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The HU Regulon Is Composed of Genes Responding to
Anaerobiosis, Acid Stress, High Osmolarity and SOS
Induction
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Abstract

Background: The Escherichia coli heterodimeric HU protein is a small DNA-bending protein associated with the bacterial
nucleoid. It can introduce negative supercoils into closed circular DNA in the presence of topoisomerase . Cells lacking HU
grow very poorly and display many phenotypes.

Methodology/Principal Findings: We analyzed the transcription profile of every Escherichia coli gene in the absence of one or
both HU subunits. This genome-wide in silico transcriptomic approach, performed in parallel with in vivo genetic
experimentation, defined the HU regulon. This large regulon, which comprises 8% of the genome, is composed of four
biologically relevant gene classes whose regulation responds to anaerobiosis, acid stress, high osmolarity, and SOS induction.

Conclusions/Significance: The regulation a large number of genes encoding enzymes involved in energy metabolism and
catabolism pathways by HU explains the highly pleiotropic phenotype of HU-deficient cells. The uniform chromosomal
distribution of the many operons regulated by HU strongly suggests that the transcriptional and nucleoid architectural
functions of HU constitute two aspects of a unique protein-DNA interaction mechanism.
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Introduction

HU i1s a small, basic, and thermostable dimeric DNA-binding
protein initially isolated as a factor stimulating the expression of
phage lambda genes [1,2]. It is a major structural component of
the nucleoid, and it is conserved among the majority of eubacteria.
HU is also present in archaea, in plant chloroplasts, and in a
eukaryotic virus [3,4]. HU of E. coli was shown to be a “histone-
like protein” which can introduce negative supercoiling into a
closed circular DNA in presence of topoisomerase I [5]. We
named this protein “HU” where “H” stands for histone and “U”
for the U93 strain used at that time to isolate the . coli nucleoid
[1,6]. In most bacteria, HU is encoded by a single gene except in
Enterobaceriaceae and Vibrionaceae, which possess two unlinked HU-
encoding genes, hupAd and hupB [4,7]. In E. coli, single hupA or hupB
mutations do not significantly impair growth; however /upA
inactivation affects survival in prolonged stationary phase [8,9]. In
contrast, the hupAB double mutant grows very slowly and is highly
pleiotropic: a number of cell processes, such as cell division,
initiation of DNA replication, transposition, and other biochemical
functions, are altered and cause a slow-growth phenotype [9,10].
When the absence of HU in E. coli cells is not balanced by
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compensatory mutations in gyrB, as frequently observed, the hupAB
mutant forms very tiny colonies on agar plates [11,12]. It is
interesting to note that the HU mutation is lethal in Bacillus subtilis,
which has no other histone-like protein [13].

In E. coli, the ratio of the three different HU forms, the HUof3
heterodimer and the HUa2 and HUB2 homodimers, varies as a
function of the growth phase [14]. The three dimers exhibit
different DNA  binding properties towards particular DNA
structures [15] and present different thermodynamic properties
[16]. We have shown that HU plays a positive role in translation of
the stationary phase sigma factor RpoS [17]. This finding was
further substantiated by showing direct HU-RNA interaction [18].
In witro studies show that HU displays preferential affinity for
damaged DNA having nicks or gaps [15,19]. Several reports
confirm the involvement of HU in DNA repair: (i) cells lacking HU
are extremely sensitive to ¥ and UV irradiation [20,21]; (i) HU is
capable of displacing LexA, the repressor of the SOS response
genes, from its binding sites [22] and (iii) HU binds specifically to a
wide array of repair or recombination intermediates [23].

A transcriptional role of HU was also demonstrated for the up-
regulation of the pro VWX operon in hyperosmolar environments [24],
and we showed that HU stimulates transcription by T7 RNA

February 2009 | Volume 4 | Issue 2 | e4367



polymerase [25]. More recently, Adhya’s group revealed a role of HU
and negative supercoiling in the formation of the Gal repressosome, a
nucleoprotein complex necessary to repress transcription of the gal
operon [26]. Whereas the respective regulons of other bacterial
histone-like proteins, such as Lrp [27], H-NS [28,29], Fis [30], Crp
[31], IHF [32] have been identified, the role of E. colf HU on gene
regulation has never been addressed systematically at the genomic
scale. In the present study, we used microarray hybridization to
investigate the pleiotropic role of HU in the cell by studying genome-
wide gene expression as a function of the genetic kupA, hupB, hupAB
and wild-type backgrounds at three different growth phases. The
microarray data, combined with i viwo experiments presented here,
confirmed the involvement of HU in the SOS and the osmolarity/
supercoiling responses [20,21,24,33]. In addition, the results of these
experiments revealed a novel function for this global regulator in the
environmental programming of the cellular response during aerobic
and acid stress. The interconnection between these various responses
and the supercoiled state of the DNA is discussed.

Results

Microarray experiments

E. coli strain G600, originating from the Pasteur Institute, was
used for the microarray and i viwo experiments described here
(JO2057, Table 1). It was preferred over the commonly used ‘wild
type’ strain MG1655 for several reasons: first, most of the genetic
and biochemical evidence gathered in our laboratory is based on
C600 and second, it has been reported that MG1655 suffers a
number of growth defects [34] or chromosomal deletions [35].
Due to the instability of fupAB mutants [9,12], special care was
taken to reconstruct new mutants starting from JO2057. Strains
JO2081  (hupd), JO2087 (hupB) and JO3020 (hupAB) were
constructed, and their phenotypes and genotypes were verified,
as described in Materials and Methods.

To identify genes regulated by HU, which is present in £. coli as
three dimeric forms (HUof, HUa2 and HUB2) at a ratio that
varies according to growth phase [14], four strains (the three
mutants and the wild type) were grown in LB medium at 37°C.

The E. coli HU Regulon

Culture samples for microarray experiments were collected at
exponential, transition, and stationary phases. In order to achieve
optimal representation of short-lived RNA species, total RNA was
extracted from these samples as described in [36]. The genome-
wide mRNA levels were measured using high-density E. coli
Affymetrix® GeneChips microarrays. A total of 16 microarrays
were used: 8 assays were performed to duplicate the data for the
wild-type and /hupAB double-mutant strains at exponential and
stationary phases; the remaining 8 assays consisted of wild-type
and hupAB experiments at the transition phase and single fup4 and
hupB mutants at the three growth phases. The quality of the
microarray data was assessed by statistical analysis of the internal
duplicated data, which were found, in each case, to be highly
reproducible. After Affymetrix MAS 5.0 processing and normal-
ization, a discriminant criterion derived from fold filters used for
gene selection [37] was used to identify genes whose expression
varied across the experimental conditions. At that stage, 728 out of
the 4368 genes composing the microarray (16% of the genome)
were retained. This large amount of genes was certainly due to the
combined effects of Aup genetic background and growth phase. To
overcome this difficulty and to identify the genes solely regulated
by HU, unsupervised data clustering was performed.

