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Abstract

Background: The Escherichia coli heterodimeric HU protein is a small DNA-bending protein associated with the bacterial
nucleoid. It can introduce negative supercoils into closed circular DNA in the presence of topoisomerase I. Cells lacking HU
grow very poorly and display many phenotypes.

Methodology/Principal Findings: We analyzed the transcription profile of every Escherichia coli gene in the absence of one or
both HU subunits. This genome-wide in silico transcriptomic approach, performed in parallel with in vivo genetic
experimentation, defined the HU regulon. This large regulon, which comprises 8% of the genome, is composed of four
biologically relevant gene classes whose regulation responds to anaerobiosis, acid stress, high osmolarity, and SOS induction.

Conclusions/Significance: The regulation a large number of genes encoding enzymes involved in energy metabolism and
catabolism pathways by HU explains the highly pleiotropic phenotype of HU-deficient cells. The uniform chromosomal
distribution of the many operons regulated by HU strongly suggests that the transcriptional and nucleoid architectural
functions of HU constitute two aspects of a unique protein-DNA interaction mechanism.
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Introduction

HU is a small, basic, and thermostable dimeric DNA-binding

protein initially isolated as a factor stimulating the expression of

phage lambda genes [1,2]. It is a major structural component of

the nucleoid, and it is conserved among the majority of eubacteria.

HU is also present in archaea, in plant chloroplasts, and in a

eukaryotic virus [3,4]. HU of E. coli was shown to be a ‘‘histone-

like protein’’ which can introduce negative supercoiling into a

closed circular DNA in presence of topoisomerase I [5]. We

named this protein ‘‘HU’’ where ‘‘H’’ stands for histone and ‘‘U’’

for the U93 strain used at that time to isolate the E. coli nucleoid

[1,6]. In most bacteria, HU is encoded by a single gene except in

Enterobaceriaceae and Vibrionaceae, which possess two unlinked HU-

encoding genes, hupA and hupB [4,7]. In E. coli, single hupA or hupB

mutations do not significantly impair growth; however hupA

inactivation affects survival in prolonged stationary phase [8,9]. In

contrast, the hupAB double mutant grows very slowly and is highly

pleiotropic: a number of cell processes, such as cell division,

initiation of DNA replication, transposition, and other biochemical

functions, are altered and cause a slow-growth phenotype [9,10].

When the absence of HU in E. coli cells is not balanced by

compensatory mutations in gyrB, as frequently observed, the hupAB

mutant forms very tiny colonies on agar plates [11,12]. It is

interesting to note that the HU mutation is lethal in Bacillus subtilis,

which has no other histone-like protein [13].

In E. coli, the ratio of the three different HU forms, the HUab
heterodimer and the HUa2 and HUb2 homodimers, varies as a

function of the growth phase [14]. The three dimers exhibit

different DNA binding properties towards particular DNA

structures [15] and present different thermodynamic properties

[16]. We have shown that HU plays a positive role in translation of

the stationary phase sigma factor RpoS [17]. This finding was

further substantiated by showing direct HU-RNA interaction [18].

In vitro studies show that HU displays preferential affinity for

damaged DNA having nicks or gaps [15,19]. Several reports

confirm the involvement of HU in DNA repair: (i) cells lacking HU

are extremely sensitive to c and UV irradiation [20,21]; (ii) HU is

capable of displacing LexA, the repressor of the SOS response

genes, from its binding sites [22] and (iii) HU binds specifically to a

wide array of repair or recombination intermediates [23].

A transcriptional role of HU was also demonstrated for the up-

regulation of the proVWX operon in hyperosmolar environments [24],

and we showed that HU stimulates transcription by T7 RNA
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polymerase [25]. More recently, Adhya’s group revealed a role of HU

and negative supercoiling in the formation of the Gal repressosome, a

nucleoprotein complex necessary to repress transcription of the gal

operon [26]. Whereas the respective regulons of other bacterial

histone-like proteins, such as Lrp [27], H-NS [28,29], Fis [30], Crp

[31], IHF [32] have been identified, the role of E. coli HU on gene

regulation has never been addressed systematically at the genomic

scale. In the present study, we used microarray hybridization to

investigate the pleiotropic role of HU in the cell by studying genome-

wide gene expression as a function of the genetic hupA, hupB, hupAB

and wild-type backgrounds at three different growth phases. The

microarray data, combined with in vivo experiments presented here,

confirmed the involvement of HU in the SOS and the osmolarity/

supercoiling responses [20,21,24,33]. In addition, the results of these

experiments revealed a novel function for this global regulator in the

environmental programming of the cellular response during aerobic

and acid stress. The interconnection between these various responses

and the supercoiled state of the DNA is discussed.

Results

Microarray experiments
E. coli strain C600, originating from the Pasteur Institute, was

used for the microarray and in vivo experiments described here

(JO2057, Table 1). It was preferred over the commonly used ‘wild

type’ strain MG1655 for several reasons: first, most of the genetic

and biochemical evidence gathered in our laboratory is based on

C600 and second, it has been reported that MG1655 suffers a

number of growth defects [34] or chromosomal deletions [35].

Due to the instability of hupAB mutants [9,12], special care was

taken to reconstruct new mutants starting from JO2057. Strains

JO2081 (hupA), JO2087 (hupB) and JO3020 (hupAB) were

constructed, and their phenotypes and genotypes were verified,

as described in Materials and Methods.

To identify genes regulated by HU, which is present in E. coli as

three dimeric forms (HUab, HUa2 and HUb2) at a ratio that

varies according to growth phase [14], four strains (the three

mutants and the wild type) were grown in LB medium at 37uC.

