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Abstract 

The prediction of metabolism and biotransformation pathways of xenobiotics is a highly desired tool in environmen-
tal sciences, drug discovery, and (eco)toxicology. Several systems predict single transformation steps or complete 
pathways as series of parallel and subsequent steps. Their performance is commonly evaluated on the level of a single 
transformation step. Such an approach cannot account for some specific challenges that are caused by specific prop-
erties of biotransformation experiments. That is, missing transformation products in the reference data that occur only 
in low concentrations, e.g. transient intermediates or higher-generation metabolites. Furthermore, some rule-based 
prediction systems evaluate the performance only based on the defined set of transformation rules. Therefore, the 
performance of these models cannot be directly compared. In this paper, we introduce a new evaluation framework 
that extends the evaluation of biotransformation prediction from single transformations to whole pathways, tak-
ing into account multiple generations of metabolites. We introduce a procedure to address transient intermediates 
and propose a weighted scoring system that acknowledges the uncertainty of higher-generation metabolites. We 
implemented this framework in enviPath and demonstrate its strict performance metrics on predictions of in vitro 
biotransformation and degradation of xenobiotics in soil. Our approach is model-agnostic and can be transferred 
to other prediction systems. It is also capable of revealing knowledge gaps in terms of incompletely defined sets of 
transformation rules.
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Introduction
Data requirements for environmental risk assessments 
of chemicals are rapidly increasing, for example in reg-
ulatory processes at the European (cf. REACH [1]) and 
global level, but also for the development of new chemi-
cal products with more benign profiles. This includes 
increasing knowledge about transformation products 
of these chemicals in the environment and increases 
the need for prediction methods of metabolism and 

microbial biotransformation, along with the transforma-
tion pathways.

Conceptually, biotransformation pathways repre-
sent the chemical changes a given starting compound 
(referred to as root compound in the remainder of 
the text) undergoes upon biotransformation. They are 
constructed from compounds (i.e. molecular struc-
tures) connected by reactions. The pathway structure 
can be represented as nodes and edges in a graph. Fig-
ure  1 shows the Benzyl Sulfide pathway from EAWAG-
BBD (Biocatalysis/Biodegradation Database) [2] as an 
example.

Existing methods for the prediction of biotransforma-
tion products and pathways can be categorized as either 
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knowledge-based, machine learning-based, or hybrid. 
Each of the two former approaches has its strengths and 
weaknesses. Knowledge-based approaches use expert 
knowledge on the basis of sets of transformation rules, 
in general leading to a combinatorial explosion caused by 
the overly general nature of the rules. Machine learning-
based approaches predict pathways solely based on exist-
ing data, the performance being limited by the lack of 
large data sets.

Hybrid methods, such as machine learning-based 
relative reasoning models [4–6] predict probabilities of 
individual transformation reactions by combining knowl-
edge- and machine learning-based approaches. They are 
constructed using sets of biotransformation pathways 
and transformation rules as training data, such as the 
EAWAG-BBD [2] and EAWAG-SOIL [7] packages. These 
models predict which of the transformation rules that are 
applicable to a given compound will be correct for that 
compound.

Biotransformation or metabolism studies from labo-
ratory experiments or environmental observations are 
the basis for both training and evaluating these mod-
els and usually report only transformation products 
that were formed in high quantities. This is because low 
concentration metabolites are considered less relevant 
and are more difficult to analyze and identify. There-
fore, metabolites formed in low concentrations are 
less likely to be reported. This becomes more relevant 
for higher generation metabolites, because pathways 

typically diverge into multiple branches and transfor-
mations occur on different time scales. Both effects lead 
to decreasing maximum concentrations with increas-
ing depth in the pathway. Thus, uncertainty about the 
actual formation of unreported metabolites increases 
for higher generation metabolites.

The performance of prediction models is typically 
determined by comparing the predicted transforma-
tions for each individual compound against the asso-
ciated transformation products in the experimental 
reference pathway. This approach does not take into 
account the position of the compound or reaction in 
the pathway. Problems arise when:

•	 Multi-step reactions are represented as a single step 
in the experimental data.

•	 Intermediate metabolites are not observed or not 
elucidated.