Biological and statistical validation of the E. coli regulon

by unsupervised data clustering

Data clustering methods are commonly used to investigate
microarray data. However, the relevance of the results is often
limited: the number of clusters is not known a priori and has to be
specified by the user. To identify meaningful classes of genes
regulated exclusively by HU, we developed an unsupervised data-
clustering method able to avoid numerous single-gene hypotheses
by partitioning the transcriptome profiling data into an optimal
and biologically relevant number of clusters and by removing the
mnterference of the unwanted growth phase variable.

We used the K-means algorithm with a distance measure based
on the Pearson correlation to cluster the expression profile of each
E. coli gene. In our experiments, these profiles were characterized
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Table 1. Strains and plasmids used in this work.

Strain, phage, or plasmid Relevant characteristic(s) or genotype Source or Reference
pRS415 lacZ" lacY* bla* [87]

MRS45 L imm21 ind* bla'-lacZ* lacY* [87]

ARS88 X imm434 ind~ bla'-lacZ" lacY* [87]

OHP109 hupA:Cm [9]

OHP96 hupB:Km [91

EF88 Afnr:Tn10 (Tc) Jeff Cole

JR1713 ArecA:Tn10 (Tc) [20]

ENS305 lacZ::Tn10 (Tc) [25]

102057 (C600) thr-1 leuB6 thi-1 lacY1 ginV44 Institut Pasteur, laboratory collection
102081 hupA::Cm (JO2057+P1 transduction from OHP109) This work

102083 hupB:Km (JO2057+P1 transduction from OHP96) This work

J03020 hupA::Cm, hupB::Km (JO2081+P1 transduction from OHP96) This work

J02039 lacZ::Tn10 (Tc) (JO2057+P1 transduction from ENS305) This work

J03027 lacZ (JO2039 cured from Tn10 with fusaric acid) This work

J03029 Afnr:Tn10 (Tc) (JO2057+P1 transduction from EF88) This work

JO3019 ArecA:Tn10 (Tc) (JO2057+P1 transduction from JR1713) This work
doi:10.1371/journal.pone.0004367.t001
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by 12 conditions (4 genotypes at 3 growth phases). The clustering
analysis was repeated 24 times for a total number of clusters
ranging between 2 and 25. The criterion of Hartigan [38] showed
that using nine gene clusters produced the best fit for our data
(Fig. 1). We then eliminated unwanted clusters containing genes
whose expression varied independently of Aup genotypes. For this
purpose, the Kruskall-Wallis non parametric tests were used. They
permitted us to exclude the following clusters: cluster 1, 3 and 8
(growth phase regulated) and cluster 9 (regulated by an
undetermined factor) (Supplemental Table S1). It was interesting
to note that cluster 8 was populated by a number of genes
belonging to the stationary phase sigma factor (RpoS) regulon [39]
(Supplemental Table S2). Since we have shown previously that
RpoS translation is regulated by HU [17], we decided to exclude
from our analysis genes characterized as being under RpoS
control.

The five selected clusters (Clusters 2, 4, 5, 6 and 7) amounted to
353 genes (8% of the genome) whose transcription varied in the
absence of one or both /up genes. These 353 genes constituted the
HU regulon. The complete gene list is available in the
Supplemental Table S3. With the aid of the RegulonDB Web
service [40], these 353 genes were found to correspond to 229
operons (Supplemental Table S4). Each of the clusters contained a
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number of complete transcription units; this certainly constituted a
good indication that the clustering analysis was consistent with
coordinated expression of the individual genes composing operons.
The proUVIW operon constituted the only exception and will be
discussed later. Using the same web resource, each operon of the
HU regulon was inspected manually for its respective regulatory
characteristic and its potential assighment to other regulons. By
comparing theses characteristics with our transcriptomic expres-
sion patterns, we were able to assign a specific biological
significance to each of the five clusters.

The five HU-regulated clusters were characterized as follows.
Cluster 2 was the only one to contain genes induced in stationary
phase in strains expressing exclusively HUo2 or HUB2 homodi-
mers; the transcription of these genes in the double mutant and
wild-type strain was similar. Most of the genes of Cluster 2
belonged to well characterized regulatory classes: 1) genes induced
by acid stress, ii) genes responding to high osmolarity and to
supercoiling and iii) genes repressed by FNR. Cluster 4 was found
to contain genes activated by HUa2 or HUaf only in exponential
phase; most were FNR activated. Cluster 5 followed an expression
pattern opposite to that of cluster 4: its genes were repressed in
exponential phase by HUa2 or HUoB and corresponded mostly to
FNR-repressed genes. The genes of cluster 6 were repressed by the
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Figure 1. Gene dataset divided in nine clusters. The five clusters shown in color (2, 4, 5, 6 and 7) constitute the HU regulon. The twelve
experimental conditions are represented on the x-axis and correspond to the four genotypes (the wild type JO2057; the hupB J0O2083; the hupA
J02081 and the hupAB JO3020) at the three growth phases (exponential, transition and stationary). The y-axis indicates the absolute gene expression
values for each experimental condition shown in Supplemental Table 2. The black line corresponds to the average values and the grey interval

depicts the standard deviation of the bootstrap analysis.
doi:10.1371/journal.pone.0004367.g001
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HUo heterodimer in the three growth phases analyzed. Several
of the genes in this small cluster belonged to the LexA-repressed
SOS regulon. In cluster 7, the genes appeared to be activated by
HUa, mainly at the transition phase: they corresponded to genes
stimulated by FNR. These clusters are depicted in Figure 1. It
should be noted that a number of HU regulated genes encode
chaperones or correspond to oxidative stress genes; they are
present in the five clusters (Supplemental Table S5). To validate
these results, we undertook a more specific analysis and conducted
in vivo experiments to assess the biological relevance of the five HU
regulated clusters.

HU represses SOS response genes (Cluster 6)

The microarray results showed that transcription of cluster 6
genes was strongly repressed by HUop at all three growth phases
analyzed (Fig. 1). To facilitate comparisons, absolute expression
values from Supplemental Table S3 were normalized to the wild
type for each growth phase (Table 2). A number of these genes: suld,
umuD, recA, recX, dinl and yebG encode functions that repair DNA
damage and prevent cell division until damage has been repaired
[41]; they share the property of being highly induced after UV
irradiation and repressed by LexA, the repressor of the SOS
regulon. The involvement of HU in the SOS response has been
reported by us and others: the extreme sensitivity of cells lacking HU
to ¥ and UV irradiation implies that HU participates in DNA
repair, probably via a RecA-dependent pathway [20,21,33]. In
addition, we reported that the unbalanced over-expression of either
HU subunit causes transient SOS induction [42].

