetic coupling between

the inner- and outer-membranes. Interestingly, the phospholipid cardiolipin (CL) is important for the

stabilisation of the ‘open’ state of the HTL and its interaction with the BAM machinery. It is probably

not a coincidence that this lipid has already been shown to be critical for PMF-driven protein translo-

cation through SecYEG (Corey et al., 2018). Certainly, we hope to overcome the inherent flexibility

of the CL-stabilised open translocon, primed to receive BAM, in order to determine its high-resolu-

tion structure, and further understand this process.

Taking all together, this builds a compelling case for SecD mediated inter-membrane energy

transduction – in keeping with other members of the RND transporter family, such as the assembly

of AcrAB (inner-membrane) and TolC (outer-membrane) (Du et al., 2014; Wang et al., 2017). Direct

association between inner- and outer-membrane components appears to be the rule rather than the

exception for transporters embedded in double membrane systems: parallels with the translocation

assembly module (TAM) for auto-transporter secretion (Selkrig et al., 2012), and the TIC-TOC

import machinery of chloroplasts (Chen et al., 2018) are striking, given the respective outer-mem-

brane components (TamA and TOC75) are homologous of BamA. Particularly intriguing is the possi-

bility of the mitochondrial homologue of BAM (sorting and assembly machinery; SAM) participating

in analogous inter-membrane interactions between inner- and outer-membranes. Indeed, subunits of

the MItochondrial contact site and Cristae Organizing System (MICOS) connect the energy-trans-

ducing ATP synthase of the inner-membrane and SAM at the outer-membrane (Ott et al., 2015;

Rampelt et al., 2017).

Materials and methods

Strains and plasmids
E. coli C43 (DE3) was a gift from Sir John Walker (MRC Mitochondrial Biology Unit, Cambridge, UK)

(Miroux and Walker, 1996). E. coli BL21 (DE3) were purchased as competent cells (New England

Biolabs). E. coli DsecG (KN425 (W3110 M25 DsecG::kan)) (Nishiyama et al., 1994), which lacks a

genomic copy of secG, was obtained from Prof. Frank Duong (University of British Colombia, Van-

couver, Canada). E. coli strain jp325 (Kanr), which contains an arabinose-regulated secDF-yajC

operon (Economou et al., 1995), was given to us by Prof. Ross Dalbey.

The plasmids for over-expression of secEYG and yidC were from our laboratory collection

(Collinson et al., 2001; Lotz et al., 2008), the former and also that of secDF were acquired from

Prof. Frank Duong (Duong and Wickner, 1997). Vectors designed for over-production of HTL, HTL
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(DYidC) and HTL(SecDD519N) were created using the ACEMBL expression systems (Botte et al.,

2016; Bieniossek et al., 2009). The vector for bamABCDE over-expression pJH114 (Ampr) was a

gift from Prof. Harris Bernstein (Roman-Hernandez et al., 2014) from which pJH114-bamACDE

(DBamB) was produced by linear PCR with primers designed to flank the BamB gene and amplify

DNA around it. FseI restriction sites were included in the primers to ligate the amplified DNA.

pBAD-SecDF(DP1) was generated by amplifying SecDF(DP1) from pBAD-SecDF and cloning it

between the pBAD NcoI and HindIII sites (Komar et al., 2016).

For SecDF depletion experiments, SecDF was cloned into pTrc99a (Ampr, IPTG-inducible), and

the secDD519N mutation was subsequently made by changing the wild type carrying plasmid using a

site-directed ligase-independent PCR method.

SDS-PAGE, western blotting, and antibodies
All SDS-PAGE was performed with either Invitrogen Bolt 4–12% Bis-Tris gels or Invitrogen midi 4–

12% Bis-Tris gels. For western blotting, proteins were transferred onto nitrocellulose membrane.

Mouse monoclonal antibodies against SecY, SecE and SecG were from our laboratory collection

(used at 1:10000 dilution). Polyclonal antibodies against SecD and BamA were generated commer-

cially in rabbits (all used at 1:5000 dilution). BamB and BamD antibodies were gifts from Dr Harris

Bertstein (1:5000 dilution). A secondary antibody conjugated to DyLight800 was used for SecG and

SecY (Thermo Fisher Scientific, 1:10000 dilution), whereas a HRP-conjugated secondary antibody

was used for SecD and BamA (1:10000 dilution).

Protein production and purification
HTL, HTL(DYidC), HTL(SecDD519N), SecYEG, YidC, and SecDF were purified as described previously

(Schulze et al., 2014; Collinson et al., 2001; Lotz et al., 2008; Burmann et al., 2013). BAM and

BAM(DBamB) was over-produced in E. coli C43 according to established protocols (Iadanza et al.,

2016; Roman-Hernandez et al., 2014; Kessner et al., 2008).

