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Abstract: As an emerging and promising computing paradigm in the Internet of things (IoT),
edge computing can significantly reduce energy consumption and enhance computation capability
for resource-constrained IoT devices. Computation offloading has recently received considerable
attention in edge computing. Many existing studies have investigated the computation offloading
problem with independent computing tasks. However, due to the inter-task dependency in various
devices that commonly happens in IoT systems, achieving energy-efficient computation offloading
decisions remains a challengeable problem. In this paper, a cloud-assisted edge computing framework
with a three-tier network in an IoT environment is introduced. In this framework, we first formulated
an energy consumption minimization problem as a mixed integer programming problem considering
two constraints, the task-dependency requirement and the completion time deadline of the IoT service.
To address this problem, we then proposed an Energy-efficient Collaborative Task Computation
Offloading (ECTCO) algorithm based on a semidefinite relaxation and stochastic mapping approach
to obtain strategies of tasks computation offloading for IoT sensors. Simulation results demonstrated
that the cloud-assisted edge computing framework was feasible and the proposed ECTCO algorithm
could effectively reduce the energy cost of IoT sensors.

Keywords: edge computing; computation offloading; collaborative task; energy efficiency;
Internet of Things

1. Introduction

With the explosive development of the Internet of Things (IoT), enormous sensors are connected
through IoT techniques, and these sensors generate massive amounts of data and demand [1–4].
However, due to the limitations of size, battery life and heat dissipation in IoT sensors, severely
constrained resources cannot meet the increasingly complex application requirements [5]. Since the
cloud has adequate computation resources, cloud computing [6] has been proposed as an effective
way to tackle the above challenges. By offloading computation tasks to cloud data centers, cloud
computing can extend the computation power of IoT sensors.

However, cloud data centers are mostly far from IoT sensors, which causes significant
communication overhead and severely lessens the offloading efficiency. They are usually unacceptable
for some latency-sensitive IoT applications. Thus, edge computing [7,8], e.g., multi-access edge
computing (MEC) [9] and fog computing [10,11], as a complement and extension of the cloud
computing paradigm, is a prospective solution that can overcome the aforementioned challenges.
In edge computing, computation resources are deployed near devices, such as smart gateways, access

Sensors 2019, 19, 1105; doi:10.3390/s19051105 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-5687-8750
http://dx.doi.org/10.3390/s19051105
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/5/1105?type=check_update&version=2


Sensors 2019, 19, 1105 2 of 19

points, base stations, etc., and integrated as edge servers. The resource-constrained device can offload
the computing task to the edge server via single-hop wireless transmission. The edge server then
performs the computation and returns the computation result. Different from cloud computing,
edge computing can provide computing resources at the network edge. Therefore, it can reduce
communication latency and network bandwidth requirement [12,13]. Furthermore, based on the
advantages of edge computing, many efforts have explored its potential in practical applications,
such as video analysis [14], fault detection [15] and vehicular networks [16].

Computation offloading [17–19] is a key technique of edge computing to efficiently enhance the
computation capability of IoT sensors. In addition, computation offloading can save computation
energy consumption of IoT sensors at the cost of additional transmission energy consumption.
Therefore, balancing the tradeoff between computation and communication costs in order to optimize
offloading strategies is a key challenge of computation offloading problem. Many previous studies
on computation offloading in the field of edge computing have been proposed [20]. Most of the
literature optimize the offloading strategies under certain constraints, such as task completion deadline
or bandwidth resource constraints, to achieve system performance gains, like reducing energy
consumption or latency. To improve the system efficiency, Dinh et al. [21] observed performance gain
in energy and latency when offloading decisions, task assignment, and CPU frequency of the device
were jointly considered. Ref. [22] jointed optimization of the computation offloading decisions and the
allocation of computation resources, transmission power, and radio bandwidth in a hybrid fog/cloud
system. However, most works assume that computing tasks are independent. That is, computation
offloading with inter-task dependency relationships, especially the task dependency among various
devices, have seldom been considered and addressed. This kind of inter-task dependency is ubiquitous
in the IoT environment such as smart home [23], smart healthcare [24], and smart city [25–27].
For example, consider a scenario where multiple IoT sensors are combined to complete an IoT service.
One of the sensors needs to combine the data processed by other sensors for calculation. There is
data dependency between these IoT sensors, meaning that different tasks between IoT sensors need to
exchange data to obtain the expected results. In general, making computation offloading strategies in
the restriction of task dependency relationships is a challenging problem.

In this paper, to tackle the inter-task dependency problem mentioned above, we modeled
the task computation offloading problem of IoT sensors as an energy optimization problem while
satisfying inter-task dependency and service completion time constraint. Particularly, these tasks with
dependency among various sensors were referred to as the collaborative task. Compared to the cloud
data center, the computation capability and resources of the edge server are limited. Therefore, for the
network architecture, similar to some previous works [22,28,29], we described a cloud-assisted edge
computing framework as a three-tier network architecture, which consisted of IoT sensors, an edge
computing server, and a remote cloud server. The computing task of the IoT sensor could be performed
locally, offloaded to the edge server, or further forwarded to the cloud server. The main contributions
of this paper are summarized as follows:

• Taking inter-task dependency and service completion time constraint into consideration,
we formulated the computation offloading strategy problem as a mixed integer optimization
problem on the cloud-assisted edge computing framework, aimed at minimizing the energy
consumption of IoT sensors. Since the problem is a NP-hard problem, solving such problems
is challenging.

• Based on convex optimization theory, we proposed an Energy-efficient Collaborative Task
Computation Offloading (ECTCO) algorithm to solve the optimization problem. The algorithm
obtains computation offloading decisions through a semidefinite relaxation (SDR) [30] approach
and probability-based stochastic mapping method.

• We performed extensive simulations to evaluate the proposed method. Simulation results showed
that in the inter-task dependency scenario, the proposed ECTCO algorithm outperformed in terms
of energy consumption compared to existing algorithms in computation offloading. Moreover, the
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performance evaluations verified the effectiveness and the adaptability of the proposed algorithm
under different system parameters.

The remainder of this paper is organized as follows. Related works are reviewed in Section 2.
Section 3 introduces the system model and formulates an optimization problem. In Section 4,
we present the SDR approach to solve the optimization problem and propose the ECTCO algorithm.
Simulation results are presented and discussed in Section 5. Finally, Section 6 draws conclusions and
discusses future work.

Notation: in this paper, the mathematical symbols follow the rules as follows. The italic letter
denotes a variable, and the uppercase letter with calligraphic font denotes a set. The bold lowercase
letter denotes a vector, while the bold uppercase letter denotes a matrix. gT and GT represent the
transpose of vector g and matrix G, respectively. The trace function of matrix G is denoted by Tr(G).

2. Related Works

Computation offloading is an attractive and challenging topic in edge computing. It has been
extensively investigated with a variety of architectures and offloading schemes. Generally speaking, task
computation offloading can be classified into two computing models [17]: Binary offloading [28,29,31,32]
and partial offloading [33–35].