SulA is the best known SOS gene; its product binds FtsZ to
prevent septum formation in order to inhibit cell division [43].
The constitutive expression of suld in hupAB mutants has been
reported [44]. Derepression of suld in the hupAB genetic
background provides an explanation for cell filamentation
previously observed [9]. The UmuD protein belongs to an
error-prone repair DNA polymerase [45]. Dinl and RecX are
involved in the positive and negative modulation of RecA filament
formation, respectively [46]. RecA, activated by DNA damage,
acts as a coprotease assisting LexA repressor autocleavage [30].

Cluster 6 contained, in addition to SOS induced genes, several
genes from the cryptic el4 lambdoid prophage: xisE (excisionase),
ymfff and ymfL. These results are compatible with RecA-dependent
repressor cleavage and subsequent lytic induction of temperate
phages of this family; the SOS-mediated induction of xisF and ymff
has been reported [47]. Finally, it was noted that Cluster 6 lacked
SOS genes responding more weakly to LexA inactivation, but it
mncluded some genes with unrelated or complex regulation, such as
sodA, which encodes a superoxide dismutase (Supplemental Table
S3).

In order to confirm the transcriptome data and to analyze in
detail the involvement of HU in the SOS response, we constructed
single-copy chromosomal suld::lacl and dinl:lac fusions (see
Materials and Methods) and analyzed their @ i regulation.
Strains JO3057 and JO3059, carrying respectively suld::lac< and
dinl::lacg fusions, were tested for SOS response by an antibiogram
plate assay in the presence of nalidixic acid. When XGal was present
in the plate, a characteristic blue halo was produced at the edge of
the growth inhibition zone. The blue halo was not formed by the
respective recd mutant derivatives JO3081 and JO3083 (data not
shown). In accordance with transcriptome data, the production of
B-galactosidase by hupAB fusions strains, JO3111 (suld::lacg) and
JO3113 (dinl::lacg), was reproducibly induced three- to five-fold
relative to the HU"Y parental strains, JO3057 and JO3059
respectively (Fig. 2). Similar results have been described for
recA::lacg and wumuC::lacg fusions [33]. In order to investigate the
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Table 2. Cluster 6 genes.

Function

Exponential Transition Stationary Regulation

Operon

Blattner

Gene

WT hupA hupB hupAB WT hupA hupB hupAB WT hupA hupB hupAB

suppressor of lon, inhibits cell division and ftsZ ring

LexA repressed
formation

1.71 11.39

1.46

1.69 1.25 7.98

1

1.09 19.33

1.98

sulA

b0958

SulA

LexA repressed damage-inducible protein |

LexA repressed hypothetical protein
hypothetical protein
hypothetical protein

unknown
unknown

11.99

11.7
10.09

1.09 14.51
1.06
1.33

41

1.25
0.98
1.94
211

7.34
7.31
7.94
6.32

1.07
141
241
1.9

1.52
234
247
0.89

1
1
1
1

10.61

34.01
41.04

0.72
0.74
48
67 223 48.05

1.09
245
2.67
4,

1
1
1
1

ymfTLMNROPQ-ycfK-ymfS

ymfH-xisE-intE
umuDC

dinl
ymfJ

b1061
b1141
b1144
b1147

dinl
XisE
ymfJ
ymfL

The E. coli HU Regulon

dependent ATPase; DNA- and ATP-dependent

UmuD’; forms complex with UmuC
coprotease

LexA repressed SOS mutagenesis; error-prone repair; processed to
regulator, OraA protein

LexA repressed hypothetical protein
LexA repressed DNA strand exchange and renaturation; DNA-

LexA repressed

1.51 5.73
0.98 4.75
227 01
0.79 4.55

1.82
0.84
2.02
0.95

1.77 555
1.29 4.03
2,07 2.64
0.95 241

134

22
1.36

1264 1 1.6
1
1
1

29
6.93
5.07

1.39
0.87
1.65
0.95

1.47
0.56
1.69
0.88

yebG
recAX
recAX

b1848
b2698
b2699

doi:10.1371/journal.pone.0004367.t002

umuD b1183

yebG
recX
recA
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Figure 2. Beta-galactosidase activity of SOS gene fusions. Beta-
galatosidase activity of sulA:lacZ and dinl:lacZ fusions measured in HU*
(JO3057, JO3059) and HU™ strains (JO3111, JO3113).
doi:10.1371/journal.pone.0004367.9002

time course of SOS induction, we measured this response as a
function of time, up to 75 min after nalidixic acid induction (Fig. 3).
In this experiment, we observed that the SOS response still occurred
in a double mutant, as already reported [20], but with a noticeable
three-fold lower amplitude. The basal level, before nalidixic acid
induction (indicated by an arrow), was higher in the double mutant,
as observed in the experiment shown in Figure 2. These results
demonstrated that HU is required for a full SOS response.

HU regulates osmolarity/supercoiling genes (Cluster 2)
Cluster 2 contained a high proportion of genes induced by an
increase in osmolarity. Many of these genes have been described
previously as belonging to other regulons whose expression is
modulated in stationary phase. This last point agrees with our
definition of this HU Cluster as seen in Figure 1, the only one to
contain genes regulated in stationary phase. The list of cluster 2
genes, with expression normalized to wild-type, is presented in
Table 3. The osmE gene is regulated by DNA supercoiling and
osmolarity [48], and osm1 is known to be osmotically induced [49].
Under conditions of high osmolarity, the E. coli otsA and otsB genes
are responsible for the synthesis of high concentrations of internal
trehalose, an osmoprotectant [50]. The sra gene is cotranscribed
with the bdm gene from a promoter upstream of bdm which is
activated by osmotic shock [51]. Expression of TalA is induced by
osmotic stress only under aerobic conditions [52]. A very strong
correlation was observed between these HU regulated genes and
genes induced by supercoiling through osmotic shock described in
a transcriptomic approach [53]. These genes include genes with
known functions: katE (catalase hydroperoxidase III), gxB
(Glutaredoxin), dps (required for long-term stationary phase
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viability), poxB (pyruvate oxidase), wrbd (NAD(P)H:quinone
oxidoreductase), aceAB (isocitrate lyase monomer; malate synthase
A) and genes whose function is still under investigation: elaB, ygaM,
ygal, ybal, ybgS, yebV, yodC, fbaB. Another recent article reported
the proteomic analysis of the osmotic response in E. coli [52]; their
data corroborate our transcriptome analysis (Table 3).