Culture samples for microarray experiments were collected at

exponential, transition, and stationary phases. In order to achieve

optimal representation of short-lived RNA species, total RNA was

extracted from these samples as described in [36]. The genome-

wide mRNA levels were measured using high-density E. coli

AffymetrixH GeneChips microarrays. A total of 16 microarrays

were used: 8 assays were performed to duplicate the data for the

wild-type and hupAB double-mutant strains at exponential and

stationary phases; the remaining 8 assays consisted of wild-type

and hupAB experiments at the transition phase and single hupA and

hupB mutants at the three growth phases. The quality of the

microarray data was assessed by statistical analysis of the internal

duplicated data, which were found, in each case, to be highly

reproducible. After Affymetrix MAS 5.0 processing and normal-

ization, a discriminant criterion derived from fold filters used for

gene selection [37] was used to identify genes whose expression

varied across the experimental conditions. At that stage, 728 out of

the 4368 genes composing the microarray (16% of the genome)

were retained. This large amount of genes was certainly due to the

combined effects of hup genetic background and growth phase. To

overcome this difficulty and to identify the genes solely regulated

by HU, unsupervised data clustering was performed.

Biological and statistical validation of the E. coli regulon
by unsupervised data clustering

Data clustering methods are commonly used to investigate

microarray data. However, the relevance of the results is often

limited: the number of clusters is not known a priori and has to be

specified by the user. To identify meaningful classes of genes

regulated exclusively by HU, we developed an unsupervised data-

clustering method able to avoid numerous single-gene hypotheses

by partitioning the transcriptome profiling data into an optimal

and biologically relevant number of clusters and by removing the

interference of the unwanted growth phase variable.

We used the K-means algorithm with a distance measure based

on the Pearson correlation to cluster the expression profile of each

E. coli gene. In our experiments, these profiles were characterized

Table 1. Strains and plasmids used in this work.

Strain, phage, or plasmid Relevant characteristic(s) or genotype Source or Reference

pRS415 lacZ+ lacY+ bla+ [87]

lRS45 l imm21 ind+ bla9-lacZ+ lacY+ [87]

lRS88 l imm434 ind2 bla9-lacZ+ lacY+ [87]

OHP109 hupA::Cm [9]

OHP96 hupB::Km [9]

EF88 Dfnr::Tn10 (Tc) Jeff Cole

JR1713 DrecA::Tn10 (Tc) [20]

ENS305 lacZ::Tn10 (Tc) [25]

JO2057 (C600) thr-1 leuB6 thi-1 lacY1 glnV44 Institut Pasteur, laboratory collection

JO2081 hupA::Cm (JO2057+P1 transduction from OHP109) This work

JO2083 hupB::Km (JO2057+P1 transduction from OHP96) This work

JO3020 hupA::Cm, hupB::Km (JO2081+P1 transduction from OHP96) This work

JO2039 lacZ::Tn10 (Tc) (JO2057+P1 transduction from ENS305) This work

JO3027 lacZ (JO2039 cured from Tn10 with fusaric acid) This work

JO3029 Dfnr::Tn10 (Tc) (JO2057+P1 transduction from EF88) This work

JO3019 DrecA::Tn10 (Tc) (JO2057+P1 transduction from JR1713) This work

doi:10.1371/journal.pone.0004367.t001
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by 12 conditions (4 genotypes at 3 growth phases). The clustering

analysis was repeated 24 times for a total number of clusters

ranging between 2 and 25. The criterion of Hartigan [38] showed

that using nine gene clusters produced the best fit for our data

(Fig. 1). We then eliminated unwanted clusters containing genes

whose expression varied independently of hup genotypes. For this

purpose, the Kruskall-Wallis non parametric tests were used. They

permitted us to exclude the following clusters: cluster 1, 3 and 8

(growth phase regulated) and cluster 9 (regulated by an

undetermined factor) (Supplemental Table S1). It was interesting

to note that cluster 8 was populated by a number of genes

belonging to the stationary phase sigma factor (RpoS) regulon [39]

(Supplemental Table S2). Since we have shown previously that

RpoS translation is regulated by HU [17], we decided to exclude

from our analysis genes characterized as being under RpoS

control.

The five selected clusters (Clusters 2, 4, 5, 6 and 7) amounted to

353 genes (8% of the genome) whose transcription varied in the

absence of one or both hup genes. These 353 genes constituted the

HU regulon. The complete gene list is available in the

Supplemental Table S3. With the aid of the RegulonDB Web

service [40], these 353 genes were found to correspond to 229

operons (Supplemental Table S4). Each of the clusters contained a

number of complete transcription units; this certainly constituted a

good indication that the clustering analysis was consistent with

coordinated expression of the individual genes composing operons.

The proUVW operon constituted the only exception and will be

discussed later. Using the same web resource, each operon of the

HU regulon was inspected manually for its respective regulatory

characteristic and its potential assignment to other regulons. By

comparing theses characteristics with our transcriptomic expres-

sion patterns, we were able to assign a specific biological

significance to each of the five clusters.

The five HU-regulated clusters were characterized as follows.

Cluster 2 was the only one to contain genes induced in stationary

phase in strains expressing exclusively HUa2 or HUb2 homodi-

mers; the transcription of these genes in the double mutant and

wild-type strain was similar. Most of the genes of Cluster 2

belonged to well characterized regulatory classes: i) genes induced

by acid stress, ii) genes responding to high osmolarity and to

supercoiling and iii) genes repressed by FNR. Cluster 4 was found

to contain genes activated by HUa2 or HUab only in exponential

phase; most were FNR activated. Cluster 5 followed an expression

pattern opposite to that of cluster 4: its genes were repressed in

exponential phase by HUa2 or HUab and corresponded mostly to

FNR-repressed genes. The genes of cluster 6 were repressed by the

Figure 1. Gene dataset divided in nine clusters. The five clusters shown in color (2, 4, 5, 6 and 7) constitute the HU regulon. The twelve
experimental conditions are represented on the x-axis and correspond to the four genotypes (the wild type JO2057; the hupB JO2083; the hupA
JO2081 and the hupAB JO3020) at the three growth phases (exponential, transition and stationary). The y-axis indicates the absolute gene expression
values for each experimental condition shown in Supplemental Table 2. The black line corresponds to the average values and the grey interval
depicts the standard deviation of the bootstrap analysis.
doi:10.1371/journal.pone.0004367.g001
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HUab heterodimer in the three growth phases analyzed. Several

of the genes in this small cluster belonged to the LexA-repressed

SOS regulon. In cluster 7, the genes appeared to be activated by

HUab, mainly at the transition phase: they corresponded to genes

stimulated by FNR. These clusters are depicted in Figure 1. It

should be noted that a number of HU regulated genes encode

chaperones or correspond to oxidative stress genes; they are

present in the five clusters (Supplemental Table S5). To validate

these results, we undertook a more specific analysis and conducted

in vivo experiments to assess the biological relevance of the five HU

regulated clusters.

