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Abstract

Multiple sclerosis (MS) is a progressive neurological disease caused by an autoimmune attack to the central nervous system (CNS). MS
is thought to result from a complex interaction between genetic and environmental factors. In this review, we analyse the contribution
of genomics, trancriptomics and proteomics in delineating these factors, as well as their utility for the monitoring of disease progres-
sion, the identification of new targets for therapeutic intervention and the early detection of individuals at risk.
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Introduction
Multiple sclerosis (MS) is an autoimmune disorder in which the
central nervous system (CNS) is targeted by the dysregulated activ-
ity of the immune system, resulting in progressive neurological
dysfunction. A variety of symptoms characterize MS, among them
are visual and motor problems, changes in sensation in the arms,
legs or face and weakness. At the onset of the disease, 85–90% of
the patients present a clinical course characterized by discrete
attacks followed by periods of partial or total recovery (relapsing-
remitting MS, RRMS); 10% of the patients present a slowly accu-
mulating disability over time (primary progressive MS, PPMS). A
total of 40% of the patients initially diagnosed with RRMS eventu-
ally become progressive (secondary progressive MS, SPMS).

The term MS refers to the scars (scleroses or plaques) that
characterize the white matter of the brain and spinal cord of MS
patients. The autoimmune attack that drives MS is thought to
cause these scars, characterized by a perivascular infiltration by
inflammatory cells (B and T lymphocytes among them) [1, 2]. In
addition, demyelination, astrogliosis and axonal injury are also
detected [1, 2]. Different mechanisms contribute to axonal dam-
age, including the direct effects of pro-inflammatory cytokines,
complement fixation, apoptosis, cell-mediated cytotoxicity and
neurodegeneration [1, 2]. Pathological findings suggest that the 

relative contribution of each one of these processes in disease
progression differs in each patient [3].

The autoimmune response in MS targets components of the
myelin sheaths surrounding neuronal axons, interfering with the
neurons’ ability to conduct electrical signals and probably leading to
their death. Several CNS proteins are targeted by the immune system
in MS, among them are myelin oligodendrocyte glycoprotein [4],
oligodendrocyte-specific protein [5], myelin basic protein [6],
myelin-associated glycoprotein [7], 2�,3�-cyclic nucleotide 3� phos-
phodiesterase [8] and ��-crystallin [9]. It is believed that the clinical
symptoms that characterize MS result from the blockade in axonal
transmission that follows axonal demyelination or axonal loss [1, 2].

Epidemiological studies have suggested the contribution of sev-
eral environmental factors to the susceptibility of a specific individ-
ual to MS. Several viral, bacterial and parasitic infections have been
classically linked to MS onset and progression [10–15], but no sin-
gle environmental agent can be singled out as a ‘cause’ of MS.

MS is heterogeneous in its rate of progression, clinical symp-
toms, the specificity of the immune response and the pathology of
the CNS lesions, reflecting the contribution of different factors to
a pathogenic autoimmune response [16]. In this review, we
analyse the contribution of genomics, trancriptomics, proteomics
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and metabolomics in delineating these factors, as well as their utility
for the monitoring of disease progression, the identification of
new targets for therapeutic intervention and the early detection of
individuals at risk.

Genomics

MS is considered a complex genetic disease in which many poly-
morphic genes have small effects on the overall disease risk, its
severity, rate of progression and age of onset among several clin-
ical outcomes. To date, the strongest chromosomal region linked
to MS is the major histocompatiblity complex (MHC) locus on
chromosome 6p21 [17–19]. In addition, several non-MHC candi-
date loci have also been linked to MS [19], but it has proven diffi-
cult to validate their association in independent studies. The diffi-
culty in the identification of non-MHC genes associated to MS
might reflect the genetic heterogeneity existing among MS
patients, which results in different combinations of gene alleles
leading to the same end phenotype. Nevertheless, polymorphisms
in the � chain of the IL-7 receptor (IL-7R�) have been recently
associated with MS [20–22]. These polymorphisms make only a
small contribution to the genetic susceptibility to MS but are a sig-
nificant step towards the identification of genetic determinants for
MS outside the MHC locus. The IL-7R� allele associated with MS
favours a relative decrease in the membrane-bound IL-7R� [21].
IL-7 is produced by stromal cells in lymphoid tissues, its availabil-
ity is controlled through its uptake by the membrane-bound IL-7R
on T cells [23]. Thus, considering the positive effects that IL-7 has
on lymphocyte survival and proliferation [23], the decrease in
membrane IL-7R might result in increased levels of IL-7 available
to fuel the inflammatory T-cell response in MS.