HU regulates acid-stress genes (Cluster 2)

Cluster 2 also included a number of genes identified as acid
inducible in the gene databases. E. coli can withstand a pH of 2.5
for several hours. The acid stress response in F. coli and related
organisms is quite complex and involves a number of regulatory
mechanisms [54]. Three or potentially four acid-resistance systems
(AR) have been reported [55]. The mechanism involved in the
genetic regulation of AR2, which has been extensively investigat-
ed, requires only three genes and eleven regulatory proteins. The
regulon of two of these (GadX-GadW) has been identified and
comprises 15 genes: gadAXW, gadBC, ybaST, slp-yli¥, hdeAB-yhiD,
yhiM, hdeD and yhiF [54]. The normalized expression values shown
in Table 3 indicate that 13 of these 15 genes belong to cluster 2 of
the HU regulon. In addition, Table 3 shows a compilation of acid-
inducible genes in four genetic backgrounds (gadX mutant and
overexpression of transcriptional regulators EvgA, YdeO and
GadX) as reviewed by Foster [56]. A very strong correlation was
found between GadX-repressed genes and genes induced in the
single hupA or hupB mutants in stationary phase. Cluster 2 also
contained genes that respond to acid stress but are not regulated
by GadX. These included wrb4d (NAD(P)H:quinone oxidoreduc-
tase), nhad (sodium/proton NhaA transporter), cbpd (a potential
chaperone), ¢fa (cyclopropane fatty acyl phospholipid synthase),
ycaC' and yebV (unknown). In the view of these results, we
conducted an acid resistance assay on wild-type, hupA, hupB and
hupAB strains as described by Masuda and Church [57]. The wild-
type and fupB strains survived up to 3 hr at low pH; the hupAB
mutant showed hypersensitivity to acid, and the Aupd mutant
displayed an intermediate phenotype (Fig. 4).

HU is a novel aerobic regulator of energy metabolism
(Clusters 2, 4,5 & 7)

The prominent part of the genes characterizing the HU regulon
is known to be involved in bacterial energy metabolism. They
amount to 45% of the total number of the regulated operons and
are found in four different clusters: 2, 4, 5 and 7 indicating that
they obey different expression patterns.

In the facultative anaerobe E. coli, the presence of oxygen and
other electron acceptors influences the choice of catabolic and
anabolic pathways. E. coli prefers to grow using aerobic respiration,
but it can achieve anaerobic respiration with nitrate or other
electron acceptors when oxygen is absent; fermentation is used as a
last resort when no electron acceptor is available. The expression of
enzymes involved in energy metabolism is regulated mainly at the
transcriptional level. Two separate oxygen sensing/transcriptional
regulatory mechanisms are essential for the aerobic/anaerobic
switch (for a review see [58]). First, a two-component system,
responsible for micro-aerobic metabolism regulation, is composed
of a membrane-bound histidine sensor kinase (ArcB) able to
phosphorylate a transcriptional regulator (ArcA) [59]. The E. coli
ArcAB regulon comprises 175 genes involved in a large number of
cell processes [60]. FNR 1s the second transcriptional sensor-
regulator protein involved in the control of anaerobic metabolism; it
acts either as a transcription repressor or as an activator. The Fe—S-
containing FNR protein is capable of oxygen-regulated dimeriza-
tion and DNA binding [61]. The E. coli FNR regulon was initially
investigated by several laboratories but with somewhat divergent
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Figure 3. SOS induction kinetics. Respective beta-galatosidase activity of sulA:lacZ (A) and dini:lacZ (B) fusions measured in HU* (JO3057,
JO3059) and HU- strains (JO3111, JO3113) as a function of time after induction with 50 ug/ml nalidixic acid. The down arrows refer to basal levels
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doi:10.1371/journal.pone.0004367.9003

results probably due to different genetic backgrounds and growth
conditions [60,62]. More recently, a report based on a more
extensive study has re-evaluated the extent of the FNR regulon [63].

The absence of one or both HU subunits deregulated
transcription of the vast majority of the genes encoding electron
donors/acceptors or involved in fermentation and in aerobic/
anaerobic respiration. A direct comparison of data presented in
Clusters 2, 4, 5 and 7 to energy metabolism regulons showed a
striking resemblance between the HU and FNR regulons. More
surprisingly, the directionality of the HU-FNR regulation was well
conserved with a very few exceptions: all the genes induced (or
repressed) anaerobically by FNR were also induced (or repressed)
by HU in the presence of oxygen. Clusters 2 and 5 contained a
majority of FNR down-regulated genes whereas clusters 4 and 7
were populated with a majority of FINR up-regulated genes (See
Tables 3, 4, 5 and 6 for the relative, normalized gene expression
values). Effectively, HU binding to the FNR regulated, ndh
promoter has been reported [64].

In order to investigate and compare the i wviwo regulatory
relationships between HU and the aerobiosis/anaerobiosis system,
we constructed single copy lc{ transcriptional fusions to several
genes strongly activated or repressed by HU as described above. We
chose three HU-activated genes from cluster 4, namely n:B, narG and
deuC, encoding respectively the large subunit of nitrite reductase, the
o subunit of nitrate reductase and the anaerobic C4-dicarboxylate
transporter. These genes are known to be positively regulated by
FNR [63]. In parallel, two HU-repressed genes from cluster 5, {dP
and ndk, encoding respectively the L-lactate permease and the
nucleoside diphosphate kinase, were selected on the basis of their

@ PLoS ONE | www.plosone.org

strong response in the transcriptome analysis. The transcription of the
lldPRD operon, as seen in Figure 5, is repressed anaerobically by
ArcA-P [65]. The expression of ndk is negatively controlled in anoxic
conditions by an unknown mechanism [62]. In good agreement with
microarrays experiments, we observed i wvivo that heterodimeric
HUop aerobically repressed lldP and ndk and stimulated n#B, narG
and deuC (Fig. 5A). This is what we observed in anoxic conditions: we
confirmed /dP and ndk repression and the induction of nrB, narG and
deuC (Fig. 5B). The expression of B-galactosidase by these five gene
fusions was then tested in four genetic backgrounds (wild-type, fur,
hupAB and _fnr hupAB) and in aerobic or anaerobic conditions (Fig. 6).
Several observations could be made: (i) the regulatory effect of HU
was only apparent in oxic conditions and wss stronger for genes that
are normally repressed in anaerobiosis, such as {dP and ndk; (i) in
aerobiosis, there was no significant difference between fr" and fir~
strains with the exception a two-fold effect for narG and (i) in
anaerobiosis, we did not observe a significant difference between the
HU" and HU™ derivatives of the five gene fusion strains: the only
measurable effect was due to the presence/absence of FNR,
especially for the FNR-regulated genes nirB, narG and deuC.