HU represses SOS response genes (Cluster 6)
The microarray results showed that transcription of cluster 6

genes was strongly repressed by HUab at all three growth phases

analyzed (Fig. 1). To facilitate comparisons, absolute expression

values from Supplemental Table S3 were normalized to the wild

type for each growth phase (Table 2). A number of these genes: sulA,

umuD, recA, recX, dinI and yebG encode functions that repair DNA

damage and prevent cell division until damage has been repaired

[41]; they share the property of being highly induced after UV

irradiation and repressed by LexA, the repressor of the SOS

regulon. The involvement of HU in the SOS response has been

reported by us and others: the extreme sensitivity of cells lacking HU

to c and UV irradiation implies that HU participates in DNA

repair, probably via a RecA-dependent pathway [20,21,33]. In

addition, we reported that the unbalanced over-expression of either

HU subunit causes transient SOS induction [42].

SulA is the best known SOS gene; its product binds FtsZ to

prevent septum formation in order to inhibit cell division [43].

The constitutive expression of sulA in hupAB mutants has been

reported [44]. Derepression of sulA in the hupAB genetic

background provides an explanation for cell filamentation

previously observed [9]. The UmuD protein belongs to an

error-prone repair DNA polymerase [45]. DinI and RecX are

involved in the positive and negative modulation of RecA filament

formation, respectively [46]. RecA, activated by DNA damage,

acts as a coprotease assisting LexA repressor autocleavage [30].

Cluster 6 contained, in addition to SOS induced genes, several

genes from the cryptic e14 lambdoid prophage: xisE (excisionase),

ymfJ and ymfL. These results are compatible with RecA-dependent

repressor cleavage and subsequent lytic induction of temperate

phages of this family; the SOS-mediated induction of xisE and ymfJ

has been reported [47]. Finally, it was noted that Cluster 6 lacked

SOS genes responding more weakly to LexA inactivation, but it

included some genes with unrelated or complex regulation, such as

sodA, which encodes a superoxide dismutase (Supplemental Table

S3).

In order to confirm the transcriptome data and to analyze in

detail the involvement of HU in the SOS response, we constructed

single-copy chromosomal sulA::lacZ and dinI::lacZ fusions (see

Materials and Methods) and analyzed their in vivo regulation.

Strains JO3057 and JO3059, carrying respectively sulA::lacZ and

dinI::lacZ fusions, were tested for SOS response by an antibiogram

plate assay in the presence of nalidixic acid. When XGal was present

in the plate, a characteristic blue halo was produced at the edge of

the growth inhibition zone. The blue halo was not formed by the

respective recA mutant derivatives JO3081 and JO3083 (data not

shown). In accordance with transcriptome data, the production of

b-galactosidase by hupAB fusions strains, JO3111 (sulA::lacZ) and

JO3113 (dinI::lacZ), was reproducibly induced three- to five-fold

relative to the HU+ parental strains, JO3057 and JO3059

respectively (Fig. 2). Similar results have been described for

recA::lacZ and umuC::lacZ fusions [33]. In order to investigate the
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time course of SOS induction, we measured this response as a

function of time, up to 75 min after nalidixic acid induction (Fig. 3).

In this experiment, we observed that the SOS response still occurred

in a double mutant, as already reported [20], but with a noticeable

three-fold lower amplitude. The basal level, before nalidixic acid

induction (indicated by an arrow), was higher in the double mutant,

as observed in the experiment shown in Figure 2. These results

demonstrated that HU is required for a full SOS response.

HU regulates osmolarity/supercoiling genes (Cluster 2)
Cluster 2 contained a high proportion of genes induced by an

increase in osmolarity. Many of these genes have been described

previously as belonging to other regulons whose expression is

modulated in stationary phase. This last point agrees with our

definition of this HU Cluster as seen in Figure 1, the only one to

contain genes regulated in stationary phase. The list of cluster 2

genes, with expression normalized to wild-type, is presented in

Table 3. The osmE gene is regulated by DNA supercoiling and

osmolarity [48], and osmY is known to be osmotically induced [49].

Under conditions of high osmolarity, the E. coli otsA and otsB genes

are responsible for the synthesis of high concentrations of internal

trehalose, an osmoprotectant [50]. The sra gene is cotranscribed

with the bdm gene from a promoter upstream of bdm which is

activated by osmotic shock [51]. Expression of TalA is induced by

osmotic stress only under aerobic conditions [52]. A very strong

correlation was observed between these HU regulated genes and

genes induced by supercoiling through osmotic shock described in

a transcriptomic approach [53]. These genes include genes with

known functions: katE (catalase hydroperoxidase III), grxB

(Glutaredoxin), dps (required for long-term stationary phase

viability), poxB (pyruvate oxidase), wrbA (NAD(P)H:quinone

oxidoreductase), aceAB (isocitrate lyase monomer; malate synthase

A) and genes whose function is still under investigation: elaB, ygaM,

ygaU, ybaY, ybgS, yebV, yodC, fbaB. Another recent article reported

the proteomic analysis of the osmotic response in E. coli [52]; their

data corroborate our transcriptome analysis (Table 3).