The � chain IL-2 receptor (IL-2R�) gene has also been recent-
ly linked to MS [22]. IL-2R� allelic variation has been previously
associated to other autoimmune diseases such as type I diabetes,
but at a different genomic position [24]. IL-2 is required for the
development of regulatory T cells (Treg) [25, 26], and indeed,
deficits in Treg activity characterize RRMS [27]; thus the IL-2R�

polymorphisms might be related to the immune dysregulation
observed in MS. Notably, IL-2R�-specific antibodies have shown
promising beneficial effects for the treatment of MS on phase 2 clin-
ical trials [28, 29]. Although the link between IL-2R� polymorphisms
and MS is still awaiting further validation, the association of IL-7R�

and IL-2R� variants to MS supports the use of genome-wide stud-
ies to delineate pathways contributing to disease pathogenesis.

Transcriptomics

Characterization of the MS lesion

Large-scale studies of mRNA expression have been directed at
characterizing either the lesion or the immune response in MS.
Lock and coworkers found that �4-integrin was found to be

elevated in MS lesions [30]. �4-integrin mediates the interaction
of T cells with the endothelium in the inflamed CNS, a required
step for the migration of the self-reactive T cells into the brain and
spinal cord in MS [31]. Antibodies to �4-integrin reverse and
reduce the rate of relapse in relapsing-remitting experimental
autoimmune encephalomyelitis (EAE) an animal model for MS
[32], and a humanized version of this antibody showed positive
effects in the treatment of RRMS [33].

In a separate study, the large-scale sequencing of non-normal-
ized cDNA libraries derived from MS plaques revealed an increased
expression of osteopontin (OPN) in the CNS of MS and EAE sam-
ples [34]. The up-regulation of OPN levels in MS plaques [35] and
in the circulation [36–38] of MS patients was replicated in inde-
pendent studies, prompting the search for polymorphisms in the
opn gene associated with MS. Although some controversy still
remains [39], polymorphisms in the opn locus have been associat-
ed with increased levels of circulating OPN and the clinical course
of MS [40]. To study the mechanism of action of OPN in MS, OPN-
deficient mice were generated, which showed a reduced severity in
EAE [34]. OPN-triggered signalling is thought to contribute to MS
pathogenesis by increasing the pro-inflammatory phenotype and
survival of pathogenic myelin-specific T cells [41]. In addition, OPN
interacts with the �4-integrin and is also involved in cell migration
into the inflamed CNS [42]. Neutralization of OPN with neutralizing
antibodies results in the amelioration of EAE [43]. Thus, OPN is
therefore an example of how results obtained in transcriptomics
studies might lead to the identification of mechanisms of disease
pathogenesis and new therapeutic targets for MS.

Characterization of the immune response

Transcriptional profiling has also been used to study the peripheral
immune response in MS. Two limitations, however, should be kept
in mind when using cDNA arrays for the analysis of the immune
response in MS patients: First, these studies assume that changes
in the peripheral immune system somehow reflect the immune
response within the CNS. Second, the results of these studies are
influenced by factors such as gender, age or changes in the relative
proportion of different blood cell subsets that occur through the
course of the disease. Nevertheless, two areas show significant
progress in the transcriptional profiling of the immune response in
MS: the follow-up of disease activity and the response to therapy.

Follow-up of disease activity: Achiron and coworkers charac-
terized the transcriptional activity in peripheral blood mononuclear
cells (PBMC) from RRMS patients during the course of the dis-
ease [44]. The authors identified a transcriptional signature asso-
ciated to the relapse, that included genes involved in the recruit-
ment of immune cells, epitope spreading and escape from
immune-regulation. Although encouraging, these results should
be validated using an independent set of samples and in longitu-
dinal studies to assess their predictive value.

Response to therapy: �–Interferon (�–IFN) is widely used for
the treatment of MS [45], however, biomarkers that would allow
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the identification of patients that would benefit from treatment
with �–IFN are still not available. Weinstock-Guttman and col-
leagues used cDNA micro-arrays to study the effects of �–IFN
therapy on monocyte-depleted PBMC [46]. They found significant
changes in the expression of genes involved in the anti-viral
response, �–IFN signalling and markers of lymphocyte activation.
These studies provided a molecular description of the effects of
�–IFN on RRMS patients and were later on extended to identify
transcriptional signatures associated to a favourable response to
treatment with �–IFN [47]. Based on these observations,
Oksenberg and coworkers constructed a classifier for the identifi-
cation of MS patients likely to respond to treatment with �–IFN
[48]. The work of Oksenberg and coworkers is remarkable for two
reasons: First, it demonstrates that gene expression profiling can
be helpful in the selection of therapeutic regimes for the manage-
ment of MS. Second, it uses a technology (real-time PCR) acces-
sible to clinical laboratories, facilitating the translation of their
results into daily medical practice.