Isolation of inner and outer membranes
One litre of E. coli cultures over-producing SecYEG, HTL, SecDF, or SecDF(DP1) were produced as

described previously (Schulze et al., 2014; Collinson et al., 2001; Komar et al., 2016). The har-

vested cell pellets were resuspended in 20 mL TS130G, homogenised with a potter, passed twice

through a cell disruptor (Constant Systems Ltd.) for lysis and centrifuged to remove debris (SS34

rotor, Sorvall, 12000 xg, 20 min, 4˚C). The supernatant was taken and layered upon 20 mL TS130G +

20% (w/v) sucrose in a Ti45 tube and centrifuged (Ti45 rotor, Beckmann-Coulter, 167000 xg, 120

min, 4˚C). The pellet was taken, resuspended in 4 mL TS130G, homogenised with a potter and lay-

ered upon a sucrose gradient prepared in an SW32 centrifuge tube composed of 5 mL layers of

TS130G + 55% (w/v), 48%, 41%, 34%, and 28% sucrose. The sample was then fractionated by centri-

fugation (SW32 rotor, Beckmann-Coulter, 130000 xg, 15 hr, 4˚C). Upon completion, the light to

heavy fractions were analysed by SDS-PAGE and western blotting.

Co-immunoprecipitations (co-IPs) with E. coli total membrane extracts
Membrane pellets of E. coli strains C43 (WT), C43 pJH114-bamABCDE (Ampr), DsecG (Kanr), WT

lpp, mutant lpp+21 and JP325 (containing variants of pTrc as specified in text, cultures grown in glu-

cose for depletion of endogenous SecDFyajC), were prepared as described previously

(Collinson et al., 2001), with bamABCDE over-expression achieved as before (Roman-

Hernandez et al., 2014). The pellets were resuspended in TS130G to 120 mg/mL, homogenised and

solubilised with 0.5% DDM for 1 hr at 4˚C. The solubilised material was clarified by ultra-centrifuga-

tion (160000 xg for 45 min) and the membrane extracts were analysed.

For co-IPs pulling on SecG antibody, 250 mL of protein G resin was washed in a spin column with

200 mM NaCl, 20 mM HEPES pH 8.0 (HS buffer), and blocked overnight in HS buffer + 2% (w/v) BSA

at 4˚C. Meanwhile, 7.5 mL of purified SecG monoclonal antibody was added to 500 mL of the mem-

brane extracts and incubated overnight at 4˚C. The following morning, the resin was washed thor-

oughly in HS buffer containing either 0.02% (w/v) DDM or 0.02% (w/v) DDM with 0.002% (w/v) CL,

resuspended back to 250 mL and added to the 500 mL of membrane extract and IgG mixture for

three hours rotating gently at room temperature. The resin was separated from the extracts by
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centrifugation in a spin column at 500 xg for 1 min, washed six times with 350 mL HS buffer, followed

by one final wash with 150 mL HS buffer, which was collected in a fresh tube for analysis (to which 50

mL of 4x LDS sample buffer was added once collected). The bound material was then eluted by addi-

tion of 150 mL 1 x LDS sample buffer (to which an additional 50 mL of 1x LDS sample buffer was

added once collected). Samples were analysed by SDS-PAGE and western blotting.

For co-affinity adsorption by pulling on the hexa-histidine tag of recombinant BamA, 100 mL of

nickel-charged chelating resin was added to 500 mL of membrane extracts and incubated for 5 min

at room temperature. The resin was then separated from the extract and treated in the same way as

described above but with TS130G + 0.02% (w/v) DDM + 0.002% (w/v) CL + 30 mM imidazole (wash-

ing) or 300 mM imidazole (elution).

Statistical analyses were conducted using GraphPad Prism. An unpaired T-test was used to com-

pare pull-down samples (p-value=0.05, * = <0.05, ** = <0.01, *** = <0.001, specific p-values are

stated in figure legends).

In vitro assembly and purification of complexes for EM and XL-MS
All protein complexes visualised by negative stain EM were formed by incubating 5 mM of the

respective proteins in binding buffer (20 mM HEPES pH 8.0, 250 mM NaCl, 0.03% (w/v) DDM,

0.003% (w/v) CL) at 30˚C for 30 min with shaking in a total volume of 150 mL. The protein complexes

were purified in a glycerol/glutaraldehyde gradient (20–40% (w/v) and 0–0.15% (w/v), respectively)

by centrifugation at 34000 RPM in a SW60 Ti rotor (Beckmann-Coulter) for 16 hr at 4˚C. Mobility con-

trols of individual and partial complexes (BAM, and HTL) or individual (SecYEG, YidC, SecDF) without

the glutaraldehyde gradient were performed under the same conditions. Gradients were fraction-

ated in 150 mL aliquots and those with glutaraldehyde were inactivated with 50 mM of Tris pH 8.0.