HU regulates acid-stress genes (Cluster 2)
Cluster 2 also included a number of genes identified as acid

inducible in the gene databases. E. coli can withstand a pH of 2.5

for several hours. The acid stress response in E. coli and related

organisms is quite complex and involves a number of regulatory

mechanisms [54]. Three or potentially four acid-resistance systems

(AR) have been reported [55]. The mechanism involved in the

genetic regulation of AR2, which has been extensively investigat-

ed, requires only three genes and eleven regulatory proteins. The

regulon of two of these (GadX-GadW) has been identified and

comprises 15 genes: gadAXW, gadBC, ybaST, slp-yhiF, hdeAB-yhiD,

yhiM, hdeD and yhiF [54]. The normalized expression values shown

in Table 3 indicate that 13 of these 15 genes belong to cluster 2 of

the HU regulon. In addition, Table 3 shows a compilation of acid-

inducible genes in four genetic backgrounds (gadX mutant and

overexpression of transcriptional regulators EvgA, YdeO and

GadX) as reviewed by Foster [56]. A very strong correlation was

found between GadX-repressed genes and genes induced in the

single hupA or hupB mutants in stationary phase. Cluster 2 also

contained genes that respond to acid stress but are not regulated

by GadX. These included wrbA (NAD(P)H:quinone oxidoreduc-

tase), nhaA (sodium/proton NhaA transporter), cbpA (a potential

chaperone), cfa (cyclopropane fatty acyl phospholipid synthase),

ycaC and yebV (unknown). In the view of these results, we

conducted an acid resistance assay on wild-type, hupA, hupB and

hupAB strains as described by Masuda and Church [57]. The wild-

type and hupB strains survived up to 3 hr at low pH; the hupAB

mutant showed hypersensitivity to acid, and the hupA mutant

displayed an intermediate phenotype (Fig. 4).

HU is a novel aerobic regulator of energy metabolism
(Clusters 2, 4, 5 & 7)

The prominent part of the genes characterizing the HU regulon

is known to be involved in bacterial energy metabolism. They

amount to 45% of the total number of the regulated operons and

are found in four different clusters: 2, 4, 5 and 7 indicating that

they obey different expression patterns.

In the facultative anaerobe E. coli, the presence of oxygen and

other electron acceptors influences the choice of catabolic and

anabolic pathways. E. coli prefers to grow using aerobic respiration,

but it can achieve anaerobic respiration with nitrate or other

electron acceptors when oxygen is absent; fermentation is used as a

last resort when no electron acceptor is available. The expression of

enzymes involved in energy metabolism is regulated mainly at the

transcriptional level. Two separate oxygen sensing/transcriptional

regulatory mechanisms are essential for the aerobic/anaerobic

switch (for a review see [58]). First, a two-component system,

responsible for micro-aerobic metabolism regulation, is composed

of a membrane-bound histidine sensor kinase (ArcB) able to

phosphorylate a transcriptional regulator (ArcA) [59]. The E. coli

ArcAB regulon comprises 175 genes involved in a large number of

cell processes [60]. FNR is the second transcriptional sensor-

regulator protein involved in the control of anaerobic metabolism; it

acts either as a transcription repressor or as an activator. The Fe–S-

containing FNR protein is capable of oxygen-regulated dimeriza-

tion and DNA binding [61]. The E. coli FNR regulon was initially

investigated by several laboratories but with somewhat divergent

Figure 2. Beta-galactosidase activity of SOS gene fusions. Beta-
galatosidase activity of sulA::lacZ and dinI::lacZ fusions measured in HU+

(JO3057, JO3059) and HU2 strains (JO3111, JO3113).
doi:10.1371/journal.pone.0004367.g002
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results probably due to different genetic backgrounds and growth

conditions [60,62]. More recently, a report based on a more

extensive study has re-evaluated the extent of the FNR regulon [63].

The absence of one or both HU subunits deregulated

transcription of the vast majority of the genes encoding electron

donors/acceptors or involved in fermentation and in aerobic/

anaerobic respiration. A direct comparison of data presented in

Clusters 2, 4, 5 and 7 to energy metabolism regulons showed a

striking resemblance between the HU and FNR regulons. More

surprisingly, the directionality of the HU-FNR regulation was well

conserved with a very few exceptions: all the genes induced (or

repressed) anaerobically by FNR were also induced (or repressed)

by HU in the presence of oxygen. Clusters 2 and 5 contained a

majority of FNR down-regulated genes whereas clusters 4 and 7

were populated with a majority of FNR up-regulated genes (See

Tables 3, 4, 5 and 6 for the relative, normalized gene expression

values). Effectively, HU binding to the FNR regulated, ndh

promoter has been reported [64].

In order to investigate and compare the in vivo regulatory

relationships between HU and the aerobiosis/anaerobiosis system,

we constructed single copy lacZ transcriptional fusions to several

genes strongly activated or repressed by HU as described above. We

chose three HU-activated genes from cluster 4, namely nirB, narG and

dcuC, encoding respectively the large subunit of nitrite reductase, the

a subunit of nitrate reductase and the anaerobic C4-dicarboxylate

transporter. These genes are known to be positively regulated by

FNR [63]. In parallel, two HU-repressed genes from cluster 5, lldP

and ndk, encoding respectively the L-lactate permease and the

nucleoside diphosphate kinase, were selected on the basis of their

strong response in the transcriptome analysis. The transcription of the

lldPRD operon, as seen in Figure 5, is repressed anaerobically by

ArcA-P [65]. The expression of ndk is negatively controlled in anoxic

conditions by an unknown mechanism [62]. In good agreement with

microarrays experiments, we observed in vivo that heterodimeric

HUab aerobically repressed lldP and ndk and stimulated nirB, narG

and dcuC (Fig. 5A). This is what we observed in anoxic conditions: we

confirmed lldP and ndk repression and the induction of nirB, narG and

dcuC (Fig. 5B). The expression of b-galactosidase by these five gene

fusions was then tested in four genetic backgrounds (wild-type, fnr,

hupAB and fnr hupAB) and in aerobic or anaerobic conditions (Fig. 6).

Several observations could be made: (i) the regulatory effect of HU

was only apparent in oxic conditions and wss stronger for genes that

are normally repressed in anaerobiosis, such as lldP and ndk; (ii) in

aerobiosis, there was no significant difference between fnr+ and fnr2

strains with the exception a two-fold effect for narG and (iii) in

anaerobiosis, we did not observe a significant difference between the

HU+ and HU2 derivatives of the five gene fusion strains: the only

measurable effect was due to the presence/absence of FNR,

especially for the FNR-regulated genes nirB, narG and dcuC.