For binary offloading, the computation task is either executed locally or offloaded as a whole. We
further divide the relevant researches into a two-tier network [31,32] and a three-tier network [22,28,29].
In [31], You et al., discussed the resource allocation problem based on TDMA and OFDMA in multi-user
computation offloading system. The computation offloading strategy was obtained via the dynamic
channel conditions. The results showed that OFDMA access enables higher energy savings compared
to the TDMA system. Taking the scenario of edge caching into consideration, Hao et al. [32] jointly
optimized a task offloading and cache problem to improve energy efficiency. All of the studies above
focus on a two-tier network consisting of devices and edge nodes only. In a three-tier network,
the optimization problem of computation offloading strategy becomes more complicated. To achieve a
higher energy efficiency, Ma et al. [28] devised a distributed computation offloading algorithm in the
cloud-edge interoperation system by utilizing game theory. Zhao et al. [29] proposed a QoS guaranteed
offloading policy by coordinating the edge cloud and the remote cloud under the delay bounded.

For partial offloading, the computation task is segmented into a set of sub-tasks. Some of
the sub-tasks can be executed locally, and the rest are offloaded to the edge. In [33], Wang et al.
combined the dynamic voltage scaling technique with partial computation offloading and proposed a
local optimal algorithm by using the univariate search technique to achieve the goal of reducing
energy consumption and shortening the delay. In [34], the authors integrated wireless power
transfer (WPT) technology into the edge computing system to power the multi-user computation
offloading. Ren et al. [35] presented a novel partial computation offloading model to optimize the
weighted-sum latency-minimization resource allocation problem of multi-user edge computing system.
However, the aforementioned studies about computation offloading in edge computing including
binary offloading and partial offloading do not consider the important inter-task dependency among
various devices.

Recently, there have been some works on computation offloading with task dependency in the
field of cloud computing [36,37]. In the single-user case, Zhang et al. [36] modeled an application as
general topology, and proposed the one-climb policy and Lagrange relaxation method to resolve the
delay-constrained workflow scheduling problem. In [37], Guo et al. investigated a multi-user scenario
in the cloud computing environment, where each individual device had an application that could be
partitioned into multiple sub-tasks with dependency, with the goal of optimizing the energy efficiency
of the computation offloading. However, both of them divided a complex application into multiple
sub-tasks by an individual device, taking into account the dependency between them. In contrast,
we considered the inter-task dependency suitable to IoT scenario, that is, the inter-task dependency
among IoT sensors. These tasks were simple computing tasks that can be fully offloading. Furthermore,
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different from the cloud computing field mentioned above, in this paper, we focused on cloud-assisted
edge computing framework of the three-tier network architecture, in which the computation offloading
decision considering the inter-task dependency was much more complicated.

3. System Model and Problem Formulation

In this section, we describe the computation offloading in IoT scenario for collaborative task.
Then the system model is introduced, followed by the communication, computation and task
dependency model. Finally, the optimization problem of collaborative task computation offloading is
formulated. The main symbols and parameters throughout this paper are summarized in Table 1.

Table 1. Model terminology.

Notation Definition

Eloc
k , Eedge

k , Ecloud
k Energy consumption for task k in local/edge/cloud computing

Ewait
k , Eexec

k Waiting/executing energy consumption for task k
Tloc

k , Tedge
k , Tcloud

k Latency for task k in local/edge/cloud computing
f l
k, f e

k , f c
k The CPU cycles frequency of local/edge/cloud allocated to task k

ptra
k , pcir

k Idle circuit/transmission power of task k
xk, yk, zk Offloading strategies of task k
γ The set of offloading strategy of all tasks
K, K The set/number of computing task
Tmax

s Completion deadline for service S
ωk CPU cycles spent for each bit in task k
dk Data size of task k
Ck Size of CPU cycles amount required to complete task k
rk The transmission rate for task k between the sensor and the edge
B The channel bandwidth between sensors and the edge
Hk The channel gains for task k between the sensor and the edge
σ2 The variance of complex white Gaussian channel noise
REC

k The rate for task k between the edge and the cloud in wired link
L Number of random samples

3.1. Scenario Description

We considered an IoT service S in the system that required K IoT sensors for collaborative
computing. The IoT service was modeled as K fine-grained computing tasks distributed among
K different sensors. There was data dependency among the computing tasks of different sensors.
As shown in Figure 1, a three-tier network architecture consisting of K IoT sensors, one edge server, and
a remote cloud server was presented. Each sensor had a computation task to be handled. We denoted
the set of tasks as K , {1, 2, . . . , K}, which were preemptive and indivisible work unit. Direct
communication was created between sensors via the wireless link (e.g., M2M and D2D communication)
to exchange task calculation results with relevant dependent tasks. Each sensor was connected to the
edge server via a wireless link (e.g., 5G and WiFi), while the edge server was connected to the remote
cloud through a wired link such as fiber.

In this paper, the edge orchestrator at the edge server performed as a computation offloading
management module, which decided whether the computing task was executed locally, offloaded to
the edge server, or forwarded to the cloud server through the edge server. Similar to many existing
studies [22,37,38], we considered our model and proposed method in a quasi-static scenario where all
IoT sensors remained unchanged during a computation offloading period (usually within hundreds of
milliseconds or several seconds). The computation resources of the edge server and the remote cloud
server were represented by the virtual machine (VM), each of which had fixed computation capability.
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Figure 1. Cloud-assisted edge computing framework with collaborative task.

For IoT service S, to satisfy QoS, we denoted Tmax
s as the completion deadline for service S.

For heterogeneous computing tasks in the service, we defined task attribute Uk , {ωk, dk}, where
dk (in bits) was the data size of computation task k, and ωk (in CPU cycles/bit) was the amount of
computation resources required for each bit in task k, which depended on the computational complexity
of the computation task [33]. In addition, we denoted Ck as the size of computation resources amount
needed to complete task k, and Ck = ωkdk. We assumed that Tmax

s and Uk were known before the task
offloading and would not change during the offloading period.

3.2. Communication Model

We first introduced the communication model and gave the uplink data rate when the IoT sensor
offloaded the computation task to the edge server. We denoted ptra

k as the transmission power of task k.
We let Hk be the channel gain between the sensor and the edge when transmitting task k due to path
loss and shadowing attenuation. According to the Shannon formula, the uplink transmission rate for
task k could be given by

rk = Blog2

(
1 +

ptra
k Hk

σ2

)
, (1)

where B is channel bandwidth and σ2 denotes the variance of complex white Gaussian channel noise.
In this paper, similar to many previous works on edge computing [22,29,31], we ignored the

transmission delay of task output. This was because the data size after task computing was generally
small compared to task input, usually only hundredth or thousandth part of task input. For example,
the size of task output was a few KB while the size of task input was hundreds of KB or a few MB.
Therefore, to extract some insights, only the uplink transmission rate between the IoT sensor and the
edge server was considered.
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3.3. Computation Model

3.3.1. Local Computing

For local task computing, let f l
k be the computation capability of task k on the sensor. Thus,

the computation execution time of task k by local computing could be expressed as

Tloc
k =

Ck

f l
k

. (2)

The energy consumption per computing cycle was defined as ε = κ f 2, where κ was the effective
switched capacitance depending on the chip architecture [39]. Then the corresponding energy
consumption for local computing could be computed as

Eloc
k = κ

(
f l
k

)2
Ck. (3)

3.3.2. Edge Computing

For task computing on the edge server, the processing of task k included two phases in sequence:
(i) Transmitting phase, the IoT sensor transmitted the data of task k to the edge via wireless transmission
(ii) edge computing phase, task k was executed in the edge. Therefore, the delay of the edge processing
task was the sum of the wireless link transmission delay and the edge server computing delay. The total
delay and energy consumption of edge computing for task k were given respectively by

Tedge
k =

dk
rk

+
Ck
f e
k

, (4)

Eedge
k = ptra

k

(
dk
rk

)
+ pcir

k

(
Ck
f e
k

)
, (5)

where f e
k indicates the computation resources of the edge allocated to task k, and pcir

k is the constant
idle circuit power (e.g., the digital-to-analog converter (DAC)) when the IoT sensor is idle.

