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Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year
worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could
significantly reduce breast cancer death rates in the long term. X-ray mammography is still the instrument of choice in breast
cancer screening. In this context, the false-positive and false-negative rates commonly achieved by radiologists are extremely
arduous to estimate and control although some authors have estimated figures of up to 20% of total diagnoses or more. &e
introduction of novel artificial intelligence (AI) technologies applied to the diagnosis and, possibly, prognosis of breast cancer
could revolutionize the current status of the management of the breast cancer patient by assisting the radiologist in clinical image
interpretation. Lately, a breakthrough in the AI field has been brought about by the introduction of deep learning techniques in
general and of convolutional neural networks in particular. Such techniques require no a priori feature space definition from the
operator and are able to achieve classification performances which can even surpass human experts. In this paper, we design and
validate an ad hoc CNN architecture specialized in breast lesion classification from imaging data only. We explore a total of 260
model architectures in a train-validation-test split in order to propose a model selection criterion which can pose the emphasis on
reducing false negatives while still retaining acceptable accuracy. We achieve an area under the receiver operatic characteristics
curve of 0.785 (accuracy 71.19%) on the test set, demonstrating how an ad hoc random initialization architecture can and should
be fine tuned to a specific problem, especially in biomedical applications.

1. Introduction

Breast cancer is one of the most common cancers in
women, with more than 1,300,000 cases and 450,000 deaths
each year worldwide [1]. In the era of precision medicine
[2], the identification and stratification of breast lesions in
the early stage of cancer development is an essential

starting point for increasing the probability of therapeutic
success. In this context, early detection of breast lesions
through mammography has been seen to be associated with
an extremely high probability of cure, with a 97% survival
in five years [3]. To date, however, identification of breast
cancer lesions is affected by an unsatisfactory rate of false-
positive results.
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Currently, X-ray mammography represents the standard
breast screening technique. &e false-positive and false-
negative rates resulting by mammography are relatively
high, especially for patients with very dense breasts [4, 5].
&e sensitivity of mammography is further influenced by age
and ethnicity of patients, personal history, implementation
and (especially) expertise, and experience of the radiologist
performing the exam. In addition, the mammographic exam
does not provide any indication about probable disease
evolution and/or outcome (and neither does it provide clues
about possibly appropriate therapeutic choices). In this
context, it is not surprising that the rate of false-negative or
-positive results for mammography described in the liter-
ature is extremely variable. While it is evident that possibly
high rates of false-negative results are critical, false positives
also carry significant consequences. A recent retrospective
investigation of registry data concerning 405,191 women
aged 40 to 89 years, screened with digital mammography
between 2003 and 2011, reported a rate of 12.12% of false-
positive results. However, others studies indicate a rate of
false positive of up to 20% in specific centers [6]. While a
single study computed a very low rate of false-negative
results (0.1 to 0.5%) regardless of the patient’s age, several
retrospective analyses indicated that mammographic ex-
aminations are associated with a high false-negative rate
(between 8 and 16%), which is often quoted as an average
15%. &ese results, apparently controversial, can be
explained by the numerous factors that influence the in-
terpretation of mammographic images such as quality of
instrumentation, radiologist’s experience, and the avail-
ability of a second opinion [7–11]. Also, false-positive
mammograms are often associated with increased short-
term anxiety but no long-term anxiety and no measurable
health utility decrement [11]. In a recent study, a false-
positive result increased women’s motivation to undergo
future breast cancer screening, whilst it did not increase their
self-reported motivation to travel to avoid a false-positive
mammogram [12]. Also, in presence of false-positive cases,
patients are frequently subjected to repeated invasive
(bioptic examination) and/or stringent follow-up programs,
such as additional mammography exams mammography or
equivalent medical procedures which, on top of possibly
generating health detriment on their own, also carry sig-
nificant financial burden. &e direct breast-care costs in the
year following a false-positive screening mammogram are
approximately 500$ higher than in the case of a true-
negative result [13].