•	 Transformation products are incorrectly assigned 
to the wrong educt.

•	 Concentrations of downstream metabolites become 
too low to be observed.

•	 Rule-based evaluation systems fail to address 
observed transformations not covered by the trans-
formation rules.

In this paper, we address these shortcomings by intro-
ducing a new Multi-Generation evaluation approach 
that addresses some of the problems of the state-
of-the-art Single-Generation evaluation approach. 
Multi-Generation evaluation explicitly includes the 
compound positions in the graph. Instead of only com-
paring the reactions for each compound independently, 
entire predicted pathways are compared to experimen-
tally derived validation pathways. Predictions at higher 
depth get reduced weights to account for the increased 
uncertainty due to higher likelihood of minor transfor-
mation products not being reported in the experimen-
tal reference pathway.

The new evaluation approach further introduces 
a way to treat intermediate metabolites in the pre-
dicted pathway. These metabolites are quickly trans-
formed to downstream products and therefore exist 
only in very low concentrations. As a consequence, 
they are often neglected or not analyzed in experimen-
tal reference pathways. Single-Generation evaluation 
approaches tend to incorrectly penalize prediction of 
these intermediates. However, the new Multi-Genera-
tion approach can take them into consideration when 
the downstream products are known. Their prediction 
is not penalized during the scoring process, and the 
depths of other downstream compounds in the pathway 
are adjusted accordingly.

Fig. 1  The pathway Benzyl Sulfide from the EAWAG-BBD package. 
Further details of the pathway are available at enviPath [3]
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With our new evaluation approach we evaluate whole 
pathway predictions more realistically than before, inde-
pendent of the underlying set of transformation rules, 
more in line with the expectations of experimentalists, 
and more comparable across models. Therefore, we pro-
pose to consider the pathway holistically upon evaluation 
of predictive performance.

Overall, our main contributions are: (1) A new scoring 
system that quantifies the agreement between two bio-
transformation pathways. (2) Consideration of compound 
position (pathway depth) information in the evaluation 
of pathway predictions via scoring weights. (3) Consid-
eration of intermediate metabolites in the evaluation of 
pathway predictions. (4) Use of conditional probabilities 
for depth considerations in predicted biotransformation 
pathways. This will enable further improvements of the 
prediction models in future work. Our methodology is 
a special case of graph analysis that is particularly useful 
for (bio)degradation or metabolic pathways and chemical 
reaction networks.

Background & related work
In this section, we will first give an overview of state-of-
the-art prediction systems for biodegradation pathways 
and their methods. Then we will summarize related work 
to our proposed evaluation of prediction systems for bio-
degradation pathways.

Biodegradation
Biochemical Network Integrated Computational Explorer 
(BNICE) [8] is a framework that generates all known 
reactions for compounds. It uses the set of enzyme reac-
tion rules based on the enzyme commission (EC) classi-
fication system. BNICE generates metabolic pathways by 
first determining functional groups contained in the root 
compound, and then generates associated products if the 
reaction rules are applicable. The process is repeated on 
each of the products in successive generations. The itera-
tion terminates when a threshold is reached, or when no 
new compounds are created.

METEOR [9] provides the option of knowledge 
based prediction methods as well as machine learn-
ing approaches. The knowledge based option utilizes 
a combination of Absolute and Relative Reasoning in 
their predictions of reactions. The process commences 
by applying biotransformation rules to the starting 
compound, and these generate potential metabolites. 
The absolute reasoning process then assigns a level of 
belief to each biotransformation [10, 11]. Biotransfor-
mations that satisfy the absolute reasoning threshold 
preset by the user are then ranked in the relative rea-
soning process. The process uses a relative reasoning 
threshold to calculate the resulting relative hierarchy. 

Static Scores and Site of Metabolism Scoring are other 
prediction options that make use of machine learn-
ing techniques. The first utilizes an occurrence ratio—
actual occurrences over all possible occurrences. The 
latter further considers similarity on additional chemi-
cal properties—attributes from generated fingerprints 
and molecular weights. The processes in each of these 
options are repeated for all surviving biotransforma-
tions, until some preset stopping conditions are satis-
fied, such as reaching the maximum depth.