3.3.3. Cloud Computing

If a computing task was offloaded to the cloud server, the IoT sensor first transmitted the data
of the task through wireless transmission to the edge, and then the edge server forwarded the data
to the cloud via the wired link. Thus, the latency of the cloud processing task was the sum of the
wireless link transmission delay, the wired link transmission delay, and the cloud server computing
delay. We denoted REC

k as the rate of the wired link allocated to task k transmission between the edge
and the cloud. The computation resources of the cloud assigned to task k were f c

k . Then the delay and
energy consumption of cloud computing were written respectively as

Tcloud
k =

dk
rk

+
dk

REC
k

+
Ck
f c
k

, (6)

Ecloud
k = ptra

k

(
dk
rk

)
+ pcir

k

(
dk

REC
k

+
Ck
f c
k

)
. (7)

3.4. Task Dependency Model

To model the data dependency relationships of computing tasks among IoT sensors, we utilized a
directed acyclic graph Gs = (V, A), where V denoted the node set for computing tasks, and each node
i in Gs represented a computing task. The dependency relationship among tasks was represented by
the directed arc set in set A. A directed arc a(i, j) in set A indicated the precedence constraint between
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adjacent task i and task j, which meant that task j could not start execution until its precedent task i
was completed. In addition, the node without predecessors was defined as starting node, and the node
without descendant was the ending node. There could be multiple starting nodes, which could perform
computing tasks in parallel, while only one ending node, indicating the completion node of the IoT
service. Computing task on each sensor can be executed on the local, edge, or cloud. An example of
dependency relationships among 10 tasks is shown in Figure 2. The immediate predecessors of task 8
were task 5 and task 4, and its descendant was task 10. The starting nodes were tasks 1, 2, and 3, while
task 10 was the ending node.

The data dependency among tasks affected the computation offloading strategy through the
completion time of the task. To consider these dependency relationships in the task offloading model,
we gave the definition of finish time and ready time of a computing task.

1

2

3

10

6

7

8

9

6

7

8

9

4

5

4

5

1

2

3

10

6

7

8

9

4

5

Figure 2. An example of dependency relationships among tasks.

Definition 1 (Finish Time). The finish time of a task is defined as the time at which the task has fully completed
execution. Thus, the finish time of task k, denoted by FTk is given by

FTk = RTk + Tk, (8)

where RTk is the ready time of task k and Tk denotes the execution time of task k.

Definition 2 (Ready Time). The ready time of a task is defined as the earliest start time when all its immediate
predecessor tasks have completed. Thus, the ready time of task k, denoted by RTk can be expressed as

RTk =

 max
j∈P(k)

FT j, P(k) 6= ∅,

0, P(k) = ∅,
(9)

where P(k) denotes the set of the immediate predecessor tasks of task k.

We can observe from Equation (9) that when P(k) was empty, task k had no immediate predecessor,
which meant task k was the starting node and RTk was equal to zero. It was assumed that the
transmission time of the task calculation result was negligible, so it could be considered that the
maximum finish time in immediate predecessors of task k was the ready time of task k.

3.5. Problem Formulation

We denoted the offloading strategies for task k as xk, yk, zk ∈ {0, 1}, meaning task k was executed
locally, at the edge, or at the cloud, respectively. The offloading placement decisions satisfied the
following constraint

xk + yk + zk = 1, ∀k ∈ K, (10)

where only one of the three variables for task k could be 1.
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According to Equations (2)–(7) and (10), the execution time and the executing energy consumption
of task k could be expressed respectively as

Tk = Tloc
k xk + Tedge

k yk + Tcloud
k zk, (11)

Eexec
k = Eloc

k xk + Eedge
k yk + Ecloud

k zk. (12)

Due to the data dependency among tasks, task k needed to wait for its predecessors to complete
before executing. Thus, the energy consumption during the waiting period of task k, called waiting
energy consumption, was defined as

Ewait
k = pcir

k RTk. (13)

According to Equations (12) and (13), the total energy consumption of computing task k was

Ek = Eexec
k + Ewait

k . (14)

Based on the above models, we proposed to minimize the energy consumption of all sensors in
the system by jointly optimizing the task offloading strategy and the task ready time. The task
offloading strategy was formulated as γ = [x1, y1, z1, . . . , xK, yK, zK] and the ready time was
R = [RT1, RT2, . . . , RTK]. Therefore, the optimization problem of minimizing the energy consumption
could be modeled as follows:

minimize
γ,R

K

∑
k=1

Ek

subject to C1 : xk, yk, zk ∈ {0, 1}, ∀k ∈ K,

C2 : xk + yk + zk = 1, ∀k ∈ K,

C3 : FTK 6 Tmax
s ,

C4 : RTk = max
j∈P(k)

FT j, P(k) 6= ∅, ∀k ∈ K,

C5 : RTk = 0, P(k) = ∅, ∀k ∈ K,

(15)

where C1 and C2 are the constraints on the offloading strategy of each task; constraint C3 indicates
the completion time of the task K in ending node was within the maximum tolerable delay of the IoT
service S; the task precedence constraints C4 and C5, representing that task k started to execute only
after all its precedent tasks finish. And tasks executed in parallel at the start of offloading if these tasks
were in starting nodes. Due to the binary constraint C1, the optimization problem was a mixed integer
programming problem, which is a non-convex and NP-hard problem [40].

4. Computation Offloading Optimization with Inter-Task Dependency

In this section, to find an effective solution for the optimization problem Equation (15), we first
convert it equivalently into a quadratically constrained quadratic programming (QCQP) problem.
Then it is transformed into a standard convex problem through SDR approach, and a stochastic
mapping method based on offloading probability is proposed to recover the offloading strategy.

4.1. QCQP Transformation and Semidefinite Relaxation

Firstly, we replaced the binary constraint C1 with a quadratic constraint by

xk(xk − 1) = 0, yk(yk − 1) = 0, zk(zk − 1) = 0, ∀k ∈ K. (16)
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Then, to transform the problem Equation (15) into a standard QCQP problem, constraint C4 could
be rewritten in a linear form as

RTk − FTj ≥ 0, ∀j ∈ P(k), k ∈ K. (17)

Now the optimization problem Equation (15) could be equivalently transformed as

minimize
γ,R

K

∑
k=1

Ek

subject to xk(xk − 1) = 0, yk(yk − 1) = 0, zk(zk − 1) = 0, ∀k ∈ K,

xk + yk + zk = 1, ∀k ∈ K,

FTK 6 Tmax
s ,

RTk − FTj ≥ 0, ∀j ∈ P(k), k ∈ K,

RTk = 0, P(k) = ∅, ∀k ∈ K.