In view of the above, the introduction of novel artificial
intelligence (AI) technologies applied to the diagnosis and
possibly prognosis of breast cancer could revolutionize the
current status of the management of the breast cancer pa-
tient. &e support of AI in the diagnostic path of breast
cancer patients can potentially both reduce the healthcare
costs due to misdiagnosis and promote the achievement of
new precision medicine protocols [14]. In this context, the
disruptive innovation in computer vision brought about
through what is known as deep learning [15–17], and in
particular, a class of methods known as deep convolutional
neural networks (CNNs) [18] is very quickly making its way

into the world of medical imaging. Accordingly, in a pre-
liminary study, Chougrad et al. [13] described a CAD based
on deep CNN able to discriminate between malignant and
benignant breast mass in mammographic images with high
accuracy. Likewise, other papers employed massive transfer
learning approaches (GoogleNet and AlexNet) [19–21] and
compared them to in-house, random initialization models
showing that the latter achieves fairly poor performance.
Other authors focused on a relatively small dataset and an
“in-house” architecture measuring the relationship between
network depth and model performance [22]. Still, published
results are often hard to validate and replicate also due to the
lack of a shared, standard curated dataset of informative
mammographic images, and transfer learning approaches
may not perform equally well when applied to datasets
which are too distant in nature from the application at hand.

&e main aim of this study was to design an ad hoc
random initialization “in-house” deep neural network ar-
chitecture to classify/detect breast lesion and explore
whether satisfactory performance can be obtained without
having to include the inaccurately trained, albeit powerful,
public models currently available for transfer learning.
Given the strong dependence of CNN performance on the
specific task, we aimed to distill what are the key charac-
teristics of a CNN suitable for breast lesion classification. We
based our investigation on the recently released Curated
Breast Imaging Subset of the Digital Database for Screening
Mammography, which is curated by trained radiologists as
well as pathologists.

2. Methods

2.1. Dataset. &e training and testing of our CNN is done
over the Curated Breast Imaging Subset of DDSM Digital
Database for Screening Mammography (CBIS-DDSM)
[23, 24], which is a collection of mammograms from sev-
eral sources (Massachusetts General Hospital, Wake Forest
University School of Medicine, Sacred Heart Hospital, and
Washington University of St. Louis School of Medicine).&e
database collects both mediolateral oblique (MLO) and
craniocaudal (CC) views of each breast. Each breast view is
annotated with regions of interest (ROIs) for masses
manually drawn (freehand) by expert radiologists and au-
tomatically included in a rectangular section of the image.
Other annotations include the Breast Imaging Reporting and
Data System (BI-RADS) descriptors for mass shape, mass
margin, and breast density; overall BI-RADS assessment
ranged from 0 to 5; rating of the subtlety of the abnormalities
ranged from 1 to 5. Table 1 provides summary of the an-
notations available for each image.

2.2. Workflow and Architecture Overview. Our model was
developed by combining the TensorFlow [25] and Keras [26]
libraries; the whole workflow (Figure 1) consists of the
following: (i) image preprocessing as described above; (ii)
data augmentation; (iii) CNN training; (iv) performance
evaluation with respect to a validation set, which allows to
compare models trained on the training set; and (v) final
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evaluation of the best model on the test set. &e CNN
training is further composed of several steps (which also
depends on the specific CNN architecture which can be
grouped in (1) convolutional layers and (2) neural layers).
Each step is described in the following paragraphs.

2.2.1. Image Preprocessing. Every mass/ROI (Figure 2) is
labeled either as “benign” or “malignant” according to
pathological findings. As input, we employed all the pre-
segmented ROIs containing images of masses, retaining only
the “benign”-“malignant” label and hence stripping any
other information (Figure 1). Starting from a training set of
1318 images and a test set of 378 images, we created a
training set of 1158 images, a validation set of 160 images,
and retained the original test set of 378 images.