PathPred [12] executes predictions by first search-
ing for compounds from the KEGG [13] COMPOUND 
database that are similar to the chosen starting com-
pound. The results are then used as input to search 
through the KEGG REACTION database for match-
ing RDM transformation patterns [14]. These patterns 
are defined as KEGG atom type changes at the reaction 
center (R), the difference region (D), and the matched 
region (M). Products of these matching reactant pairs 
are then used as input, and this process is repeated 
until stopping conditions are reached. The Jaccard coef-
ficient between the query and matched compounds of 
each reaction is used as the reaction score to indicate its 
plausibility. The average of all individual reaction scores 
in the pathway gives the pathway score.

EAWAG-PPS (formerly UM-PPS) [2] performs path-
way prediction by first determining the functional 
groups in the starting compound, and applies biotrans-
formation rules to determine the transformed products. 
Applying these rules iteratively to the educts would 
lead to combinatorial explosion, and known pathways 
were used to determine biotransformation priorities 
[15]. User input is used at the end of each transforma-
tion prediction, to determine whether prediction con-
tinues downstream of the predicted compound(s). The 
predicted pathway grows as this cycle is repeated.

Biotransformer [16] combines a rule or knowledge 
based approach in conjunction with a machine learn-
ing approach, to predict metabolic reactions for com-
pounds. It makes use of experimentally confirmed 
biotransformations derived from the literature, as well 
as precedence rules that were derived from reported 
observations. Many of them are from the EAWAG-
PPS database. The Biotransformer Metabolism Pre-
diction Tool (BMPT) then uses a set of random forest 
and ensemble prediction methods to predict reactions, 
for example related to Cytochrome P450 enzymes 
(CYP450) and Phase II metabolism. For the latter, a 
simple rule-based filter is applied to eliminate the most 
trivial non-candidates for a few chemical classes with 
known metabolism. Metabolic pathways are predicted 
progressively starting from the root compound, one 
reaction at a time.
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OASIS TIMES [17] predicts chemical toxicity by inte-
grating metabolism simulators into models assessing 
toxicity of both the transformation educts and prod-
ucts. This has improved model performance significantly 
compared to traditional approaches that don’t consider 
metabolic transformation products. The incorporated 
metabolic logic accounts for enzyme interactions, chan-
neling effects and depletion of highly reactive inter-
mediates. The metabolism simulator aims to correctly 
reproduce experimentally observed metabolites, and 
uses xenobiotic pathway data from MetaPath [18] as a 
reference and aims to reproduce the observed pathways. 
However, it simulates metabolism using a complex math-
ematical model rather than a rule-based approach.

Pathway evaluation and comparison
Integrated scoring systems that attempt to quantify the 
quality of predictions are not always found in the systems 
mentioned above. PathPred [12] computes the Jaccard 
index on compounds in each of the predicted reactions, 
and uses the average of all such values in a pathway as 
the overall score. OASIS TIMES [17] takes the union of 
the observed and predicted pathways to tally true/false 
positives/negatives by comparing the metabolites. Only 
the first false positive in a sequence of false positives 
would be penalized, because the rest are conditioned 
from it. The system can also identify intermediates, and 
either reward, penalize or ignore them, based on a user-
defined parameter. Prediction performances in published 
work for systems such as METEOR, BNICE and Bio-
transformer are obtained only from independent tests, 
without integrated options to evaluate the quality of pre-
dictions on new test sets.

A related field is the prediction of graph networks using 
machine learning techniques. Link prediction is a core 
component in many of the different approaches, such 
as analyzing information directly from the graph. This 
includes common neighbors [19], using metadata of the 
nodes from the application domain [20], or making use 
of pre-existing information on the connections between 
nodes in the graph [21]. There are similar concepts in 
these approaches and the work in this paper, and we will 
explore them further for applicability in future work.

Research in Graph Isomorphism addresses the quan-
tification of similarity between graphs. Many tech-
niques focus on properties such as orientation or 
structural arrangements that share little relevancy with 
biotransformation pathways. However, common met-
rics such as Graph Edit Distance [22] can be useful in 
potential scoring systems or comparing predicted and 
observed pathways. Nevertheless, in biotransformation 
studies, the resulting pathways are tentative manual 

assignments by experts. They do not always reflect 
the absolute ground truth of the underlying reaction 
mechanism.