These results prompted us to test the growth phenotype of a

hupAB strain in the absence of oxygen on complete anoxic medium

(see Materials and Methods). Surprisingly, we noted that the very

slow growth phenotype caused by the absence of HU in aerobic

conditions was not observed anaerobically. In anoxic conditions,

the HU-deficient strain lost its very small colony phenotype and

displayed a similar growth rate as the wild type control strain

(Fig. 7). After a number of verifications, we concluded that HU

was not necessary for growth in the absence of oxygen.

Figure 3. SOS induction kinetics. Respective beta-galatosidase activity of sulA::lacZ (A) and dinI::lacZ (B) fusions measured in HU+ (JO3057,
JO3059) and HU- strains (JO3111, JO3113) as a function of time after induction with 50 mg/ml nalidixic acid. The down arrows refer to basal levels
(non-induced states), analogous to those observed in the experiment described in Figure 2.
doi:10.1371/journal.pone.0004367.g003
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Discussion

Identification of the HU regulon
We examined the effect of HU, one of the most abundant

nucleoid-associated proteins in the bacterial cell, on genome-wide

transcription. Since HU exists as three dimeric forms in E. coli

(HUab, HUa2 and HUb2), depending mainly on the growth

phase, the respective role of each dimer was analyzed. We

compared the expression pattern of all E. coli genes in the wild-type

host and in strains carrying a mutation in one or in both HU-

encoding genes: the hupA, hupB and hupAB mutants. In each case,

the cultures were sampled at three different growth phases for two

reasons: we had shown that the expression of the HU genes is

regulated by growth phase [8] and that the expression of the

stationary phase sigma factor, RpoS is stimulated by HU at the

translational level [17]. An unsupervised statistical clustering

analysis allowed to subtract the interference from growth phase

and RpoS and to identify the E. coli genes strictly controlled by

HU at the transcriptional level. After this correction, the analysis

showed that the transcription of a total of 353 genes composing

229 operons is affected by the lack of one or both HU subunits.

The accuracy of the data and its processing was well supported by

the number of observed polycistronic operons where all the genes

are co-regulated (Supplemental Table S4).

The five HU-regulated clusters identified are populated with

genes involved in aerobic/anaerobic energy metabolism and to a

lesser extent in the SOS response, osmolarity stress response, and

acid stress response. We were able to discriminate between three

distinct HU regulons: the HUab regulon (cluster 6 repressed by

HUab and cluster 7 induced by HUab); the HUa2 or HUab
regulons (cluster 4 repressed by HUab and cluster 5 repressed by

HUa2 in exponential phase) and the HUa2 or HUb2 regulons

(cluster 2, repressed in stationary phase only). Four reasons might

explain why we did not observe genes regulated exclusively by

HUb2. First, HUb2 is unable to introduce negative supercoiling in

vitro on a relaxed DNA template in the presence of topoisomerase I

[5,8]; second, HUb2 is normally not present in the cell at 37uC: as

soon as it is synthesized it forms the heterodimer [14]; third,

thermodynamic studies have shown that HUb2 is partially

denatured at 37uC [16], and fourth, the synthesis of HUb2 is

preferentially stimulated during cold shock [66]. The HUb2

regulon might therefore be linked to low temperature environ-

ments.

The largest HU regulon clusters (2, 4, 5 and 7) share striking

similarities with the FNR regulon: genes activated or repressed by

FNR in anoxic conditions were respectively activated or repressed

by HU in the presence of oxygen. Clearly, FNR and HU exert

their regulatory control independently: i) the microarray data

showed that FNR expression is not affected in hup mutants and ii)

the microarray experiments were carried out in aerobic conditions

in which FNR is expressed under its apoFNR inactive form [67].

HU could therefore be considered as an aerobic modulator of the

FNR regulon.

The transcriptome profiling experiments described in this work

showed that a second group of genes, namely the SOS response (or

LexA regulon) was induced in the absence of both HU subunits.

However, the in vivo experiments, presented in Figure 3, showed

that SOS induction is much less efficient in a hupAB background,

as observed previously [20]. From these observations, it was

possible to conclude that HU is necessary for tight repression as

well as for full derepression of the SOS regulon genes found in

cluster 6. The ‘‘flattening’’ of the SOS response in the absence of

HU could be explained by the capacity of this protein to displace

the LexA repressor from its DNA-binding sites [22].

A third group of genes, namely those composing the acid stress

or GadX regulon, was found to belong to the HU regulon as well.

We tested whether the induction of these genes, induced in the

single hupA and hupB mutants, would confer acid resistance in vivo.

The acid resistance assay indicated that low pH strongly affected

the survival of the hupAB mutant and of the hupA mutant to a lower

extent. This effect could be explained by the accumulation of

protons intra- or extracellularly due to the deregulation of the cyo

and cyd operons encoding cytochrome proton pumps. However,

the increase in transcription of acid resistance genes in the hupA

and hupB single mutants observed in cluster 2 was insufficient to

permit low pH adaptation (Fig. 4).

The HU regulon comprised also a fourth group of genes known

to be induced by osmotic shock. The involvement of HU in the

adaptation of cell growth in hyperosmolar environments is well

known [24]. We observed an excellent correlation between cluster

2 of the HU regulon and genes involved in the synthesis of

osmoprotectants, which respond strongly to the osmotic response

via DNA supercoiling [53]. Since HU is able to constrain DNA

supercoiling and the regulation of these genes requires modulation

of DNA superhelicity, it seemed worthwhile to analyze the HU

regulon under this perspective.

The HU regulon and DNA supercoiling
The relationship of HU with DNA supercoiling has been

analyzed in a number of reports. Nucleoid sedimentation

experiments have shown that the absence of HU causes a decrease

Figure 4. Acid stress Test. The comparative survival of wild type
(JO2057), hupA (JO2081), hupB (JO2083) and hupAB (JO3020) strains
submitted to acid stress was measured as follows. Samples were taken
at different times form cells resuspended in LB medium at pH 2.5 or in
saline buffer at pH 7.2, serially diluted and plated on LB agar plates for
colony counting. The time points correspond to percent survival of
acid-treated cells versus control cells, averaged over two independent
experiments.
doi:10.1371/journal.pone.0004367.g004
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in chromosomal supercoiling [12,68]. The relaxation activity on

supercoiled plasmids of wild type and HU mutants strains

increases in the order hup+,hupB,hupA,hupAB [11]. A cross-talk

between HU and topoisomerase I activity has been observed: the

absence of HU generates more unconstrained supercoiling, which

in turn requires an increase in relaxing activity in order to

maintain physiological levels [11]. Mutations in the gyrB gene can

compensate the lack of HU [12]. In vitro experiments have shown

that HUa2, like HUab but not HUb2, constrains DNA

superhelicity [5,8]. Finally, the involvement of HU in DNA

supercoiling has been demonstrated at the crystallographic level

[69–71].