2.2.2. Data Augmentation. It is common practice to syn-
thetically increase the information available to the CNN by
applying multiple transformations to the training set [27].
&is practice is called “augmentation” and serves the
purpose of providing the learning algorithm with as many
informative images as possible in order to prevent over-
fitting (i.e., an excessive specialization of the CNN to the
data at hand, which occurs when the training dataset is not
sufficiently large to allow for generalization). Accordingly,
for each extracted ROI, we perform data augmentation by
transforming the training images employing random ro-
tations, rescalings, and shear deformations (it is important
to note that since CNNs are not invariant for affine
transformation, this process is actually able to inject new
training information into the dataset). Figure 3 shows an
example of a batch of images resulting from the aug-
mentation process.

2.2.3. Training. &e process of training consists in tuning
the weights of the model (see following paragraphs), to
maximize the loss function of the model and hence the
accuracy of the automatic classification/diagnosis formu-
lated by themodel. Batches of images from the CNN training
set are fed into the algorithm, and the weights of the model
are found by a trial and error in the attempt to improve its
accuracy. Each “attempt” is commonly called “epoch”. After
each epoch, the weights of the model are updated.

(1) Convolutional Layers. Convolutional layers are the first
stages of the actual image processing pipeline (Figure 4), and
their role is to distill information regarding spatially cor-
related features of the input image. Convolutional layers
function in a way that resembles the physiology of early
pathways of the visual cortical areas in humans, where
neurons respond to simple tuning—e.g., a neuron might be
sensitive to vertical contrasts while another to horizontal
contrasts. For example, convolution processes may highlight
edges, or smooth the image, or make contrasts in a specific
direction more prominent. At each layer, convolved images
are subsampled to reduce resolution and passed to the next
layer. Each convolutional layer extracts features using as
input a linear combination of the outputs of the previous
layer. Recursively, more and more (but smaller and smaller)
images are produced, each containing information about an
intricate combination of features. To the human eye, the
images produced after the last layers typically look com-
pletely unrelated to the original input. A more technical
description of this process can found in [29]. &e con-
volutional part of the CNN is described by the number of
convolutional layers, the number of convolutional kernels in
each layer and their sizes, the details of the activation
functions, and other image processing steps (e.g., how the
subsampling is done and whether there is a global-
normalization step).

(2) Neural Layers. &e output of the last convolutional layer
is the input to a series of one or few layers of neuronal arrays.
A neuronal array is a set of weighted switch-like

Test set Validation set

Validation

Final figure of merit

Selected final model

Training set

Training

Data augmentation

Figure 1: Workflow of our method. &e original training set
provided by CBIS-DDSM is further divided into a new “training
set” and a “validation set.” &e new training set is employed to fit
themodel parameters, and the validation set is employed to validate
and compare the performance of each model on an unbiased set of
images. &e final model is chosen accordingly to its performance of
the validation set and its performance quantified in an unbiased
manner on the test set. Overall, the split was as follows: training set
(1158 images), validation set (160 images), and test set (378 images).

Table 1: Summary of the annotations available for each image in
the CBIS-DDSM dataset. As all these annotations are derived from
the image, none of these features were imputed into our classifier.
Patient_id Anonymous alphanumeric code
Breast_density 4 (153), 2 (757), 3 (449), 1 (337)
Left or right
breast Left (817), right (879)

Image view CC(784), MLO(912)

Abnormality id
1 (1570), 2 (84), 4 (10), 3 (28), 5 (2), 6 (2)

(integer index used to label multiple
lesions within the same image)

Abnormality
type Mass (1696)

Mass shape

Irregular (526), round (169), lobulated (399),
oval (423), architectural_distortion(158),

asymmetric_breast_tissue(26),
lymph_node(45)

Mass margins

Focal_asymmetric_density (27), n/a (4),
spiculated (407), circumscribed (455),
ill_defined (472), obscured (308),
microlobulated (143), n/a (60)

Assessment 5 (374), 4 (702), 0 (162), 3 (364), 2 (91), 1 (3)

Pathology Malignant (784), benign (771),
benign_without_callback (141)

Subtlety 5 (687), 4 (453), 2 (141), 3 (358), 1 (55), 0 (2)
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discriminators that, much like to the firing of a neuron
excited by a suprathreshold stimulus, activate when a certain
combination of features is active. Again, stacking two or
more neuronal layers allows to extract more and more
sophisticated combinations of features. Such neural layers
are called “fully-connected” because each neuron is linked a
priori with any element (a voxel in an image or a neuron) of

the previous layer. &e weights of those links are tuned
during the training process. In our model, the very last layer
is composed by a single neuron with a sigmoid activation,
i.e., its output is a number between 0 and 1, which describes
the algorithm’s educated guess regarding the malignancy of
(the mass depicted in) the image (0: completely benign, 1:
completely malignant). Varying the threshold on this

Figure 2: Example whole raw images and ROI extraction to be passed to image augmentations.