In summary, the work related to predicting biodegra-
dation pathways so far does not take pathway structures 
into account. Our work in this paper aims to fill this gap 
by introducing a new approach that evaluates the predic-
tions accordingly.

Methods and experiments
In this section, we will first summarize the prediction and 
evaluation of models in enviPath [6], and then introduce 
our new Multi-Generation evaluation that overcomes the 
limitations of the current approach.

Single‑Generation evaluation
The standard enviPath Relative Reasoning models [4–6, 
15] use a chosen set of biotransformation pathways as 
training data. The set of biotransformation rules consists 
of rules that were curated by experts. All compounds in 
the training pathways are independently cross-referenced 
with the rules for their applicability, producing effectively 
a quasi Boolean Matrix [23] that describes their inter-
relationships. The matrix connects the compounds and 
rules in a manner similar to: 

with rules rn and compounds cn with n = [1, ...5] in the 
training. The values in the matrix elements represent 
Not applicable (− 1), Applicable but not observed (0) and 
Applicable and observed (1). A machine learning model 
is trained on this matrix and then later used to predict 
probabilities for the combination of a new compound 
and the set of transformation rules.

In the Single-Generation evaluation, the predictions 
are then compared on the level of single reactions to the 
ground truth. That is, the known transformations are 
matched to the predictions for each rule and translated 
into true positives, true negatives, false positives, or false 
negatives. These counts then are translated to standard 
performance measures such as accuracy, recall, or pre-
cision. Multi-label approaches are used to aggregate the 
single transformation rule performance to one measure 
for the whole model. A detailed overview of the training 
and evaluation process is given in previous work [4].

r1 r2 r3 r4 r5
c1 1 1 1 1 1
c2 0 1 0 −1 1
c3 0 0 1 0 1
c4 −1 −1 0 1 1
c5 0 0 0 0 1



Page 5 of 14Tam et al. J Cheminform           (2021) 13:63 	

Multi‑Generation evaluation
In contrast to the procedure outlined above, our Multi-
Generation approach does not operate on the transfor-
mations of each individual compound, but first predicts 
a whole pathway (see next section) and then operates 
on the compounds as nodes in the graph. This leads to 
a couple of additional aspects that require considera-
tion. Please note, however, that the underlying prediction 
model is identical in both approaches.

As discussed before, compounds in the first genera-
tion naturally carry higher confidence in the experimen-
tal findings, compared to transformations occurring at 
higher depth in the pathway. This is due to the amount 
of test substance being divided into multiple reaction 
branches and only slow conversion over time. Thus, 
concentrations of higher-generation products are lower, 
which makes them more difficult to confirm experimen-
tally and less likely to be reported. We therefore intro-
duce a scoring system within our approach to account 
for the increasing uncertainty when comparing predicted 
and observed pathways.

This scoring system assigns rewards and penalties with 
weights according to the generation of the respective 
compounds. The resulting score for a pathway represents 
the agreement between the predicted and observed path-
ways. The collective scores for each of the pathways in 
the validation set are used to compute conventional met-
rics such as recall-precision curves. This new approach 
evaluates the pathway as a whole across multiple genera-
tions of compounds. This is in contrast to approaches in 
previous work where predicted reactions in each single 
generation are evaluated independently.

The prediction quality of Relative Reasoning models 
depends on the compatibility between the transforma-
tion rules and the training set, as well as the test set. Rule 
sets with low compatibility can lead to problematic sce-
narios, e.g. where no applicable rules can be applied to 
the target compound structure. In the Single-Generation 
evaluation process, such scenarios would result in all (if 
any) observed reactions from the educt being ignored. 
However, if there are further reactions for the prod-
uct compound in the data, they would still be evalu-
ated. Alternatively, in the Multi-Generation evaluation 
approach, the prediction would terminate at the initial 
educt and no further scores will be rewarded besides 
false negatives for the observed products.