To further investigate the link between HU and DNA

superhelicity, we performed a systematic comparison between

the HU regulon and the lists of genes under supercoiling control

established independently by two groups [72,73]. We observed

that the HU regulon shared very few genes (,8% and ,4%,

respectively) with the superhelicity regulons (Supplemental Fig. S1

A & Tables S6 to S9). This shared subset of the HU regulon

contained genes regulated by supercoiling and osmolarity (otsB) or

by supercoiling and acid stress (nhaA and gadB). The same

comparison was repeated with the regulons of the two other major

nucleoid proteins H-NS and Fis [72] with a very similar outcome

(Supplemental Fig. S1 B, C & Tables S10 to S14). We deduced

from these observations that the majority of genes under

transcriptional superhelical control are regulated by unconstrained

chromosomal supercoiling and not by the constraining activity of

HU, H-NS and Fis. The regulons of these three proteins were then

compared to analyze their respective contribution to global

regulation.

Global regulation by HU, H-NS and Fis
Identification of the HU regulon permitted the systematic

comparison with the respective regulons described recently of the

other major nucleoid-associated proteins H-NS and Fis, [72].

Taken together, these three abundant proteins are responsible for

most of the compaction of the bacterial chromosome: it has been

reported that half of the negative supercoiling is constrained by

Fis, H-NS and HU [74]. Our data indicated that HU, H-NS and

Fis regulons share 15% to 32% of their genes, while specific genes

range from 59% to 69%; only 26 genes are common to the three

regulons (Supplemental Fig. S1 D & Tables S15 to S18). Several

genes are co-regulated by HUab and H-NS and encode proteins

that repress the acid stress response genes and the biosynthesis of

fimbriae, whereas both induce flagellar biosynthetic genes

(Supplemental Table S15). A number of chaperone genes and

environmental stress response genes are differentially regulated by

HU and H-NS (Supplemental Table S15). By comparing the genes

co-regulated by HU and Fis, we observed that both proteins

induce Cluster 4 genes while they repress Cluster 5 genes

(Supplemental Table S16). We observed also that HU regulates

these two clusters in the exponential phase, at the stage of growth

where Fis is most actively synthesized [14].

HU-DNA binding and transcription regulation
The identification of a regulon assumes that its regulator

interacts with specific genes, upstream of the protein coding

sequence. How does HU recognize its targets? The overlap

between the FNR and HU regulons suggested that FNR binding-

site variants might be recognized by HU. We therefore

investigated, by Gibbs sampling, the promoter region of the

regulated operons in each cluster. This search failed to produce

significant shared sequence motif (data not shown). It is interesting

to note that FNR can bind to some of its targets in the absence of a
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canonical FNR binding sequence, suggesting cooperative binding

with another factor [75].

Among the various HU-nucleic acid binding properties that

have been described, different DNA binding modes can be

invoked to explain mechanistically its regulatory function. Namely,

HU contributes to DNA loop formation [26], is capable of

constraining supercoiling DNA [69]. and shows higher affinity for

distorted DNA structures [23].

The HU regulon is composed of four well defined biological

classes of genes involved in stress response and adaptation to

environmental shifts. These four classes can be divided into two

categories on the basis of the reported DNA binding modes of HU,

described above. The regulation of the genes in first category

requires, in addition to HU, specific DNA binding of the

regulatory proteins LexA, GadX or FNR. We hypothesize that

HU induces DNA looping to help loading/unloading of these

regulators onto their specific binding sites in order to allow/block

RNA polymerase transcription initiation. The formation of such a

complex, called ‘‘repressosome,’’ has been studied in detail for the

gal operon. It involves the participation of the GalR repressor, HU,

Figure 5. Regulation of cluster 4 and 5 genes by HU and aerobiosis. (A) Comparison of the beta-galactosidase activity of lldp, ndk, nirB, narG
and dcuC transcriptional lacZ fusions in wild type and hupAB strains. (B) Comparison of the beta-galactosidase activity of the same gene fusions in
aerobic and anaerobic conditions. The numbers under the bars correspond to strain numbers described in Table 7.
doi:10.1371/journal.pone.0004367.g005
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and negatively supercoiled DNA [26]. A similar phenomenon has

been reported for the control of the FNR-regulated ndh gene [64].

The second category of the HU regulon contains genes known

to be controlled primarily by DNA supercoiling during hyperos-

molar upshift without the involvement of a specific regulatory

protein [53]. For these genes, it appears that the driving force of

regulatory control is solely constituted by the superhelical DNA

constraining capability of HU; effectively, these genes are not

found in the reported supercoiling regulons [72,73].

We also observed a good correlation between genes regulated

by HU and the chromosomal regions exhibiting ‘‘extreme

structure’’ predicted by the group of Ussery: these authors

analyzed five parameters affecting the DNA conformation of the

E. coli chromosome and identified 36 sites presenting a maximal

distortion [76]. We found that 15 of these sites mapped in (or very

near) genes belonging to the HU regulon (Supplemental Table

S19). This observation is consistent with the preferred interaction

of HU with distorted DNA structures rather than sequences

[15,19].

Global regulatory function and structural role of HU
How could we reconcile the transcriptional and chromosomal

architectural roles of HU? We have shown here that HU controls

the transcription of 353 genes composing 229 operons. Pheno-

typically, E. coli hupAB strains grow very poorly and display

numerous enucleated cells. These deleterious effects might be

caused by the inverted expression pattern of stress-induced genes

and energy metabolism operons and to loss of the nucleoid

architecture. Interestingly, these phenotypes are only visible in the

presence of oxygen and are rescued under anoxic conditions. The

absence of HU regulatory effect in anaerobiosis can be explained

by the increase of negative supercoiling, in these conditions, due to

an increase in DNA gyrase activity [68] or a decrease in

topoisomerase I activity [77]. As shown by our phenotype

observation in Figure 7, normal anoxic growth of hupAB strains

suggests that, under these conditions of absence of oxygen, the

superhelical DNA constraining activity of HU is not required for

the organization of the bacterial nucleoid.