(18)

Next, we vectorized the variables into a vector with size of (4K + 1)× 1, denote q = [γ,R, 1]T .
Define ej and e′j as standard unit vectors of (4K + 1)× 1 and 4K× 1, respectively, and their jth entry
was 1. In addition, diag(ej) was the diagonal matrix, of which diagonal elements were the elements of
vector ej. The optimization problem Equation (18) could now be converted into the following standard
QCQP formulation

minimize
q

(b0)
Tq

subject to qTdiag(ej)q− (ej)
Tq = 0, j = 1, ..., 3K,

(bP
k )

Tq = 1, ∀k ∈ K,

(b1)
Tq 6 Tmax

s ,

(e
′
3K+k)

Tq− (b2)
Tdiag(bI

j )q ≥ 0, ∀j ∈ P(k), k ∈ K,

(e3K+k)
Tq = 0, P(k) = ∅, ∀k ∈ K,

(19)

where b0 = [Eloc
1 , Eedge

1 , Ecloud
1 , ...Eloc

K , Eedge
K , Ecloud

K , pcir
1 , pcir

2 , ..., pcir
K , 0]T ,

bP
k = e3k−2 + e3k−1 + e3k,

b1 = [01×(3K−3), Tloc
K , Tedge

K , Tcloud
K , 01×(K−1), 1, 0]T ,

b2 = [Tloc
1 , Tedge

1 , Tcloud
1 , ...Tloc

K , Tedge
K , Tcloud

K , 11×K]
T ,

bI
j = e

′
3j−2 + e

′
3j−1 + e

′
3j + e

′
3K+j.

By defining g = [qT 1]T , the problem Equation (19) could be further transformed into the following
equivalent homogeneous QCQP problem

minimize
g

gTM0g

subject to C6 : gTMjg = 0, j = 1, ..., 3K,

C7 : gTMP
k g = 1, ∀k ∈ K,

C8 : gTMD
K g 6 Tmax

s ,

C9 : gTMR
kjg ≥ 0, ∀j ∈ P (k) , k ∈ K,

C10 : gTMR
k g = 0, P (k) = ∅, ∀k ∈ K,

(20)
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where M0 =

[
0(4K+1)×(4K+1)

1
2 b0

1
2 (b0)

T 0

]
,

Mj =

[
diag(ej) − 1

2 ej
− 1

2 (ej)
T 0

]
,

MP
k =

[
0(4K+1)×(4K+1)

1
2 bP

k
1
2 (b

P
k )

T 0

]
,

MD
K =

[
0(4K+1)×(4K+1)

1
2 b1

1
2 (b1)

T 0

]
,

MR
k =

[
0(4K+1)×(4K+1)

1
2 e3K+k

1
2 (e3K+k)

T 0

]
,

MR
kj =

 04K×4K − 1
2 [(b2)

Tdiag(bI
j )]

T 1
2 e3K+k

− 1
2 (b2)

Tdiag(bI
j ) 0 0

1
2 (e3K+k)

T 0 0

 .

Compared to the optimization problem Equation (15), all constraints had corresponding matrix
representations in the optimization problem Equation (20). Particularly, constraint C6 corresponded to
the integer constraint C1, constraint C7 was the offloading placement constraint C2 while constraint C8
was the delay constraint C3, and constraints C9 and C10 came from the task precedence constraints
C4 and C5.

It is worth noting that homogeneous QCQP problem Equation (20) was still a non-convex
and NP-hard problem. To solve this problem, we adopted the SDR approach to relax the problem
into a semidefinite programming (SDP) problem [30]. Since all vectors were real and all matrices
were real symmetric in the problem Equation (20), the SDR conditions were satisfied. We defined
additional auxiliary variables G , ggT , which was a rank one symmetric positive-semidefinite matrix.
Thus, we had

gTM0g = Tr(M0G), (21)

with rank(G) = 1. Then we obtained an equivalent formulation of the optimization problem
Equation (20) as follows:

minimize
G

Tr(M0G)

subject to C11 : Tr(MjG) = 0, j = 1, ..., 3K,

C12 : Tr(MP
k G) = 1, ∀k ∈ K,

C13 : Tr(MD
K G) 6 Tmax

s ,

C14 : Tr(MR
kjG) ≥ 0, ∀j ∈ P (k) , k ∈ K,

C15 : Tr(MR
k G) = 0, P (k) = ∅, ∀k ∈ K,

C16 : G(4K + 1, 4K + 1) = 1,

C17 : G(4K + 1, 4K + 2) = 1,

C18 : G(4K + 2, 4K + 1) = 1,

C19 : G(4K + 2, 4K + 2) = 1,

C20 : G � 0,

C21 : rank(G) = 1.

(22)

where G � 0 indicates that matrix G is a positive-semidefinite matrix. In the optimization problem
Equation (22), only the rank constraint C21 was non-convex, whereas the remaining objective function
and constraints were convex. By dropping the rank constraint C21, the problem Equation (22) was
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relaxed to an SDP problem, which could be efficiently solved in polynomial time via using a standard
convex optimization solver, such as SeDuMi [41].

4.2. Energy-Efficient Collaborative Task Computation Offloading Algorithm (ECTCO)

In this section, due to the inter-task dependency constraint and the service completion time
constraint, we improved the random mapping method proposed in [21] and [42] to obtain the
offloading strategy γ∗. Then, a detailed description of the ECTCO algorithm was introduced and the
complexity analysis was performed.

We denoted G∗ as the optimal solution of the optimization problem Equation (22) without the
rank one constraint. If the rank of G∗ was 1, then we could extract the optimal solution of the original
problem Equation (15) directly by G∗. Since G = ggT and g(4K + 2) = 1, we observed that the last
column of G satisfied the following equation:

G(j, 4K + 2) = g(j), j = 1, . . . , 4K + 2. (23)

Here, we could use the value of G∗(j, 4K + 2) to recover the offloading strategy γ∗, for
j = 1, . . . , 3K.

If G∗ was not of rank 1, we proposed a stochastic mapping method based on offloading probability
to construct a feasible solution of the optimization problem Equation (15). Firstly, we extracted the first
3K elements of the last column of G∗, called γ′. Constraints C12 and C20 guaranteed that

γ
′
(3j− 2) + γ

′
(3j− 1) + γ

′
(3j) = 1, j = 1, . . . , K, (24)

where each element of γ′ was a positive real number between 0 and 1. Therefore, we took γ′(j) as
the probability of g(j) = 1, for j = 1, . . . , 3K. We defined pr = [prl

1, pre
1, prc

1, . . . , prl
K, pre

K, prc
K]

T , γ′,
where each element of pr represented the probability of the corresponding entry of the offloading
strategy being 1. Then, we generated a random column vector ξ with the size of K as a random variable
of the stochastic mapping, which was based on the standard uniform distribution ξ l ∼ U(0, 1).
To recover the offloading strategy satisfying the constraint C1, we denoted a vector vk as the offloading
decision of task k. The mapping relationship could be expressed as

vk =


[1, 0, 0], ξ(k) 6 prl

k,
[0, 1, 0], prl

k < ξ(k) 6 pre
k,

[0, 0, 1], ξ(k) > pre
k.

(25)

We generated a random sample ξ′ = [v1, . . . , vK]
T by the mapping method Equation (25).