Aliquots were analysed by SDS-PAGE and silver staining.

The HTL-BAM complex for cryo-EM was formed by incubating 8 mM of the HTL and BAM com-

plexes in binding buffer (50 mM HEPES pH 8.0, 200 mM NaCl, 0.01% (w/v) DDM/0.001% (w/v) CL)

at 30˚C for 20 min with shaking in a total volume of 250 mL. After 20 min, 0.05% of glutaraldehyde

was added to the sample and incubated for 10 min at 21˚C. The crosslinker was inactivated with 30

mM Tris pH 8.0 and the sample was loaded onto a Superose 6 Increase 10/300 GL (GE healthcare)

column equilibrated in GF buffer (30 mM Tris pH 8.0, 200 mM NaCl, 0.01% (w/v) DDM). Fractions

were analysed by SDS-PAGE and silver staining.

The HTL-BAM complex for cross-linked mass spectroscopy (XL-MS) analysis was prepared follow-

ing the same procedure described for the cryo-EM preparation, but the sample was crosslinked with

1.5 mM DSBU and inactivated with 20 mM of ammonium carbonate pH 8.0 before being loaded

onto the gel filtration column.

XL-MS analysis
The DSBU cross-linked HTL-BAM complex was precipitated by methanol and chloroform

(Wessel and Flügge, 1984) and the pellet dissolved in 8 M urea. After reduction with 10 mM DTT (1

hr at 37˚C) and alkylation with 50 mM iodoacetamide (30 min in the dark at RT), the sample was

diluted 1:5 with 62.5 mM ammonium hydrogen carbonate and digested with trypsin (1:20 w/w) over-

night at 37˚C. Digestion was stopped by the addition of formic acid to a final concentration of 2% (v/

v) and the sample split in two equal amounts for fractionation by size exclusion (SEC) and reverse

phase C18 at high pH chromatography. A Superdex Peptide 3.2/300 column (GE Healthcare) was

used for SEC fractionation by isocratic elution with 30% (v/v) acetonitrile/0.1% (v/v) TFA at a flow

rate of 50 mL/min. Fractions were collected every minute from 1.0 mL to 1.7 mL of elution volume.

Reverse phase C18 high pH fractionation was carried out on an Acquity UPLC CSH C18 1.7 mm, 1.0

� 100 mm column (Waters) over a gradient of acetonitrile 2–40% (v/v) and ammonium hydrogen

bicarbonate 100 mM.

All the fractions were lyophilised and resuspended in 2% (v/v) acetonitrile and 2% (v/v) formic

acid for LC–MS/MS analysis. An Ultimate U3000 HPLC (ThermoScientific Dionex, USA) was used to

deliver a flow of approximately 300 nL/min. A C18 Acclaim PepMap100 5 mm, 100 mm � 20 mm

nanoViper (ThermoScientific Dionex, USA), trapped the peptides before separation on a C18

Acclaim PepMap100 3 mm, 75 mm � 250 mm nanoViper (ThermoScientific Dionex, USA). Peptides

were eluted with a gradient of acetonitrile. The analytical column was directly interfaced via a nano-
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flow electrospray ionisation source, with a hybrid quadrupole orbitrap mass spectrometer (Q-Exac-

tive HF-X, ThermoScientific, USA). MS data were acquired in data-dependent mode. High-resolution

full scans (R = 120000, m/z 350–2000) were recorded in the Orbitrap and after CID activation

(stepped collision energy 30 ± 3) of the 10 most intense MS peaks, MS/MS scans (R = 45,000) were

acquired.

For data analysis, Xcalibur raw files were converted into the MGF format through MSConvert

(Proteowizard; Kessner et al., 2008) and used directly as input files for MeroX (Götze et al., 2015).

Searches were performed against an ad hoc protein database containing the sequences of the com-

plexes and a set of randomised decoy sequences generated by the software. The following parame-

ters were set for the searches: maximum number of missed cleavages 3; targeted residues K;

minimum peptide length five amino acids; variable modifications: carbamidomethyl-Cys (mass shift

57.02146 Da), Met-oxidation (mass shift 15.99491 Da); DSBU modification fragments: 85.05276 Da

and 111.03203 (precision: five ppm MS [Kessner et al., 2008] and 10 ppm MS [Götze et al., 2015]);

False Discovery Rate cut-off: 5%. Finally, each fragmentation spectra were manually inspected and

validated.