In aerobic conditions, however, the essential role of HU could

be illustrated as follows. If we consider the presence of 30,000 HU

dimers in the cell [6,78], each covering a 9 bp sequence [79], it

can be deduced that each of the 229 HU-regulated promoters

accommodates 130 dimers, binding cooperatively, over a 1200 bp

segment. In these conditions, the average spacing between HU

binding sites on the chromosome would amount to ,20 kb

(Supplemental Figure S2). Interestingly, the bacterial nucleoid has

been described as being shaped in domains of 50–100 kb [80]

whereas more recent studies re-evaluated the organization of the

chromosome in 400 supercoiled looped domains of ,10 kb

(reviewed in [81]). The formation of these high-order HU-DNA

complexes has been observed by techniques as diverse as

crystallography [69–71], atomic force microscopy [82] and

fluorescence resonance energy transfer [83]. We therefore propose

to localize the nucleoid-shaping and DNA-constraining roles of

HU at the 229 chromosomal sites where transcription regulation

occurs.

In conclusion, our data has shown that HU regulates the

expression of 8% of the E. coli genome using two mechanisms. In

the first, HU cooperates with known transcription regulators such

as LexA, GadX of FNR and in the second, HU acts alone on its

DNA structure targets. Our observation that HU is necessary in

aerobiosis and dispensable in anoxic conditions unravels the

important role played by this histone-like protein in the

metabolism of the bacterial cell and opens new areas for research

to be explored.

Materials and Methods

Plasmids, phages, bacterial strains and general growth
conditions

The E. coli K-12 bacterial strains used in this work are listed in

Table 1. New C600 (JO2057) derivatives carrying the mutated hup

were constructed. JO2081 (hupA), JO2083 (hupB) and JO3020

(hupAB) were obtained by phage P1 transduction by selecting on

LB agar plates containing the appropriate antibiotics. The C600

hupAB mutant displayed the characteristic small-colony and cell-

filamentation phenotypes, as expected and observed previously

[9]. The hup gene interruptions were verified for each construction

by PCR analysis of genomic DNA extracted from each mutant

(data not shown). The absence of the respective HU subunits was

demonstrated by western blot immunodetection after SDS-PAGE

and Acid Urea Triton-PAGE (data not shown). The lacZ, fnr and

recA mutations, originating respectively from ENS303 [25], EF88

Figure 6. Regulation of cluster 4 and 5 genes by HU, aerobiosis and FNR. Individual and combined effects of the wild type, Dfnr, hupAB and
Dfnr hupAB backgrounds and aerobic or anaerobic growth conditions on the beta-galactosidase activity of lldp, ndk, nirB, narG and dcuC
transcriptional lacZ fusions. The numbers under the bars correspond to strain numbers described in Table 7.
doi:10.1371/journal.pone.0004367.g006
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(Jeff Cole), and JR1713 [20], were introduced into the same

genetic background by P1 transduction to generate respectively

JO2039, JO3019 and JO3029. Due to the lack of phenotype in our

laboratory culture conditions, the presence of the fnr::Tn10 marker

in JO3029 was verified by genomic PCR (data not known). To

allow re-use of the tetracycline resistance marker, strain JO2039

was cured from its Tn10 transposon by growth on fusaric acid

medium to yield JO3027 as described [84]. Luria-Bertani (0.5%

NaCl) broth and agar (15 g/liter) were used for routine growth.

When used, ampicillin, tetracycline, kanamycin, and chloram-

phenicol were provided at final concentrations of 100, 12, 50, and

20 mg/ml, respectively. Anoxic growth conditions were achieved

in a 2.5 liter Oxoid anaerobic jar (Model AG25) (Oxoid,

Hampshire, UK) or in a Coy anaerobic chamber (Coy Enterprises,

Inc.) using LB 0.5% NaCl containing 10 mM NaNO3 and 0.2%

(wt/vol) glucose.

Construction of strains carrying single copy promoter-
lacZ fusions and mutant derivatives

The lacZ fusion strains used in this work are shown in Table 7.

They were constructed as follows. E. coli chromosomal DNA was

extracted and purified from strain JO2057, as described [85]. The

cloning of the promoters of the genes of interest was assisted by the

BAGET web service [86]. They were amplified by PCR from the

chromosome with Pfu polymerase (Promega) using gene-specific

primers flanked by EcoRI or BamHI restriction sites except in the

case of sulA where the second primer was flanked by a BglII site

due to the presence of a BamHI site in the amplified fragment.

Theses oligonucleotides are described in Supplemental Table S20.

The resulting PCR fragments were digested with EcoRI and

BamHI (EcoRI and BglII for sulA) and directionally cloned into

BamHI-EcoRI-digested lacZ operon fusion vector pRS415 [87].

All lacZ fusions were transferred from their respective plasmid to

phage lRS45 by lytic rescue with the exception of the dinI::lacZ

and sulA::lacZ fusions which were rescued on the non SOS-

inducible lRS88 ind2. C600 lacZ lysogens were constructed with

these fusion-carrying phages. Additional mutations were then

introduced by P1-mediated transduction and selection for the

appropriate antibiotic resistance. In order to avoid gene dosage

interference caused by a variable number of fusion-carrying

prophages, the strain derivatives were constructed sequentially

using the original C600 lacZ lysogen as starting material, as

indicated in Table 7.

Beta-galactosidase assay
Cell extracts were prepared from exponential phase cultures

grown in 5 ml LB at 37uC, aerobically or anaerobically as

described above. Assays of b-galalactosidase from these extracts

were carried out as described [88], in triplicate.

Acid resistance assay
The assay to measure the resistance of strains to low pH

exposure was conducted in duplicate, as described [57].