These results prompted us to test the growth phenotype of a
hupAB strain in the absence of oxygen on complete anoxic medium
(see Materials and Methods). Surprisingly, we noted that the very
slow growth phenotype caused by the absence of HU in aerobic
conditions was not observed anaerobically. In anoxic conditions,
the HU-deficient strain lost its very small colony phenotype and
displayed a similar growth rate as the wild type control strain
(Fig. 7). After a number of verifications, we concluded that HU
was not necessary for growth in the absence of oxygen.
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Figure 4. Acid stress Test. The comparative survival of wild type
(JO2057), hupA (JO2081), hupB (JO2083) and hupAB (JO3020) strains
submitted to acid stress was measured as follows. Samples were taken
at different times form cells resuspended in LB medium at pH 2.5 or in
saline buffer at pH 7.2, serially diluted and plated on LB agar plates for
colony counting. The time points correspond to percent survival of
acid-treated cells versus control cells, averaged over two independent
experiments.

doi:10.1371/journal.pone.0004367.9004

Discussion

Identification of the HU regulon

We examined the effect of HU, one of the most abundant
nucleoid-associated proteins in the bacterial cell, on genome-wide
transcription. Since HU exists as three dimeric forms in F. coli
(HUaf, HUo2 and HUP2), depending mainly on the growth
phase, the respective role of each dimer was analyzed. We
compared the expression pattern of all E. coli genes in the wild-type
host and in strains carrying a mutation in one or in both HU-
encoding genes: the hupA, hupB and hupAB mutants. In each case,
the cultures were sampled at three different growth phases for two
reasons: we had shown that the expression of the HU genes is
regulated by growth phase [8] and that the expression of the
stationary phase sigma factor, RpoS is stimulated by HU at the
translational level [17]. An unsupervised statistical clustering
analysis allowed to subtract the interference from growth phase
and RpoS and to identify the E. coli genes strictly controlled by
HU at the transcriptional level. After this correction, the analysis
showed that the transcription of a total of 353 genes composing
229 operons is affected by the lack of one or both HU subunits.
The accuracy of the data and its processing was well supported by
the number of observed polycistronic operons where all the genes
are co-regulated (Supplemental Table S4).

The five HU-regulated clusters identified are populated with
genes involved in aerobic/anaerobic energy metabolism and to a
lesser extent in the SOS response, osmolarity stress response, and
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acid stress response. We were able to discriminate between three
distinct HU regulons: the HUo regulon (cluster 6 repressed by
HUoaf and cluster 7 induced by HUaf); the HUa2 or HUaf
regulons (cluster 4 repressed by HUa and cluster 5 repressed by
HUo2 in exponential phase) and the HUo2 or HUB2 regulons
(cluster 2, repressed in stationary phase only). Four reasons might
explain why we did not observe genes regulated exclusively by
HUP2. First, HUB2 is unable to introduce negative supercoiling in
vitro on a relaxed DNA template in the presence of topoisomerase I
[5,8]; second, HUP2 is normally not present in the cell at 37°C: as
soon as it is synthesized it forms the heterodimer [14]; third,
thermodynamic studies have shown that HUB2 is partially
denatured at 37°C [16], and fourth, the synthesis of HUB2 is
preferentially stimulated during cold shock [66]. The HUP2
regulon might therefore be linked to low temperature environ-
ments.

The largest HU regulon clusters (2, 4, 5 and 7) share striking
similarities with the FNR regulon: genes activated or repressed by
FNR in anoxic conditions were respectively activated or repressed
by HU in the presence of oxygen. Clearly, FNR and HU exert
their regulatory control independently: i) the microarray data
showed that FINR expression is not affected in /up mutants and ii)
the microarray experiments were carried out in aerobic conditions
in which FNR is expressed under its apoFNR inactive form [67].
HU could therefore be considered as an aerobic modulator of the
FNR regulon.

The transcriptome profiling experiments described in this work
showed that a second group of genes, namely the SOS response (or
LexA regulon) was induced in the absence of both HU subunits.
However, the # vivo experiments, presented in Figure 3, showed
that SOS induction is much less efficient in a hupAB background,
as observed previously [20]. From these observations, it was
possible to conclude that HU is necessary for tight repression as
well as for full derepression of the SOS regulon genes found in
cluster 6. The “flattening” of the SOS response in the absence of
HU could be explained by the capacity of this protein to displace
the LexA repressor from its DNA-binding sites [22].

A third group of genes, namely those composing the acid stress
or GadX regulon, was found to belong to the HU regulon as well.
We tested whether the induction of these genes, induced in the
single hupA and hupB mutants, would confer acid resistance in vivo.
The acid resistance assay indicated that low pH strongly affected
the survival of the fupAB mutant and of the hupA mutant to a lower
extent. This effect could be explained by the accumulation of
protons intra- or extracellularly due to the deregulation of the ¢yo
and ¢yd operons encoding cytochrome proton pumps. However,
the increase in transcription of acid resistance genes in the AupA
and /wpB single mutants observed in cluster 2 was insufficient to
permit low pH adaptation (Fig. 4).

The HU regulon comprised also a fourth group of genes known
to be induced by osmotic shock. The involvement of HU in the
adaptation of cell growth in hyperosmolar environments is well
known [24]. We observed an excellent correlation between cluster
2 of the HU regulon and genes involved in the synthesis of
osmoprotectants, which respond strongly to the osmotic response
via DNA supercoiling [53]. Since HU is able to constrain DNA
supercoiling and the regulation of these genes requires modulation
of DNA superhelicity, it seemed worthwhile to analyze the HU
regulon under this perspective.

The HU regulon and DNA supercoiling

The relationship of HU with DNA supercoiling has been
analyzed in a number of reports. Nucleoid sedimentation
experiments have shown that the absence of HU causes a decrease
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anaerobic dicarboxylate transport

FA, FAec
FA, FAec
FA, FAec
FA, FAec
FA, FAec
FA, FAec
FA, FAec

1.58 0.76

234

1
1
1
1
1
1
1

0.49
0.3

10.38
0.76
1.99
1.67
1.61
1.46
741

5.24
1.27
2.39
1.93
1.91

0.21
0.41
0.33
0.3

1.21
1.5
1.31
1.4
14

0.04
0.32
048
0.48
0.44

0.4

1
1
1
1
1

b4123 dcuB-fumB

dcuB

anaerobic dicarboxylate transport

084 0.67 0.87
079 0.94

0.53 0.65

1.03 085

0.77 0.81

1.69

aspA-dcuA
frdABCD

b4138
b4151

dcuA
frdD
frdC
frdB
frdA

fumarate reductase, anaerobic, membrane anchor polypeptide

1.07
1.16
1.19
1.09

0.23

1

fumarate reductase, anaerobic, membrane anchor polypeptide

0.11

frdABCD
frdABCD
frdABCD

b4152
b4153

fumarate reductase, anaerobic, iron-sulfur protein subunit

0.15
0.18
0.94

1

03

fumarate reductase, anaerobic, flavoprotein subunit

1.7

1
1

127 033
1.22 058

b4154
b4471

L-serine deaminase 3

0.97

1

10.16

0.82

1

tdcABCDEFG

tdcG

'Regulation symbols: FA: FNR-activated and FR: FNR-repressed [63]; FRec: FNR-repressed and FAec: FNR-ativated (Ecocyc: http://ecocyc.org).

doi:10.1371/journal.pone.0004367.t006
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in chromosomal supercoiling [12,68]. The relaxation activity on
supercoiled plasmids of wild type and HU mutants strains
increases in the order fup+<hupB<hupA<hupAB [11]. A cross-talk
between HU and topoisomerase I activity has been observed: the
absence of HU generates more unconstrained supercoiling, which
In turn requires an increase in relaxing activity in order to
maintain physiological levels [11]. Mutations in the gyrB gene can
compensate the lack of HU [12]. In vitro experiments have shown
that HUo?2, like HUof but not HUP2, constrains DNA
superhelicity [5,8]. Finally, the involvement of HU in DNA
supercoiling has been demonstrated at the crystallographic level
[69-71].