However, ξ′ was not always a feasible solution due to the delay constraint C13. Next, the ready
time and the finish time of each task were computed through the random sample ξ′, and FTK was
further obtained. If FTK > Tmax

s , it indicated that the random sample ξ′ did not meet the latency
constraint and it would be discarded. Conversely, ξ′ was a feasible solution for the optimization
problem Equation (15), denote as ξ̂.

To obtain a more accurate offloading strategy, we generated L random samples and obtained
feasible solutions ξ̂(l) by performing the above procedure. We let the subscript (l) denote the index of
a random sample. We then chose among these feasible solutions the one that minimized the objective
function of the optimization problem Equation (15) as the offloading strategy ξ∗. For the best offloading
strategy, in practice, we compared ξ∗ with local computing only and cloud executing only solutions,
and chose the solution with the minimum energy cost as the final offloading strategy γ∗. The details of
the ECTCO algorithm are described in Algorithm 1.

Notice that the SDP problem in Step 2 of Algorithm 1 could be solved readily within a precision ε

by using the interior point method in O(
√

K log(1/ε)) iterations, where the computational complexity
per iteration is O(K3) [30]. Thus, the computational complexity of ECTCO is O(K3.5 log (1/ε) + LK).
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Algorithm 1 Proposed ECTCO algorithm

Input: K,B,σ2,Tmax
s ,Gs.

ωk,dk,Hk,ptra
k ,pcir

k , f l
k, f e

k , f c
k ,REC

k ,∀k ∈ K.

Output: γ∗.

1: Initialize: compute P(k) by Gs and initialize all the matrices in Equation (22).
2: solve the SDP problem Equation (22) without the rank-1 constraint to get its optimal solution G∗.
3: extract the first 3K elements from the last column of G∗ as γ′.
4: if rank(G∗) = 1 then
5: construct γ∗ from γ′.
6: else
7: for l = 1 to L do
8: generate random column vector ξ l ∼ U(0, 1).
9: obtain random sample ξ′l by offloading probability based stochastic mapping method

according to Equation (25).
10: k = 1;
11: repeat
12: if P(k) = ∅ then
13: RTk = 0;
14: else
15: compute RTk = max

j∈P(k)
FT j;

16: end if
17: compute FTk by ξ′l and Equation (8);
18: k = k + 1;
19: until k = K + 1
20: if FTK > Tmax

s then
21: discard the random sample ξ′l .
22: else
23: ξ′l as feasible solution ξ̂(l),compute the energy cost by ξ̂(l) and Equation (14) as E(l).
24: end if
25: end for
26: choose the solution among ξ̂(1), . . . , ξ̂(L) that yields the minimum energy cost: ξ∗ = argmin

ξ̂(l)
E(l).

27: compare ξ∗ with local computing only and cloud computing only solutions, update the one

that yields the minimum energy cost as γ∗.
28: end if

5. Simulation Results

In this section, extensive simulations are conducted to evaluate the performance of the ECTCO
algorithm. The simulation settings will be first presented, followed by simulation results that verify
the effectiveness of the proposed ECTCO algorithm in minimizing energy cost.

5.1. Simulation Settings

We simulated a cloud-assisted edge computing system and realized the proposed ECTCO
algorithm in the Matlab environment. The system consisted of multiple IoT sensors, an edge server,
and a cloud server. We randomly generated task graphs, i.e., directed acyclic graph (DAG), with K
computing tasks and an ending node. Simulation results in this section are based on an average over
1000 random simulations. Moreover, our simulations were performed on a PC with Intel Core i5-7400
processor @ 3.0 GHz CPU and 8 GB of RAM. The main simulation parameters referred to by some
previous works [22,31], unless mentioned otherwise, are listed in Table 2.
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Table 2. Default parameters setup.

Parameters Value

K 25
B 5 MHz
σ2 10−9 W
Hk 10−6

dk 300–500 KB uniformly
ωk 30 cycles/bit

Tmax
s 4 s
f l
k 0.1–0.5 G cycles/s uniformly

f e
k 2 G cycles/s

f c
k 4 G cycles/s
κ 10−27

ptra
k 0.1 W

pcir
k 0.001–0.01 W uniformly

REC 5 MB/s

To evaluate the performance of the proposed ECTCO algorithm, we also simulated the following
four algorithms for comparison.

• Offloading nothing algorithm (OLNA): All computing tasks were executed on their own sensors.
• Cloud-first offloading algorithm (CFOA): We offloaded all computing tasks to the cloud server.
• Execution-energy greedy offloading strategy (EGOS): For each computing task on IoT sensors,

it was greedily offloaded to the computation node that resulted in the minimizing executing
energy consumption. The computation node included local sensor, edge server, and cloud server.

• Joint resource allocation and offloading decision (JRAO) [42]: Jointly optimized the allocation of
communication resource and the offloading decisions of IoT sensors. All computing tasks could
be performed on their own sensors or offloaded to the edge server without consideration of the
inter-task dependency relationship.

5.2. Performance of the ECTCO Algorithm

Figure 3 plots the energy consumption of IoT sensors versus the number of random samples.
We observe that as the value of L increased, the total energy consumption of IoT sensors decreased
gradually. This was because the ECTCO algorithm obtained the offloading strategy by generating
random samples based on the offloading probability. The larger the number of random samples were,
the lower energy consumption of IoT sensors was. In addition, the sensors cost dropped sharply at the
beginning, while slowed down with increasing L. It can be seen from Figure 3 that the rate of decrease
in the sensors cost decelerated considerably about after L = 100, which meant that beyond this point
we had to use a larger L to achieve a marginal performance gain. For example, to decrease the sensors
cost from 0.323 to 0.320, L needed to increase from 50 to 100; Meanwhile, to drop the sensors cost from
0.320 to 0.317, L needed to increase from 100 to over 200. Based on such trade-offs, it was reasonable to
set L = 100, which achieved better performance without too high computational complexity. Thus,
we took L = 100 as the default numbers of random samples in rest simulations.

Figure 4 and Table 3 present the sensors cost under different algorithms, with 95% confidence
interval (CI). The number of tasks K increased from 5 to 100 with the number of IoT sensors. Obviously,
the sensors cost of all algorithms increased as the number of sensors grew. Furthermore, compared
with the other four methods, the ECTCO algorithm reduced the sensors cost effectively. When the
sensor number was small, the difference between the algorithms was not significant. As sensor number
increased, the proposed ECTCO algorithm outperformed the other four methods. For example,
when the sensor number was 60, the ECTCO algorithm could reduce 33.46%, 6.59%, 27.19% and 19.68%
of the sensors cost in comparison to the schemes of OLNA, CFOA, JRAO and EGOS, respectively. It is
worth noting that the JRAO algorithm could not obtain energy efficient offloading decisions due to the
lack of consideration of inter-task dependency.
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Figure 3. Sensors cost versus the number of random samples L.