Figure 3: Example of a batch of 16 images from the training set. &e ROI from which each image has been generated has been randomly
rescaled (independently over the two axes), rotated by a random angle, randomly flipped, and resampled to fit into a pixel frame with aspect
ratio 1. Any remaining area not filled by the image is padded with an array of pixels drawn from the edge of the image.

Feature maps Feature maps Fully connected 1

Outputs

Pooling 2Pooling 1Input Convolutional
layer 1

Convolutional
layer 2

p(y | x)

Pooled
feature maps

Pooled
feature maps

Figure 4: Overall architecture of the model (adapted from [28]).
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continuous sigmoid function allows the construction of
receiver operating characteristic (ROC) curves.

2.2.4. Performance Evaluation during Model Training and
Model Selection. At each epoch, we test the diagnostic ac-
curacy of the model on a separate validation set (see above)
which, importantly, is not used (i.e., it is completely “un-
seen”) for training, thus providing an unbiased evaluation
tool. For example, a high accuracy on the training set
coupled with a low accuracy on the validation set is a good
indication of overfitting has occurred.

It is important to note that, for real-life problems, there is
no simple way to choose the best model architecture. Very
similar architectures can perform differently, while very
different architectures in terms of depth, number of layers,
or number of parameters perform could perform almost
equally. In this paper, we heuristically explored the space of
number of possible architectures and trained them in order
to gain insights into what an optimal CNN architecture for
classification of breast lesions may be. In particular, we
explored (though not exhaustively) the space of the fol-
lowing parameters: number of convolutional layers (2–5),
size of the input image (from 78 to 612 pixels, depending on
architecture and dimensions of images after the last con-
volutional layer, which in turn ranged from 1 to 8 pixels),
number of convolutional kernels per each layer (from 4 to
64, not necessary identical on every layer), size of the
convolutional kernel (from 3 to 11, not necessary iden-
tical on every layer), size of pooling (from 2 to 4,
depending on the image size and kernel size), method for
the last layer vectorization (global mean, global max, or
flattening), number of fully connected layers before the
last single-neuron layer (from 1 to 3), and numbers of
neurons in each fully connected layer (from 200 to 5,
typically decreasing with depth of the layer), for a total of
260 tested architectures. Every architecture was evaluated
according to its performance on the validation set
according to two separate criteria: (a) highest area under
the ROC curve (AUC) (“model 1”) and (b) best F2 score
amongst all best F2 statistics attained by every single
architecture (“model 2”). &e F2 score is defined as
F2 � 5∗ precision∗ recall/4∗precision + recall. Within each
model, the optimal operating point was chosen according to
the F1 score (i.e., maximizing the harmonic average of pre-
cision and sensitivity, a commonly adopted criterion which
compromises between sensitivity and the ability to discrim-
inate a true positive result) for model 1 and F2 score for
model 2.

3. Results

Both “model 1” and “model 2” happened to share the same
convolutional architecture: 3 convolutional layers with 64
kernels each; size of kernels in each layer was 7× 7, 5× 5, and
3× 3, respectively; the parameter dropout factor on each
convolution was 25%; after rectified linear unit (ReLU)
activation, on each layer, a max pooling method with size
4× 4, 3× 3, and 2× 2 (and same stride) was employed.