To further investigate the link between HU and DNA
superhelicity, we performed a systematic comparison between
the HU regulon and the lists of genes under supercoiling control
established independently by two groups [72,73]. We observed
that the HU regulon shared very few genes (<8% and <4%,
respectively) with the superhelicity regulons (Supplemental Fig. S1
A & Tables S6 to 89). This shared subset of the HU regulon
contained genes regulated by supercoiling and osmolarity (otsB) or
by supercoiling and acid stress (nhad and gadB). The same
comparison was repeated with the regulons of the two other major
nucleoid proteins H-NS and Fis [72] with a very similar outcome
(Supplemental Tig. S1 B, C & Tables S10 to S14). We deduced
from these observations that the majority of genes under
transcriptional superhelical control are regulated by unconstrained
chromosomal supercoiling and not by the constraining activity of
HU, H-NS and Fis. The regulons of these three proteins were then
compared to analyze their respective contribution to global
regulation.

Global regulation by HU, H-NS and Fis

Identification of the HU regulon permitted the systematic
comparison with the respective regulons described recently of the
other major nucleoid-associated proteins H-NS and Fis, [72].
Taken together, these three abundant proteins are responsible for
most of the compaction of the bacterial chromosome: it has been
reported that half of the negative supercoiling is constrained by
Fis, H-NS and HU [74]. Our data indicated that HU, H-NS and
Fis regulons share 15% to 32% of their genes, while specific genes
range from 59% to 69%; only 26 genes are common to the three
regulons (Supplemental Fig. S1 D & Tables S15 to S18). Several
genes are co-regulated by HUaf and H-NS and encode proteins
that repress the acid stress response genes and the biosynthesis of
fimbriae, whereas both induce flagellar biosynthetic genes
(Supplemental Table S15). A number of chaperone genes and
environmental stress response genes are differentially regulated by
HU and H-NS (Supplemental Table S15). By comparing the genes
co-regulated by HU and Fis, we observed that both proteins
induce Cluster 4 genes while they repress Cluster 5 genes
(Supplemental Table S16). We observed also that HU regulates
these two clusters in the exponential phase, at the stage of growth
where Fis is most actively synthesized [14].

HU-DNA binding and transcription regulation

The identification of a regulon assumes that its regulator
interacts with specific genes, upstream of the protein coding
sequence. How does HU recognize its targets? The overlap
between the FNR and HU regulons suggested that FNR binding-
site variants might be recognized by HU. We therefore
investigated, by Gibbs sampling, the promoter region of the
regulated operons in each cluster. This search failed to produce
significant shared sequence motif (data not shown). It is interesting
to note that FNR can bind to some of its targets in the absence of a
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Figure 5. Regulation of cluster 4 and 5 genes by HU and aerobiosis. (A) Comparison of the beta-galactosidase activity of /ldp, ndk, nirB, narG
and dcuC transcriptional lacZ fusions in wild type and hupAB strains. (B) Comparison of the beta-galactosidase activity of the same gene fusions in
aerobic and anaerobic conditions. The numbers under the bars correspond to strain numbers described in Table 7.

doi:10.1371/journal.pone.0004367.g005

canonical FNR binding sequence, suggesting cooperative binding
with another factor [75].

Among the various HU-nucleic acid binding properties that
have been described, different DNA binding modes can be
invoked to explain mechanistically its regulatory function. Namely,
HU contributes to DNA loop formation [26], is capable of
constraining supercoiling DNA [69]. and shows higher affinity for
distorted DNA structures [23].

The HU regulon is composed of four well defined biological
classes of genes involved in stress response and adaptation to

@ PLoS ONE | www.plosone.org
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environmental shifts. These four classes can be divided into two
categories on the basis of the reported DNA binding modes of HU,
described above. The regulation of the genes in first category
requires, in addition to HU, specific DNA binding of the
regulatory proteins LexA, GadX or FNR. We hypothesize that
HU induces DNA looping to help loading/unloading of these
regulators onto their specific binding sites in order to allow/block
RNA polymerase transcription initiation. The formation of such a
complex, called “repressosome,” has been studied in detail for the
gal operon. It involves the participation of the GalR repressor, HU,
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doi:10.1371/journal.pone.0004367.9006

and negatively supercoiled DNA [26]. A similar phenomenon has
been reported for the control of the FNR-regulated ndh gene [64].

The second category of the HU regulon contains genes known
to be controlled primarily by DNA supercoiling during hyperos-
molar upshift without the involvement of a specific regulatory
protein [53]. For these genes, it appears that the driving force of
regulatory control is solely constituted by the superhelical DNA
constraining capability of HU; effectively, these genes are not
found in the reported supercoiling regulons [72,73].

We also observed a good correlation between genes regulated
by HU and the chromosomal regions exhibiting “extreme
structure” predicted by the group of Ussery: these authors
analyzed five parameters affecting the DNA conformation of the
E. coli chromosome and identified 36 sites presenting a maximal
distortion [76]. We found that 15 of these sites mapped in (or very
near) genes belonging to the HU regulon (Supplemental Table
S19). This observation is consistent with the preferred interaction
of HU with distorted DNA structures rather than sequences
[15,19].

Global regulatory function and structural role of HU

How could we reconcile the transcriptional and chromosomal
architectural roles of HU? We have shown here that HU controls
the transcription of 353 genes composing 229 operons. Pheno-
typically, E. coli hupAB strains grow very poorly and display
numerous enucleated cells. These deleterious effects might be
caused by the inverted expression pattern of stress-induced genes
and energy metabolism operons and to loss of the nucleoid
architecture. Interestingly, these phenotypes are only visible in the
presence of oxygen and are rescued under anoxic conditions. The
absence of HU regulatory effect in anaerobiosis can be explained
by the increase of negative supercoiling, in these conditions, due to
an increase in DNA gyrase activity [68] or a decrease in
topoisomerase I activity [77]. As shown by our phenotype
observation in Figure 7, normal anoxic growth of hupAB strains
suggests that, under these conditions of absence of oxygen, the
superhelical DNA constraining activity of HU is not required for
the organization of the bacterial nucleoid.