In addition, for the ECTCO and the EGOS algorithms, they could achieve similar energy
consumption when the sensor number was small. However, as the sensor number grew, the energy
consumption of EGOS increased rapidly. This was because EGOS is greedy for executing energy
consumption. In more detail, according to Equation (3), the energy consumption of local computing
depended on the computation capability of CPU. Thus, EGOS could select a sensor with low
computation ability to perform a computing task. When the sensor number was small, the sensors
cost was mainly composed of the executing energy consumption. In this situation, the EGOS had a
satisfying performance with executing some tasks locally. As the sensor number increased, the waiting
energy consumption could not be ignored due to the inter-task dependency relationship. The low
computation ability of the sensor performing computing task resulted in a longer task completion
time, which directly increased the waiting energy consumption of other sensors in this circumstance.
Therefore, the EGOS consumed less energy with the growth of the sensor number while the ECTCO
could obtain good trade-offs between the waiting energy consumption and the executing energy
consumption to achieve a higher energy efficiency performance.
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Figure 4. Sensors cost of different algorithms.

Table 3. Sensors cost versus sensor number.

Sensor Number
Sensors Cost (J)

ECTCO (95% CI) OLNA (95% CI) CFOA (95% CI) JRAO (95% CI) EGOS (95% CI)

5 0.048 (0.046, 0.050) 0.064 (0.060, 0.068) 0.059 (0.058, 0.061) 0.062 (0.060, 0.065) 0.050 (0.048, 0.053)
20 0.236 (0.233, 0.240) 0.320 (0.310, 0.329) 0.262 (0.259, 0.265) 0.297 (0.290, 0.303) 0.251 (0.245, 0.257)
40 0.533 (0.527, 0.538) 0.760 (0.742, 0.778) 0.567 (0.562, 0.572) 0.701 (0.687, 0.716) 0.634 (0.619, 0.649)
60 0.865 (0.856, 0.873) 1.300 (1.276, 1.325) 0.926 (0.916, 0.935) 1.188 (1.162, 1.214) 1.077 (1.052, 1.101)
80 1.247 (1.236, 1.257) 2.044 (2.009, 2.078) 1.317 (1.305, 1.328) 1.859 (1.822, 1.897) 1.761 (1.723, 1.798)
100 1.605 (1.594, 1.617) 2.634 (2.591, 2.677) 1.671 (1.659, 1.683) 2.424 (2.377, 2.471) 2.298 (2.254, 2.343)
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5.3. Impact of Different Parameters and Dependency Relationships

This part evaluates the effect of different parameters and dependency relationships on energy
consumption of sensors. The influence of the average amount of computations per bit ω on different
algorithms is illustrated as Figure 5a and Table 4, with 95% CI. We observe that as ω grew, the sensors
cost performed by all algorithms tended to increase. For CFOA, the sensors cost increased slightly with
growing ω. This was because all computing tasks were offloaded to the cloud server by CFOA and the
cloud server had powerful computation resources. Meanwhile, when ω was less than 15, tasks could
obtain the minimum energy consumption in local computing. Since the low computational complexity
of the task, the computation cost of the tasks with local computing was less than communication cost
of offloading tasks. These tasks could be viewed as communication-intensive tasks. Relatively, tasks
offloading could obtain better energy efficiency with increasing ω, and the tasks could be considered
as computation-intensive tasks. In addition, compared with the other four algorithms, the ECTCO
algorithm could effectively obtain the lowest sensors cost under different ω, indicating that ECTCO
could adaptively adjust the offloading strategy so as to efficiently achieve less energy consumption.
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(b) Sensors cost versus data size d.

Figure 5. Impact of different parameters.

Table 4. Sensors cost versus ω.

ω (cycles/bit)
Sensors Cost (J)

ECTCO (95% CI) OLNA (95% CI) CFOA (95% CI) JRAO (95% CI) EGOS (95% CI)

10 0.150 (0.148, 0.153) 0.150 (0.148, 0.153) 0.341 (0.339, 0.344) 0.151 (0.148, 0.154) 0.150 (0.148, 0.153)
20 0.284 (0.280, 0.287) 0.303 (0.297, 0.308) 0.347 (0.344, 0.351) 0.300 (0.295, 0.305) 0.280 (0.274, 0.285)
30 0.315 (0.312, 0.318) 0.453 (0.445, 0.461) 0.352 (0.349, 0.355) 0.418 (0.411, 0.426) 0.365 (0.357, 0.372)
40 0.331 (0.328, 0.334) 0.603 (0.592, 0.615) 0.358 (0.355, 0.362) 0.547 (0.539, 0.555) 0.430 (0.420, 0.440)
50 0.343 (0.339, 0.346) 0.762 (0.750, 0.775) 0.365 (0.362, 0.368) 0.665 (0.653, 0.677) 0.489 (0.475, 0.503)
60 0.351 (0.348, 0.355) 0.904 (0.888, 0.921) 0.368 (0.364, 0.371) 0.793 (0.779, 0.808) 0.528 (0.511, 0.545)
70 0.363 (0.360, 0.366) 1.064 (1.046, 1.081) 0.375 (0.372, 0.378) 0.911 (0.895, 0.927) 0.567 (0.544, 0.589)
80 0.370 (0.366, 0.373) 1.200 (1.177, 1.223) 0.378 (0.375, 0.382) 1.031 (1.014, 1.048) 0.588 (0.565, 0.611)

Figure 5b and Table 5 present the effect of average data size d on different algorithms, simulation
results with 95% CI. Obviously, the sensors cost increased approximately linearly with the growing
of d. The rate of increase in the sensors cost performed by the ECTCO was the slowest in comparison
to the other four algorithms. This indicated that the proposed ECTCO algorithm performed better in
energy consumption reduction under different average data sizes.

To evaluate the adaptability of the ECTCO algorithm, we analyzed the performance of
the five schemes on the service completion time and energy consumption under different
kinds of task dependency relationships. More specifically, we generated three kinds of task
dependency relationships, i.e., fully sequential dependency, fully parallel dependency and arbitrary
dependency [43]. Notice that the fully parallel dependency meant tasks could be executed in parallel
except for the task in the ending node. Unless otherwise stated, the number of tasks K = 25.
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Table 5. Sensors cost versus data size d.

Average Data Size (KB)
Sensors Cost (J)

ECTCO (95% CI) OLNA (95% CI) CFOA (95% CI) JRAO (95% CI) EGOS (95% CI)

200 0.160 (0.158, 0.162) 0.230 (0.226, 0.235) 0.177 (0.175, 0.180) 0.218 (0.213, 0.222) 0.182 (0.178, 0.187)
400 0.315 (0.312, 0.318) 0.453 (0.445, 0.461) 0.352 (0.349, 0.355) 0.418 (0.411, 0.426) 0.365 (0.357, 0.372)
600 0.472 (0.467, 0.476) 0.682 (0.667, 0.696) 0.527 (0.523, 0.531) 0.632 (0.622, 0.643) 0.543 (0.530, 0.555)
800 0.628 (0.623, 0.633) 0.907 (0.893, 0.921) 0.703 (0.698 0.708) 0.839 (0.827, 0.852) 0.727 (0.714, 0.739)

1000 0.784 (0.778, 0.789) 1.131 (1.113, 1.149) 0.877 (0.871, 0.883) 1.050 (1.033, 1.068) 0.905 (0.888, 0.922)
1200 0.933 (0.927, 0.939) 1.379 (1.356, 1.402) 1.057 (1.050, 1.064) 1.262 (1.242, 1.283) 1.111 (1.089, 1.133)

Figure 6a and Table 6 show the total energy consumption of the five algorithms on different task
dependency relationships, with 95% CI. We can find that our proposed ECTCO algorithm consumed
the minimum energy in the fully sequential dependency and the arbitrary dependency compared with
other algorithms. For the fully parallel dependency, the sensors cost performed by the ECTCO was
close to the EGOS. This was because the waiting energy consumption was almost negligible under the
fully parallel dependency. In this situation, the EGOS could always find an offloading strategy that
minimized energy consumption. However, the waiting energy consumption had a significant impact
on total energy consumption in the fully sequential dependency while the EGOS did not consider
it, resulting in a large energy consumption under this circumstance. On the contrary, the ECTCO
conserved energy effectively under different task dependency relationships.
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Figure 6. Impact of different dependency relationships.