“Model 1” and “model 2” differed only in terms of the size of
the input images and of the neuronal architecture: “model 1”
had an input image of 238× 238 pixels and fully connected
neuronal layers composed by 50 and 10 neurons each before
the last single-neuron layer. “Model 2” had an input image of
286× 286 pixels and fully connected neuronal layers com-
posed by 50 and 20 neurons each before the last single-
neuron layer. Training the models took approximately
78 hours (4000 training epochs) on a 40-CPU dedicated HP
bladesystem. Examples of our result on the validation set as
well as final performance of our best models on the test set
are shown in Figure 5. Examples of images which are “easy”
to classify correctly are shown in Figure 6. Examples of
images which are “difficult” to classify correctly are shown in
Figure 7.

Our final “model 1” achieved an AUC of 0.785. Detailed
performance statistics for this model when selecting an
optimal operating point according to the best F1 score
method are presented in Table 2. Our final “model 2”
achieved an AUC curve of 0.774. Detailed performance
statistics for this model when selecting an optimal operating
point according to the best F2 score (which is a weighted
average between sensitivity—which is emphasized 4-
fold—and positive predictive value (PPV)) method are also
presented in Table 2.

4. Discussion

While the classical machine learning (ML) paradigm is based
on providing a result (i.e., a classification) given a human-
defined set of features extracted from input data, CNNs are
able to capture intricate relations between image features
that are typically invisible to the human eye. Moreover, CNN
architectures need not to be problem specific. However, their
adaptability with respect to the image classification tasks,
and their complete independence from the burden as well as
possible bias of human-defined features, comes with the cost
of a vast number of parameters which, in turns, require a
large amount of training data. Given a certain CNN ar-
chitecture, if the demand of training data is not met, the
performance of the algorithm in terms of classification
accuracy might plunge to chance levels. In this pilot study,
we have explored the possibility of designing ad hoc CNN
architecture with random initialization while studying
heuristically which characteristics, out of the multitude of
CNN varieties, may be important for breast lesion classifi-
cation and may warrant further investigation. We employed
rigorous validation and test set splits and achieved an area
under the ROC curve of 0.78. Additionally, the optimal
cutoff point as calculated with an F1 statistics was associated
with 62.44% specificity and 84.4% sensitivity. Given the
health as well as psychological implications of a false-
negative diagnosis in breast cancer (see Introduction), we
also strived to select a model which could pose more em-
phasis on avoided false negatives while still being selected
rigorously. We therefore evaluated our model performance
at an operating point determined by maximizing the F2
statistic, obtaining a sensitivity of 99.7%. While the speci-
ficity of this model may seem low, it is important to note
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that, when performing model as well as operating point
(i.e., cutoff) selection, it is critical to keep the end-user’s
needs and priorities in mind. We therefore put forward that,
in a condition like breast cancer where a false negative may
have devastating consequences which are overall muchmore
burdensome than those of a false positive, a criterion like the
F2 statistic (or similar) may be the instrument of choice.

As noted in the introduction, a few papers based al-
most exclusively on transfer learning have obtained
comparable or higher performance on breast cancer
classification as compared to our results. While transfer
learning can provide steeper learning rates and asymp-
totically higher performance when approaching a new
classification task and a small training set, it is likely that a

0.82625
0.82687
0.82687
0.83

0.85
0.85375
0.85875

0.8475

0.0

0.2

0.4

0.6

0.8

1.0
TP

R 
(s

en
sit

iv
ity

)

0.2 0.4 0.6 0.80.0 1.0
FPR (1 – specificity)

(a)

Model 2
Model 1

0.0

0.2

0.4

0.6

0.8

1.0

TP
R 

(s
en

sit
iv

ity
)

0.2 0.4 0.6 0.80.0 1.0
FPR (1 – specificity)

(b)

Figure 5: (a) Receiver operating characteristic (ROC) curves for a subsample of the architectures tested on the validation set (AUCs
obtained on the validation set are shown in the legend). (b) ROC curve related to our best performing model (model 1: selected according to
AUC on the validation set and model 2: selected according to F2 statistics on the validation set) when evaluated on the test set.