Microarray technology
Affymetrix GeneChips were chosen for the transcriptomic

approach, since they provide a 15- to 40-fold probe redundancy for

each individual gene to increase repeatability. In our hands, the

correlation between duplicate experiments was statistically significant

(see below). The four bacterial strains JO2057, JO2081, JO2083 and

JO3020) described above were grown in 100 ml LB 0.5% NaCl at

200 rpm in a New Brunswick laboratory shaker in 2-liter flasks. LB

medium was chosen over synthetic minimal for its better permissivity

for the growth of hupAB mutants. The typical doubling time, observed

in exponential phase, was 40 min for JO2057, JO2081, JO2083 and

75 min for JO3020. The various growth phase samples were

collected at the following cell densities: exponential phase: OD600

0.6–0.7; transition: 2.2–2.5 and stationary: 4.6–4.8 (3.0 for hupAB).

Figure 7. Phenotype of a HU2 strain in the presence and absence of oxygen. (A) Colony phenotype of the hupAB (JO3020, left) and wild
type (JO2057, right) strains in aerobic conditions. (B) Colony phenotype of the same strains in anaerobic conditions. The strains are plated on LB agar
supplemented for anaerobic growth (see Material and Methods).
doi:10.1371/journal.pone.0004367.g007
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Special care was taken to process the samples immediately for total

RNA extraction to ensure optimal representation of short lived

messenger species. The protocol for RNA extraction was adapted

form [36]. Briefly, a culture volume of 7 ml was mixed with the same

volume of boiling 2% SDS, 4 mM EDTA and heated at 100uC for 3

to 5 min then vortexed cooled first?. At this stage, the extract was

either processed further or stored at 220uC. Seven milliliter of

phenol/water were added before incubating 10 min at 67uC with

occasional stirring. The samples were cooled on ice and centrifuged

10 min at 5000 rpm at 4uC. The aqueous phase was separated,

extracted the same way and then once with phenol/chloroform (v/v

1:1). One tenth volume of 4 M NaCl and 2.5 volumes of cold ethanol

were then added to the aqueous phase. The tubes were left at 220uC
for two hrs and then centrifuged at 8500 rpm at 4uC. The pellet was

washed with 70% ethanol, dried under vacuum, and resuspended in

300 ml sterile water and transferred to an eppendorf tube. Qiagen

RDD buffer (34.5 ml) and of RNase free DNase I (9.37 ml, Qiagen)

were added. After 15 min at room temperature, the tubes were mixed

by inversion and deproteinized as described above with 300 ml

phenol/H2O at room temperature. The RNA was then precipitated

with 37.5 ml NaCl 4 M and 823 ml cold ethanol. After 2 hrs at

220uC, the tubes were centrifuged 30 min at 10,0006g at 4uC, the

pellets were then washed with 70% ethanol then dried under vacuum

and resuspended in 60 ml sterile water. The RNAs were stored at

220uC. RNA purity was assessed by measuring the A260/A280 ratio

and selecting them within a range of 1.8 to 2.1. Samples with a ratio

lower than of 1.8 were discarded. RNA samples were reverse

transcribed and biotinylated according to the Affymetrix protocol.

Biotin-labeled cDNA (2.5 mg) was hybridized to E. coli antisense

genome arrays (Affymetrix) at 45uC for 16 h as recommended in the

GeneChip technical manual (Affymetrix). The probed arrays were

scanned at 570 nm using a confocal laser scanner (Hewlett-Packard

G2500A). Microarray Suite 5.0 software (Affymetrix) was used to

determine the gene expression levels. The Affymetrix Genechips were

used for this purpose as follows. The most relevant experiments were

carried out in duplicate: the wild type (JO2057) and the hupAB

(JO3020) strains were tested in the exponential and stationary phase.

Wild type and hupAB strains were also tested in single experiments at

the transition phase. The last chips were used to test, respectively, the

single hupA (JO2081) and single hupB (JO2083) mutants at the three

phases.

Data driven, unsupervised statistical methodology
Affymetrix microarray hybridization signals were normalized

with dChip [89]. Hybridization signals and detection calls in

MIAME-compliant format have been deposited in the NCBI

GEO database (accession #GSE11183). A total of 4368 annotated

genes were further processed. Due to the large number of

regulated genes, we used a very restrictive selection criterion as

follows: the genes whose expression varied significantly in at least

one of the conditions were identified by comparing their maximal

(MaxVal) and minimal (MinVal) expression values in each

experimental condition with the following criterion:

log2 MaxVal{MinValð Þ � MaxVal=MinValð Þð Þw8

derived from fold filters used for genes selection. Genes were

selected for further analysis if they presented both relative

(MaxVal/MinVal) and absolute (MaxVal - MinVal) variations

[37]. The value of 8 was selected empirically as a threshold based

on an histogram showing the number of genes as a function of the

expression value (MaxVal2MinVal)/(MaxVal/MinVal). Gene

Cluster 3.0 allowed us to cluster variable genes using K-Means

with the Pearson correlation [37]; they were visualized with Java
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Treeview [90]. The determination of the number of clusters was

determined by using the iterative criterion of Hartigan:

E2
K

E2
Kz1

{1

 !
� n{K{1ð Þw10 38½ �

Since the statistical distribution of values in the data did not

obey the normal law, bootstrap methods provided by Stata

Statistical Software R. 9 [91] were used to obtain a more robust

non-parametric estimate of the confidence intervals [92]. In order

to determine which experimental condition effect (genotype and

growth phase) was predominant in each cluster, we performed

Kruskall-Wallis non-parametric tests for every condition except

hupA vs. hupB. A total of 30 conditions were therefore tested (10 for

each phase) to assess the significance of the difference in gene

expression between clusters. When the overall test was significant,

the genes belonging to the clusters presenting very high mean

ranks were considered to be regulated under the given condition.

Microarray reproducibility was tested using intra-class coefficients;

all Spearman’s rhos were between 0.89 and 0.95 indicating very

high data reproducibility. The absolute gene expression values are

shown in Supplemental Table 2. For clarity, the individual gene

expression levels in Tables 2 to 6 have been normalized by taking,

for each growth phase, a value of 1 for the wild-type strain.
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