Table 6. Sensors cost versus dependency relationships.

Dependency
Sensors Cost (J)

ECTCO (95% CI) OLNA (95% CI) CFOA (95% CI) JRAO (95% CI) EGOS (95% CI)

Sequential 0.492 (0.486, 0.499) 0.763 (0.751, 0.775) 0.592 (0.584, 0.601) 0.693 (0.684, 0.702) 0.613 (0.601, 0.625)
Arbitrary 0.315 (0.312, 0.318) 0.453 (0.445, 0.461) 0.352 (0.349, 0.355) 0.418 (0.411, 0.426) 0.365 (0.357, 0.372)
Parallel 0.236 (0.234, 0.239) 0.301 (0.295, 0.307) 0.262 (0.261, 0.264) 0.241 (0.240, 0.243) 0.217 (0.215, 0.220)

In Figure 6b, we compared the service completion time of our proposed ECTCO algorithm
with the other four algorithms under different task dependency relationships. It could be observed
that different task dependencies had an impact on service completion time. For the same scheme,
the fully sequential dependency required the longest service completion time while the fully parallel
dependency was the shortest. Furthermore, we can also observe that only the ECTCO algorithm could
meet the time constraint Tmax

s = 4 under different dependencies. The other three algorithms could not
satisfy it in the fully sequential dependency. Therefore, the ECTCO algorithm could effectively reduce
the sensors cost under different task dependencies while meeting the constraint of service completion
time, demonstrating the adaptability of the ECTCO algorithm.
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6. Conclusions and Future Work

In this paper, we investigate an energy conservation problem of IoT sensors in cloud-assisted
edge computing framework by optimization of the computation offloading strategy. The energy
conservation problem was formulated as an energy consumption minimization problem while
meeting the constraints of inter-task dependency relationships and service completion time. To solve
the NP-hard problem, we proposed the ECTCO algorithm, employing the SDR approach and the
probability-based stochastic mapping method to obtain the computation offloading strategy.

In the simulation section, we evaluated the performance of the proposed ECTCO algorithm
by comparing it with existing algorithms. Simulation results demonstrated that in the inter-task
dependency scenario, the proposed algorithm could balance the tradeoff between computation and
communication overhead, and outperform the other four algorithms in computation offloading in
terms of energy consumption. In addition, we studied the impact of different system parameters
and dependencies. Performance evaluations showed that the proposed algorithm could effectively
reduce the sensors cost under different system parameters and dependencies. These simulation results
verified the effectiveness and adaptability of the ECTCO algorithm.

In future work, we plan to deploy the proposed framework to real-world IoT scenarios so as to
further conduct practical evaluations of the proposed algorithm. We also expect to explore mobility
management and the offloading problem of tasks for sensors with inter-task dependency in a dynamic
moving environment.

Author Contributions: F.L. and Z.H. defined problem and developed the idea. Z.H. and L.W. carried out the
experiments and data analysis, and wrote the relevant sections.

Funding: This paper is partially supported by the Engineering and Technology Research Center of Guangdong
Province for Logistics Supply Chain and Internet of Things (Grant No. GDDST[2016]176); the Provincial
Science and Technology Project in Guangdong Province (Grant No. 2013B090200055); the Key Laboratory
of Cloud Computing for Super—integration Cloud Computing in Guangdong Province (Grant No. 610245048129);
and the Engineering and Technology Research Center of Guangdong Province for Big Data Intelligent Processing
(Grant No. GDDST[2013]1513-1-11).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

2. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A survey on internet of things: Architecture,
enabling technologies, security and privacy, and applications. IEEE Internet Things J. 2017, 4, 1125–1142.
[CrossRef]

3. Ericsson. Ericsson Mobility Report. Available online: https://www.ericsson.com/assets/local/mobility-
report/documents/2018/ericsson-mobility-report-november-2018.pdf (accessed on 15 January 2019).

4. Trilles, S.; Belmonte, Ò.; Schade, S.; Huerta, J. A domain-independent methodology to analyze IoT data
streams in real-time. A proof of concept implementation for anomaly detection from environmental data.
Int. J. Digit. Earth 2017, 10, 103–120. [CrossRef]

5. Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet Things J. 2016,
3, 854–864. [CrossRef]

6. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

7. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016,
3, 637–646. [CrossRef]

8. Satyanarayanan, M. The emergence of edge computing. Computer 2017, 50, 30–39. [CrossRef]
9. Taleb, T.; Samdanis, K.; Mada, B.; Flinck, H.; Dutta, S.; Sabella, D. On multi-access edge computing: A survey

of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 2017,
19, 1657–1681. [CrossRef]

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/JIOT.2017.2683200
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-november-2018.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-november-2018.pdf
http://dx.doi.org/10.1080/17538947.2016.1209583
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1016/j.future.2015.09.021
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/COMST.2017.2705720


Sensors 2019, 19, 1105 18 of 19

10. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R.H.; Morrow, M.J.; Polakos, P.A. A comprehensive survey
on fog computing: State-of-the-art and research challenges. IEEE Commun. Surv. Tutor. 2017, 20, 416–464.
[CrossRef]

11. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things.
In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland,
17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16.

12. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication
perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]

13. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A survey on the edge computing for the
Internet of Things. IEEE Access 2018, 6, 6900–6919. [CrossRef]

14. Long, C.; Cao, Y.; Jiang, T.; Zhang, Q. Edge computing framework for cooperative video processing in
multimedia IoT systems. IEEE Trans. Multimed. 2018, 20, 1126–1139. [CrossRef]

15. Sirojan, T.; Lu, S.; Phung, B.; Zhang, D.; Ambikairajah, E. Sustainable deep learning at grid edge for real-time
high impedance fault detection. IEEE Trans. Sustain. Comput. 2018, to be published. [CrossRef]

16. Wang, Y.; Wang, K.; Huang, H.; Miyazaki, T.; Guo, S. Traffic and computation co-offloading with
reinforcement learning in fog computing for industrial applications. IEEE Trans. Ind. Inform. 2018, to
be published. [CrossRef]

17. Aazam, M.; Zeadally, S.; Harras, K.A. Offloading in fog computing for IoT: Review, enabling technologies,
and research opportunities. Future Gener. Comput. Syst. 2018, 87, 278–289. [CrossRef]

18. Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading.
IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [CrossRef]

19. Satyanarayanan, M.; Bahl, V.; Caceres, R.; Davies, N. The case for vm-based cloudlets in mobile computing.
IEEE Pervasive Comput. 2009, 4, 14–23. [CrossRef]

20. Bhattacharya, A.; De, P. A survey of adaptation techniques in computation offloading. J. Netw. Comput. Appl.
2017, 78, 97–115. [CrossRef]

21. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q. Offloading in mobile edge computing: Task allocation and
computational frequency scaling. IEEE Trans. Commun. 2017, 65, 3571–3584.