(a) (b)

Figure 6: Example images that are easy to classify: (a) image of a benign lesion that is easily categorized as a benign lesion (score 2.2×10−9

from model 1 on a scale from 0 to 1); (b) image of a malignant lesion that is easily categorized as a malignant lesion (score 1.0 from model 1
on a scale from 0 to 1).
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dedicated learning framework would reach asymptotically
higher performance when a large enough training set is
made available. Further, one might speculate that the type
of background knowledge and the realm of the application
are also influential: for a lesion detection problem in
mammograms, an architecture well-trained to distinguish
(say) cars from the pedestrian might make a worse transfer
learning source than, for example, an equally well-trained
architecture to distinguish benign from malignant lung
nodules.

Of note, the capabilities of a CNN in particular, and of
deep learning in general, can, e.g., also be extended to predict
molecular alterations (e.g., genetic changes) as long as the
training data has been annotated both clinically and
genomically in an accurate manner [30]. &is could greatly
enhance the management of breast cancer patients, in which
the choice of therapeutic strategy is currently based on
molecular characteristics of breast tumors, which in turn
established by histological analysis of biopsies or surgical
samples. Specifically, immunohistochemical reactions allow
to evaluate the expression of targets for biological (cerB2),
antihormonal (estrogen receptor), or radiochemical thera-
pies (Ki67) [31–33]. &erefore, one can envisage an algo-
rithm able to predict the molecular features of breast cancer
tissues by the analysis of digital mammographic images,
which could be conceivably realized by training a CNN
jointly with histopathological and molecular data. &e

introduction of this type of diagnostic approaches has the
potential to introduce radical changes in the organization of
imaging diagnostic, anatomic pathology, as well as oncology
departments. Specifically, the possibility to provide oncol-
ogists with possible molecular profiles and/or treatment
options at the time of mammography could significantly
reduce the need for bioptic investigation, hence optimizing
the overall resources available to the healthcare facility. Most
importantly, such CAD frameworks could ameliorate the
patient’s quality of life by reducing both the number of
invasive procedures such as (often repeated) biopsies as well
as the average wait before therapy inception. Also, deep
learning has the potential to seamlessly integrate data from
multimodal imaging of breast cancer, such as mammog-
raphy and molecular imaging (PET, CT, and MR), with
digitalized histological images. &e algorithms could be
trained to emphasize and highlight morphological signs
whose identification is commonly time-consuming to the
naked eye but may result in diagnostically actionable items
(e.g., microvessel density, neoangiogenesis, lymphovascular
invasion, chromatin alteration, or mitotic figures). &is type
of workflow would not only render pathology and imaging
work quick and more accurate but also redefine the role of
pathologists to experts able to agglomerate and interpret
genetic/molecular, morphological, and imaging information
to produce a more integrated and accurate diagnosis
[34, 35].

(a) (b)

Figure 7: Example images that are very difficult to classify: (a) image of a benign lesion that is falsely categorized as a malignant lesion (score
0.99992 from model 1 on a scale from 0 to 1); (b) image of a malignant lesion that is falsely categorized as a benign lesion (score .0133 from
model 1 on a scale from 0 to 1).

Table 2: Performance statistics for our best performing models as evaluated on the test set.
Model 1 (best AUC overall on tde validation set, point witd best F1 score on tde test set)

Accuracy PPV
(precision) FDR TPR (recall,

sensitivity)
FNR

(missrate) FPR (fall out) TN
(specificity)

F1
score

F2
score

F5
score

71.19% 59.80% 40.20% 84.40% 15.60% 37.56% 62.44% 70.00% 77.98% 63.50%
Model 2 (best F2 score overall on the validation set, point with best F2 score on the test set)

Accuracy PPV
(precision) FDR TPR (recall,

sensitivity)
FNR

(missrate) FPR (fallout) TN
(specificity)

F1
score

F2
score

F5
score

55.93% 47.40% 52.60% 97.16% 2.84% 71.36% 28.64% 63.72% 80.30% 52.81%
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In summary, our pilot study can lay the foundation for
the development of new multimodal and multidisciplinary
diagnostic tools able to move yet another step towards the
goal of realizing a true personalized medicine approach able
to take into account the unique peculiarities of every human
being.

Data Availability

&e images from the Curated Breast Imaging Subset data
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cancerimagingarchive.net/display/Public/CBIS-DDSM.
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