Proteomics

Proteomic studies in MS have been shown to identify new
processes contributing to disease pathology and also, biomarkers
for the early diagnosis and monitoring of MS patients.

Identification of new pathogenic processes

Recently a large proteomic study of MS lesions by Steinman and
coworkers have identified tissue factor and protein C inhibitor
expression within chronic active plaque samples, suggesting that
the dysregulation of the clotting cascade contributes to MS patho-
genesis [49]. The authors went on to investigate the potential ther-
apeutic use of their findings on EAE, concluding that the coagula-
tion cascade is an attractive therapeutic target in MS.

Role of environmental triggers in MS

Epidemiological studies suggest that environmental factors con-
tribute to MS susceptibility. As a result, several groups are active-
ly searching for microbial triggers for MS [10–15]. One of these
putative triggers is the Epstein-Barr Virus (EBV) [50]. The link
between EBV infection and MS has been recently strengthened by
the work of Cepok and coworkers, who used protein expression
arrays to characterize the antibody reactivity in the cerebrospinal
fluid (CSF) of MS patients, most of those antibodies recognized
EBV epitopes [51]. These results, together with the detection of
EBV reactivation in active MS lesions [52], suggest that EBV might
elicit an abnormal immune response in susceptible individuals
that contributes to MS [53].

Characterization of the autoimmune response:
antibodies

The autoimmune nature of MS suggests that the study of the
immune response should be useful for the early diagnosis, prog-
nosis and monitoring of MS patients. T cells are thought to make
a major contribution to MS immuno-pathology [16], but the stan-
dardized characterization of the T-cell response has proven diffi-
cult in MS. Antibodies might also have a pathological role [54].
Moreover, the activation of antibody-producing B cells is con-
trolled by T cells, thus antibody response is thought to reflect the
activity of the T-cell compartment [55]. Since it is easier to assay
antibody reactivity than to follow antigen-specific T-cell respons-
es, new technologies have been developed for monitoring the
humoural response in MS patients and autoimmunity [56, 57].

Antigen arrays have been shown to detect changes in the
repertoire of antibodies reflecting the antigen spreading that
accompanies EAE progression [58]. The information obtained
about the antigen spreading was used to design tailored immuno-
modulatory vaccines to control EAE [58]. Of note, these vaccines
showed promising results in a phase 1/2 human clinical trial [59].

Future experiments should study the antibody response in the
serum of MS patients, searching for patterns of antibody reactivity
that predict the progression of MS or the response to therapy, as it
was shown for other autoimmune disorders, such as rheumatoid
arthritis [60], autoimmune diabetes [57] and systemic lupus erythe-
matosus [61]. Indeed, our own data suggest that antigen arrays
might be used to identify antibody patterns linked to the different
forms of MS and identify pathogenic mechanisms and therapeutic
targets (F. J. Quintana et al., submitted). Thus, antigen arrays
are promising platforms for the identification of patients at risk of
developing MS, before the overt onset of the symptoms [57].

Metabolomics

The metabolome is defined as ‘the complete set of small-molecule
metabolites (such as metabolic intermediates, hormones and other
signalling molecules, and secondary metabolites) to be found within
a biological sample, such as a single organism’ [62]. Although initial
studies aimed at studying the metabolome in simple organisms like
the yeast [63], the study of a limited subset of the human
metabolome in health and disease is well underway [64, 65]. Several
groups have undertaken the study of metabolomic aspects of MS.

During the course of MS, macrophages and astrocytes pro-
duce nitric oxide, a metabolite that is thought to contribute to sev-
eral aspects of MS pathology such as the disruption of the
blood–brain barrier, oligodendrocyte injury and demyelination,
axonal degeneration [66]. Nitric oxide metabolites can be detect-
ed in CSF, serum and urine of MS patients, and their levels seem
to reflect the activity of inflammatory processes that contribute to
the pathology of the disease [66–68].
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N-acetylaspartate (NAA) is only present in living mature neu-
rons, thus decreases in NAA levels indicate neuronal loss.
Magnetic resonance (MR)-based approaches have been success-
fully used to measure the levels of NAA and other metabolites
[69–72] in vivo, providing a novel non-invasive method for the
acquisition of real-time data about the state of the CNS in MS. The
power of this approach is highlighted by new data showing that
the precise measurement of NAA levels by a combination of in vivo
proton MR spectroscopic imaging with segmented, high-resolu-
tion MR imaging can identify RRMS patients in their transition to
the SPMS form of the disease [73]. Although preliminary, these
results suggest that metabolomics might provide sensitive bio-
markers to follow up changes in the neurodegenerative and
inflammatory processes that contribute to MS pathogenesis [74].