EM and image processing
For negative stain EM, aliquots of sucrose gradient fractions containing the different complexes

were applied to glow-discharged (15 s) carbon grids with Cu 300 mesh, washed and stained with 2%

(w/v) uranyl acetate (1 min). Digital images were acquired with two different microscopes; a Tecnai

12 with a Ceta 16M camera (ThermoFisher Scientific) at a digital magnification of 49000 x and a sam-

pling resolution of 2.04 Å per pixel, and in a Tecnai 12 with a Gatan Camera One View at a digital

magnification of 59400 x and a sampling resolution of 2.1 Å per pixel. Image processing was per-

formed using the EM software framework Scipion v1.2 (de la Rosa-Trevı́n et al., 2016). Several thou-

sand particles were manually and semi-automatically supervised selected as input for automatic

particle picking through the XMIPP3 package (Abrishami et al., 2013; de la Rosa-Trevı́n et al.,

2013). Particles were then extracted with the Relion v2.1 package (Scheres, 2012a; Kimanius et al.,

2016) and classified with a free-pattern maximum-likelihood method (Relion 2D-classification). After

manually removing low-quality 2D classes, a second round of 2D classification was performed with

Relion and XMIPP-CL2D in parallel (Sorzano et al., 2010). Representative 2D averages were used to

generate several initial 3D models with the EMAN v2.12 software (Scheres, 2012b; Tang et al.,

2007). Extensive rounds of 3D classification were then carried out using Relion 3D-classification due

to the heterogeneity of the sample. The most consistent models were used for subsequent 3D classi-

fications. For the final 3D volume refinement, Relion auto-refine or XMIPP3-Projection Matching

were used. Resolution was estimated with Fourier shell correlation using 0.143 correlation coefficient

criteria (Rosenthal and Henderson, 2003; Scheres and Chen, 2012). See Figure 2—source data 1

for image processing details.

For cryo-EM, appropriate fractions of the glutaraldehyde-crosslinked HTL-BAM complex purified

by gel filtration were applied to glow-discharged (20 s) Quantifoil grids (R1.2/R1.3, Cu 300 mesh)

with an ultrathin carbon layer (2 nm), blotted and plunged into a liquid ethane chamber in a Leica

EM GP. Two data sets from the same grid were acquired in a FEI Talos Arctica cryo-electron micro-

scope operated at 200 kV and equipped with a K2 detector at calibrated magnification of 79000 x.

The first data set with 2056 images recorded, had a 1.75 Å/px sample resolution, dose rate of 2.26

electrons/Å2 and 20 s exposure time fractionated in 40 frames. Defocus values oscillated between

�1.5 nm and �3.0 nm. The second data set with 3703 images recorded, had a 0.875 Å/px sample

resolution, dose rate of 2.47 electrons/Å2 and 18 s exposure time fractionated in 40 frames. Defocus

values oscillated between – 1.0 nm and �2.2 nm. Particles were picked in the same way as for nega-

tive stain, and were binned to a 1.75 Å/px sample resolution before merging to the first data set.

Image processing was performed using the EM software framework Scipion v1.2 (de la Rosa-Trevı́n

et al., 2016) with a similar strategy to the negative stain-EM samples but also using extensive mask-

ing procedures (Figure 2—figure supplement 4).

All 3D reconstructions were calculated using a home-built workstation (CPU Intel Core i7 7820X,

2x Asus Turbo GTX 1080Ti, 16 Gb RAM DDR4) and partial usage of HPC clusters (Bluecrystal four

and Bluecryo) at the University of Bristol.
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Depletion of SecDF-YajC
E. coli strain jp325 was transformed with empty pTrc99a, or the same plasmid, but cloned with either

wild type secDF or secDD519NF. Precultures of the strains were prepared in 100 mL 2xYT media sup-

plemented with 0.2% (w/v) arabinose, ampicillin (100 mg/mL, for pTrc selectivity) and kanamycin

(50 mg/mL, for jp325 selectivity). The following morning, the cells were harvested by centrifugation

and resuspended with 50 mL fresh 2xYT (no arabinose). This washing procedure was repeated two

more times to remove excess arabinose. Prewarmed (37˚C) 1 L 2xYT cultures containing either 0.2%

(w/v) arabinose or 0.5% (w/v) glucose were then inoculated with the preculture such that a final

OD600 nm of 0.05 was achieved. An aliquot was taken every 1.5 hr for 6 hr. Induction of pTrc with

IPTG was not necessary as background expression was sufficient to achieve levels of SecD similar to

that of JP325 cultured in the presence of arabinose. Periplasmic fractions were produced by prepar-

ing spheroplasts (Birdsell and Cota-Robles, 1967), centrifuging the samples at 12000 xg for 5 min,

taking the supernatant (a mixture of periplasmic and OM fractions) and removing the OM fraction

by ultracentrifugation at 160000 xg for 20 min. The fractions were then subjected to SDS-PAGE and

western blotting.

Measurement of protein transport
Inner-membrane vesicles (IMVs) were produced from BL21(DE3) cells overproducing HTL, HTL

(SecDD519N), SecYEG or with empty pBAD as described previously (Corey et al., 2018). Transport

experiments with and without PMF were performed in triplicate using established methods

(Corey et al., 2018).
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