22. Du, J.; Zhao, L.; Feng, J.; Chu, X. Computation offloading and resource allocation in mixed fog/cloud
computing systems with min-max fairness guarantee. IEEE Trans. Commun. 2018, 66, 1594–1608. [CrossRef]

23. Alaa, M.; Zaidan, A.; Zaidan, B.; Talal, M.; Kiah, M.L.M. A review of smart home applications based on
Internet of Things. J. Netw. Comput. Appl. 2017, 97, 48–65. [CrossRef]

24. Mutlag, A.A.; Ghani, M.K.A.; Arunkumar, N.; Mohamed, M.A.; Mohd, O. Enabling technologies for fog
computing in healthcare IoT systems. Future Gener. Comput. Syst. 2019, 90, 62–78. [CrossRef]

25. Perera, C.; Qin, Y.; Estrella, J.C.; Reiff-Marganiec, S.; Vasilakos, A.V. Fog computing for sustainable smart
cities: A survey. ACM Comput. Surv. CSUR 2017, 50, 32. [CrossRef]

26. Trilles, S.; Calia, A.; Belmonte, Ó.; Torres-Sospedra, J.; Montoliu, R.; Huerta, J. Deployment of an open
sensorized platform in a smart city context. Future Gener. Comput. Syst. 2017, 76, 221–233. [CrossRef]

27. Trilles, S.; Luján, A.; Belmonte, Ó.; Montoliu, R.; Torres-Sospedra, J.; Huerta, J. SEnviro: A sensorized
platform proposal using open hardware and open standards. Sensors 2015, 15, 5555–5582. [CrossRef]
[PubMed]

28. Ma, X.; Lin, C.; Zhang, H.; Liu, J. Energy-aware computation offloading of IoT sensors in cloudlet-based
mobile edge computing. Sensors 2018, 18, 1945. [CrossRef] [PubMed]

29. Zhao, T.; Zhou, S.; Guo, X.; Niu, Z. Tasks scheduling and resource allocation in heterogeneous cloud for
delay-bounded mobile edge computing. In Proceedings of the IEEE 2017 International Conference on
Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7.

30. Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.; Zhang, S. Semidefinite relaxation of quadratic optimization problems.
IEEE Signal Process. Mag. 2010, 27, 20–34. [CrossRef]

31. You, C.; Huang, K.; Chae, H.; Kim, B.H. Energy-efficient resource allocation for mobile-edge computation
offloading. IEEE Trans. Wirel. Commun. 2017, 16, 1397–1411. [CrossRef]

32. Hao, Y.; Chen, M.; Hu, L.; Hossain, M.S.; Ghoneim, A. Energy efficient task caching and offloading for
mobile edge computing. IEEE Access 2018, 6, 11365–11373. [CrossRef]

33. Wang, Y.; Sheng, M.; Wang, X.; Wang, L.; Li, J. Mobile-edge computing: Partial computation offloading using
dynamic voltage scaling. IEEE Trans. Commun. 2016, 64, 4268–4282. [CrossRef]

http://dx.doi.org/10.1109/COMST.2017.2771153
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/TMM.2017.2764330
http://dx.doi.org/10.1109/TSUSC.2018.2879960
http://dx.doi.org/10.1109/TII.2018.2883991
http://dx.doi.org/10.1016/j.future.2018.04.057
http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1016/j.jnca.2016.10.023
http://dx.doi.org/10.1109/TCOMM.2017.2787700
http://dx.doi.org/10.1016/j.jnca.2017.08.017
http://dx.doi.org/10.1016/j.future.2018.07.049
http://dx.doi.org/10.1145/3057266
http://dx.doi.org/10.1016/j.future.2016.11.005
http://dx.doi.org/10.3390/s150305555
http://www.ncbi.nlm.nih.gov/pubmed/25756864
http://dx.doi.org/10.3390/s18061945
http://www.ncbi.nlm.nih.gov/pubmed/29914104
http://dx.doi.org/10.1109/MSP.2010.936019
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/ACCESS.2018.2805798
http://dx.doi.org/10.1109/TCOMM.2016.2599530


Sensors 2019, 19, 1105 19 of 19

34. Wang, F.; Xu, J.; Wang, X.; Cui, S. Joint offloading and computing optimization in wireless powered
mobile-edge computing systems. IEEE Trans. Wirel. Commun. 2018, 17, 1784–1797. [CrossRef]

35. Ren, J.; Yu, G.; Cai, Y.; He, Y.; Qu, F. Partial offloading for latency minimization in mobile-edge
computing. In Proceedings of the IEEE GLOBECOM 2017 Global Communications Conference, Singapore,
4–8 December 2017; pp. 1–6.

36. Zhang, W.; Wen, Y. Energy-efficient task execution for application as a general topology in mobile cloud
computing. IEEE Trans. Cloud Comput. 2018, 6, 708–719. [CrossRef]

37. Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z. Energy-efficient dynamic computation offloading and cooperative
task scheduling in mobile cloud computing. IEEE Trans. Mob. Comput. 2019, 18, 319–333. [CrossRef]

38. Cao, H.; Cai, J. Distributed multiuser computation offloading for cloudlet-based mobile cloud computing:
A game-theoretic machine learning approach. IEEE Trans. Veh. Technol. 2018, 67, 752–764. [CrossRef]

39. Zhang, W.; Wen, Y.; Guan, K.; Kilper, D.; Luo, H.; Wu, D.O. Energy-optimal mobile cloud computing under
stochastic wireless channel. IEEE Trans. Wirel. Commun. 2013, 12, 4569–4581. [CrossRef]

40. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer:
Boston, MA, USA, 1972; pp. 85–103.

41. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1.
Available online: http://cvxr.com/cvx (accessed on 15 January 2019).

42. Chen, M.H.; Liang, B.; Dong, M. Joint offloading decision and resource allocation for multi-user multi-task
mobile cloud. In Proceedings of the 2016 IEEE International Conference on Communications (ICC),
Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6.

43. Mahmoodi, S.E.; Uma, R.; Subbalakshmi, K. Optimal joint scheduling and cloud offloading for mobile
applications. IEEE Trans. Cloud Comput. 2016, to be published. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TWC.2017.2785305
http://dx.doi.org/10.1109/TCC.2015.2511727
http://dx.doi.org/10.1109/TMC.2018.2831230
http://dx.doi.org/10.1109/TVT.2017.2740724
http://dx.doi.org/10.1109/TWC.2013.072513.121842
http://cvxr.com/cvx
http://dx.doi.org/10.1109/TCC.2016.2560808
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	System Model and Problem Formulation
	Scenario Description
	Communication Model
	Computation Model
	Local Computing
	Edge Computing
	Cloud Computing

	Task Dependency Model
	Problem Formulation

	Computation Offloading Optimization with Inter-Task Dependency
	QCQP Transformation and Semidefinite Relaxation
	Energy-Efficient Collaborative Task Computation Offloading Algorithm (ECTCO)

	Simulation Results
	Simulation Settings
	Performance of the ECTCO Algorithm
	Impact of Different Parameters and Dependency Relationships

	Conclusions and Future Work
	References