In aerobic conditions, however, the essential role of HU could
be illustrated as follows. If we consider the presence of 30,000 HU
dimers in the cell [6,78], each covering a 9 bp sequence [79], it
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can be deduced that each of the 229 HU-regulated promoters
accommodates 130 dimers, binding cooperatively, over a 1200 bp
segment. In these conditions, the average spacing between HU
binding sites on the chromosome would amount to ~20 kb
(Supplemental Figure S2). Interestingly, the bacterial nucleoid has
been described as being shaped in domains of 50-100 kb [80]
whereas more recent studies re-evaluated the organization of the
chromosome in 400 supercoiled looped domains of ~10 kb
(reviewed in [81]). The formation of these high-order HU-DNA
complexes has been observed by techniques as diverse as
crystallography [69-71], atomic force microscopy [82] and
fluorescence resonance energy transfer [83]. We therefore propose
to localize the nucleoid-shaping and DNA-constraining roles of
HU at the 229 chromosomal sites where transcription regulation
occurs.

In conclusion, our data has shown that HU regulates the
expression of 8% of the F. coli genome using two mechanisms. In
the first, HU cooperates with known transcription regulators such
as LexA, GadX of FNR and in the second, HU acts alone on its
DNA structure targets. Our observation that HU is necessary in
aerobiosis and dispensable in anoxic conditions unravels the
important role played by this histone-like protein in the
metabolism of the bacterial cell and opens new areas for research
to be explored.

Materials and Methods

Plasmids, phages, bacterial strains and general growth
conditions

The E. coli K-12 bacterial strains used in this work are listed in
Table 1. New C600 (JO2057) derivatives carrying the mutated fup
were constructed. JO2081 (hupd), JO2083 (hupB) and JO3020
(hupAB) were obtained by phage Pl transduction by selecting on
LB agar plates containing the appropriate antibiotics. The C600
hupAB mutant displayed the characteristic small-colony and cell-
filamentation phenotypes, as expected and observed previously
[9]. The /up gene interruptions were verified for each construction
by PCR analysis of genomic DNA extracted from each mutant
(data not shown). The absence of the respective HU subunits was
demonstrated by western blot immunodetection after SDS-PAGE
and Acid Urea Triton-PAGE (data not shown). The lac<, far and
recA mutations, originating respectively from ENS303 [25], EF88
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The E. coli HU Regulon

Figure 7. Phenotype of a HU ™ strain in the presence and absence of oxygen. (A) Colony phenotype of the hupAB (JO3020, left) and wild
type (JO2057, right) strains in aerobic conditions. (B) Colony phenotype of the same strains in anaerobic conditions. The strains are plated on LB agar
supplemented for anaerobic growth (see Material and Methods).
doi:10.1371/journal.pone.0004367.9007

(Jeft Cole), and JR1713 [20], were introduced into the same
genetic background by P1 transduction to generate respectively
J0O2039, JO3019 and JO3029. Due to the lack of phenotype in our
laboratory culture conditions, the presence of the fur::I'nl0 marker
in JO3029 was verified by genomic PCR (data not known). To
allow re-use of the tetracycline resistance marker, strain JO2039
was cured from its Tn70 transposon by growth on fusaric acid
medium to yield JO3027 as described [84]. Luria-Bertani (0.5%
NaCl) broth and agar (15 g/liter) were used for routine growth.
When used, ampicillin, tetracycline, kanamycin, and chloram-
phenicol were provided at final concentrations of 100, 12, 50, and
20 pg/ml, respectively. Anoxic growth conditions were achieved
in a 2.5 liter Oxoid anaerobic jar (Model AG25) (Oxoid,
Hampshire, UK) or in a Coy anaerobic chamber (Coy Enterprises,
Inc.) using LB 0.5% NaCl containing 10 mM NaNOj and 0.2%
(wt/vol) glucose.

Construction of strains carrying single copy promoter-
lacZ fusions and mutant derivatives

The lacZ fusion strains used in this work are shown in Table 7.
They were constructed as follows. E. coli chromosomal DNA was
extracted and purified from strain JO2057, as described [85]. The
cloning of the promoters of the genes of interest was assisted by the
BAGET web service [86]. They were amplified by PCR from the
chromosome with Pfu polymerase (Promega) using gene-specific
primers flanked by EcoRI or BamHI restriction sites except in the
case of suld where the second primer was flanked by a BgllI site
due to the presence of a BamHI site in the amplified fragment.
Theses oligonucleotides are described in Supplemental Table S20.
The resulting PCR fragments were digested with EcoRI and
BamHI (EcoRI and Bglll for suld) and directionally cloned into
BamHI-EcoRI-digested lac{ operon fusion vector pRS415 [87].
All lacZ fusions were transferred from their respective plasmid to
phage ARS45 by lytic rescue with the exception of the dinl::lacl
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and suld::lac{ fusions which were rescued on the non SOS-
inducible ARS88 ind . C600 lac lysogens were constructed with
these fusion-carrying phages. Additional mutations were then
mtroduced by Pl-mediated transduction and selection for the
appropriate antibiotic resistance. In order to avoid gene dosage
interference caused by a variable number of fusion-carrying
prophages, the strain derivatives were constructed sequentially
using the original C600 /lacl lysogen as starting material, as
indicated in Table 7.

Beta-galactosidase assay

Cell extracts were prepared from exponential phase cultures
grown in 5ml LB at 37°C, aerobically or anacrobically as
described above. Assays of B-galalactosidase from these extracts
were carried out as described [88], in triplicate.

Acid resistance assay
The assay to measure the resistance of strains to low pH
exposure was conducted in duplicate, as described [57].

Microarray technology

Affymetrix GeneChips were chosen for the transcriptomic
approach, since they provide a 15- to 40-fold probe redundancy for
each individual gene to increase repeatability. In our hands, the
correlation between duplicate experiments was statistically significant
(see below). The four bacterial strains JO2057, JO2081, JO2083 and
JO3020) described above were grown in 100 ml LB 0.5% NaCl at
200 rpm in a New Brunswick laboratory shaker in 2-liter flasks. LB
medium was chosen over synthetic minimal for its better permissivity
for the growth of ~upAB mutants. The typical doubling time, observed
in exponential phase, was 40 min for JO2057, JO2081, JO2083 and
75 min for JO3020. The various growth phase samples were
collected at the following cell densities: exponential phase: ODggo
0.6-0.7; transition: 2.2-2.5 and stationary: 4.6-4.8 (3.0 for hupAB).