Integration of data from different
‘omics’ approaches

The combination of the data generated in transcriptomics and
genomics studies can be an invaluable source of information and
new hypotheses. Aune et al. compared the genes differentially
expressed by lymphocytes in rheumatoid arthritis, systemic lupus
erythematosus, insulin-dependent diabetes mellitus and MS, con-
cluding that they are clustered within chromosomal domains in
the genome [75]. Strikingly, they found that the chromosomal
domains containing the genes differentially expressed in autoim-
mune disorders could be mapped to disease susceptibility loci
associated to those diseases by genetic linkage studies [75].
These results suggest that the expression of disease-associated
genes is co-regulated as a result of shared genetic regulatory ele-
ments or local patterns of chromatin condensation. Recently,
Baranzini and coworkers studied the genetic concordance
between gene expression and genetic linkage in MS [76]. They
first compiled the data on gene expression available for MS and
EAE, and superimposed it with all the known susceptibility loci
identified in MS and EAE. In their study, Baranzini and coworkers
identified the MS susceptibility genes located in the MHC locus as
overlapping with clusters of differentially expressed genes in MS
and murine EAE. However, they could also identify an interesting
region on chromosome X that might contribute to the sexual
dimorphism observed in MS. The integration of the data generat-
ed by different platforms, like transcriptomics, genomics and pro-
teomics, is therefore likely to deepen our understanding of the
mechanisms driving MS.

New experimental models

Screenings aimed at identifying genes or drugs controlling the
immune response cannot be easily undertaken in mice because
they are based on crossing, maintaining and screening large num-

bers of animals, an expensive time-, space- and labour-intensive
task; new experimental models are needed. Our current knowl-
edge on innate immunity originated from pioneering studies that
used flies and worms to carry out genetic studies and identify
pathways controlling the response to microbes [77]. Invertebrates
lack adaptive immunity, but the zebrafish (Danio rerio) harbours
an adaptive immune system that resembles the mammalian
immune system [78] and offers several experimental advantages
for the study of pathways controlling vertebrate processes of inter-
est. As part of our work on the zebrafish to identify pathways con-
trolling immunity, we have characterized the zebrafish homologues
of the transcription factors autoimmune regulator [79] and Foxp3
[80, 81], pivotal for central and peripheral tolerance, respectively.

Our work on zebrafish Foxp3 led us to identify the ligand-acti-
vated transcription factor aryl hydrocarbon receptor (AHR) as a
regulator of the expression of mammalian Foxp3 [82]. Upon acti-
vation by its ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),
AHR interacts with its binding sites on the Foxp3 gene and stimu-
lates its transcription. AHR activation by TCDD generates function-
al Treg that inhibit the development of EAE by a transforming
growth factor �1-dependent mechanism. Surprisingly, AHR acti-
vation by an alternative ligand, 6-formylindolo[3,2-b]carbazole,
interferes with Treg differentiation, boosts TH17 differentiation and
worsens EAE. Thus, AHR regulates both Treg and TH17 differentia-
tion in a ligand-specific fashion, constituting a unique target for
therapeutic immuno-modulation. In addition, our findings suggest
that the experimental advantages offered by the zebrafish can be
exploited to characterize metabolic pathways controlling immunity in
vertebrates and to identify new targets for therapeutic intervention.

Conclusions

How can we apply the information provided by genomics, tran-
scriptomics and proteomics to the early diagnosis, prevention,
monitoring and therapy of MS? A first step is the establishment of
experimental models where biologic problems of interest can be
investigated through genomic, transcriptomic and proteomic
approaches simultaneously. The zebrafish, with its experimental
advantages for the study of vertebrate-specific processes [78],
might turn into a platform, where to identify pathways contribut-
ing to MS pathology and therapeutic targets. Our findings on the
control of the immune response by AHR support this view.

Another step should be the adaptation of genomic, transcrip-
tomic and proteomic technologies to a clinical setup. The person-
al genome project, for example, aims at developing fast and reli-
able methods to sequence the individual human genomes for
US$1000 or less [83]. However, the data generated by these high-
throughput approaches should be integrated to understand how
the genomics, transcriptomics and proteomics of an individual
influence each other. This would require the development of com-
putational tools for the integration of networks and pathways into
accurate quantitative models [84, 85]; with user interfaces aimed
at facilitating its exploration and modification [86].
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MS results from a complex dialogue between a susceptible
individual and a fostering environment, a dialogue unique to each
individual. The combination of genomic, transcriptomic and pro-
teomic techniques might allow us to identify key elements in this
dialogue to prevent, diagnose and cure MS.
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