February 2009 | Volume 4 | Issue 2 | e4367



Special care was taken to process the samples immediately for total
RINA extraction to ensure optimal representation of short lived
messenger species. The protocol for RNA extraction was adapted
form [36]. Briefly, a culture volume of 7 ml was mixed with the same
volume of boiling 2% SDS, 4 mM EDTA and heated at 100°C for 3
to 5 min then vortexed cooled first?. At this stage, the extract was
either processed further or stored at —20°C. Seven milliliter of
phenol/water were added before incubating 10 min at 67°C with
occasional stirring. The samples were cooled on ice and centrifuged
10 min at 5000 rpm at 4°C. The aqueous phase was separated,
extracted the same way and then once with phenol/chloroform (v/v
1:1). One tenth volume of 4 M NaCl and 2.5 volumes of cold ethanol
were then added to the aqueous phase. The tubes were left at —20°C
for two hrs and then centrifuged at 8500 rpm at 4°C. The pellet was
washed with 70% ethanol, dried under vacuum, and resuspended in
300 pl sterile water and transferred to an eppendorf tube. Qiagen
RDD buffer (34.5 pl) and of RNase free DNase I (9.37 ul, Qiagen)
were added. After 15 min at room temperature, the tubes were mixed
by inversion and deproteinized as described above with 300 pl
phenol/HyO at room temperature. The RNA was then precipitated
with 37.5 Wl NaCl 4 M and 823 ul cold ethanol. After 2 hrs at
—20°C, the tubes were centrifuged 30 min at 10,000 xg at 4°C, the
pellets were then washed with 70% ethanol then dried under vacuum
and resuspended in 60 Wl sterile water. The RNAs were stored at
—20°C. RNA purity was assessed by measuring the Aggo/Aggo ratio
and selecting them within a range of 1.8 to 2.1. Samples with a ratio
lower than of 1.8 were discarded. RNA samples were reverse
transcribed and biotinylated according to the Affymetrix protocol.
Biotin-labeled cDNA (2.5 ug) was hybridized to FE. coli antisense
genome arrays (Affymetrix) at 45°C for 16 h as recommended in the
GeneChip technical manual (Affymetrix). The probed arrays were
scanned at 570 nm using a confocal laser scanner (Hewlett-Packard
G2500A). Microarray Suite 5.0 software (Affymetrix) was used to
determine the gene expression levels. The Affymetrix Genechips were
used for this purpose as follows. The most relevant experiments were
carried out in duplicate: the wild type (JO2057) and the /upAB
(JO3020) strains were tested in the exponential and stationary phase.
Wild type and fupAB strains were also tested in single experiments at
the transition phase. The last chips were used to test, respectively, the
single fupA (JO2081) and single hupB (JO2083) mutants at the three
phases.

Data driven, unsupervised statistical methodology

Affymetrix microarray hybridization signals were normalized
with dChip [89]. Hybridization signals and detection calls in
MIAME-compliant format have been deposited in the NCBI
GEO database (accession #GSE11183). A total of 4368 annotated
genes were further processed. Due to the large number of
regulated genes, we used a very restrictive selection criterion as
follows: the genes whose expression varied significantly in at least
one of the conditions were identified by comparing their maximal
(MaxVal) and minimal (MinVal) expression values in each
experimental condition with the following criterion:

log2((MaxVal—MinVal) * (MaxVal/MinVal)) > 8

derived from fold filters used for genes selection. Genes were
sclected for further analysis if they presented both relative
(MaxVal/MinVal) and absolute (MaxVal - MinVal) variations
[37]. The value of 8 was selected empirically as a threshold based
on an histogram showing the number of genes as a function of the
expression value (MaxVal—MinVal)/(MaxVal/MinVal). Gene
Cluster 3.0 allowed us to cluster variable genes using K-Means
with the Pearson correlation [37]; they were visualized with Java
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Table 7. Synoptic view of the construction of the transcriptional lacZ fusions strains used in this work.

Afnr:Tn 10, hupA:Cm,

Afnr:Tn 10, hupA:Cm  hupB:Km

3027

2039+pRS415 3027

®(fusion)

hupA:Cm hupA::Cm, hupB:Km Afnr:Tn10

[ARS45 Der.] ArecA:Tc

[LRS88 Der.]

Fusion

The E.

3153 (3143+P1 2083)
3155 (3145+P1 2083)
3157 (3137+P1 2083)
3159 (3139+P1 2083)
3161 (3141+P1 2083)

3143 (3133+P1 2081)
3145 (3135+P1 2081)
3147 (3137+P1 2081)
3149 (3139+P1 2081)
3151 (3141+P1 2081)

3133 (3061+P1 3029)
3135 (3063+P1 3029)
3137 (3065+P1 3029)
3139 (3067+P1 3029)
3141 (3069+P1 3029)

3111 (3087+P1 2083)
3113 (3089+P1 2083)
3115 (3091+P1 2083)
3117 (3093+P1 2083)
3119 (3095+P1 2083)
3121 (3097+P1 2083)
3123 (3099+P1 2083)

3087 (3057+P1 2081)
3089 (3059+P1 2081)
3091 (3061+P1 2081)
3093 (3063+P1 2081)
3095 (3065+P1 2081)
3097 (3067+P1 2081)
3099 (3069+P1 2081)

3081 (3057+P1 3019)
3083 (3059+P1 3019)

3059
3061
3063
3065
3067
3069

3057

3033
3035
3037
3039
3041
3043
3045

Column 2 corresponds to strains carrying plasmids (derived from pRS415) and harboring the different transcriptional lacZ gene fusions used in this work. The strains listed in columns 3 and 4 correspond to single copy chromosomal

sulA:lacz
dinl:lacZ
lldP::lacZ
ndk::lacZ
nirB:lacZ
narG:lacZ
dcuC:lacZ

coli HU Regulon

derivatives of the same lacZ gene fusions, carried by a lambda prophage. The strains listed in columns 5 to 10 under their relevant genotype have been obtained by phage P1 transduction. The numbers between parentheses refer

to the respective recipient and donor strains used for transduction. Four digit numbers refer to strains names; JO suffices have been omitted for clarity.

doi:10.1371/journal.pone.0004367.t007
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Treeview [90]. The determination of the number of clusters was
determined by using the iterative criterion of Hartigan:

Ei
Ef i

Since the statistical distribution of values in the data did not
obey the normal law, bootstrap methods provided by Stata
Statistical Software R. 9 [91] were used to obtain a more robust
non-parametric estimate of the confidence intervals [92]. In order
to determine which experimental condition effect (genotype and
growth phase) was predominant in each cluster, we performed
Kruskall-Wallis non-parametric tests for every condition except
hupA vs. hupB. A total of 30 conditions were therefore tested (10 for
each phase) to assess the significance of the difference in gene
expression between clusters. When the overall test was significant,
the genes belonging to the clusters presenting very high mean
ranks were considered to be regulated under the given condition.
Microarray reproducibility was tested using intra-class coefficients;
all Spearman’s rhos were between 0.89 and 0.95 indicating very
high data reproducibility. The absolute gene expression values are
shown in Supplemental Table 2. For clarity, the individual gene
expression levels in Tables 2 to 6 have been normalized by taking,
for each growth phase, a value of 1 for the wild-type strain.

—1) *(n—K—1)>10 [38]
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