Figure 2 demonstrates this difference between the two 
evaluation approaches with a simple example, an experi-
ment that begins with compound A. The observed path-
way has compound A transformed to B then to C, with 
the reaction from B → C described by a transformation 
rule ( rB→C ) but none for A → B ( rA→B ). The Single-
Generation evaluation approach would only evaluate 

B → C (with a reward +) and ignore A → B , since no 
rule can be applied.

The Multi-Generation evaluation approach assigns 
penalties to both compounds B and C for not being pre-
dicted in the pathway. Although the model assigns a high 
probability to reaction B → C , the missing transfor-
mation rule for reaction A → B prevents any progres-
sion along that path. This puts strong emphasis on the 

A B C

Observed
Pathway

rA→B rB→C

A B
Not
Evaluated

Single-
Generation

B CTP +

A BFN CFN

− −
Multi-
Generation

X

X

Reward

Penalty

Predicted

Not
Predicted

Fig. 2  A scenario where a reaction from an observed pathway 
is not described by any transformation rule used for training. The 
observed pathway has compound A transformed to B then to C, 
with the reaction from B → C described by a transformation rule ( 
r
B→C ) but none for A → B ( rA→B ). The Single-Generation evaluation 

approach would only evaluate B → C (with a reward +) and ignore 
A → B , since no rule can be applied. The Multi-Generation evaluation 
approach would penalize both compounds B and C (−) for not being 
predicted
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knowledge gap in the set of transformation rules and pro-
vides a more realistic evaluation metric for the prediction 
accuracy on the overall pathway level.

Multi‑Generation pathway construction
We predict pathways in the test or validation set starting 
from their root compound. Each of the possible reactions 
is predicted using the supplied transformation rules, 
which can be represented as a possible branch evolv-
ing from the educt. We then calculate conditional prob-
abilities for reactions according to their position in the 
pathway.

This procedure takes into account the relationships 
between the probabilities of upstream reactions with the 
current reaction. We adjust the preset threshold value 
dependent on the depth and use it in the pruning process 
with the resulting conditional probability. This condi-
tional probability is defined by the product of the prob-
ability value assigned to the current reaction, multiplied 
with values from all of the upstream reactions. An exam-
ple pathway beginning from compound A is shown in 
Fig. 3.

The example shows root compound A with probabili-
ties PB and PC , for reactions that transform A into com-
pounds B and C, respectively. A probability threshold x 
of value PB > x > PC is used in the example, to demon-
strate the scenario where compound C is predicted to be 
not observed. The algorithm then continues to determine 
the possible reactions for compound B, transforming to 

compounds D and E at the second generation of the path-
way, with respective probabilities PD and PE.

These values are multiplied with PB , generating condi-
tional probabilities, to obtain the conditional probabili-
ties PB × PD and PB × PE . They are then tested against 
the threshold value adjusted for reactions at second gen-
eration, at x2 . This part of the example demonstrates the 
scenario where PB × PE > x2 > PB × PD , and compound 
D is predicted to be not observed. This steers the path-
way prediction such that branches with high probabili-
ties will be longer, while less likely branches will be cut 
earlier. Note that while this will change the predictions 
of a model, this does not introduce a new prediction 
approach but rather changes the way we use the predic-
tion in the evaluation and application.

Performance calculation
We calculate the pathway prediction performance based 
on standard true/false positive/negative counts, with the 
notable difference that we apply a weighting system and 
account for intermediates as described below. The quan-
tities TP, FP and FN are computed as follows:

•	 TP Compounds present in both predicted and 
observed pathways count as true positives, with 
weights according to their depth in the observed 
pathway.

•	 FP Compounds that only exist in the predicted path-
way but not the observed count as false positives, 
with weights according to their depth in the pre-
dicted (adjusted) pathway.

•	 FN Compounds that only exist in the observed path-
way count as false negatives, with weights according 
to their depth in the observed pathway.

These definitions are used with the following Weighting 
System and treatment of intermediate metabolites.

Weighting system
We propose a mathematical model to compare two 
pathways with multiple generations. In accordance to 
the natural decrease in experimental certainty along 
the pathways, the compounds are assigned decreas-
ing weights as their generation or depth level increases. 
These weight values start at 1

2
 for compounds at gen-

eration or depth level one, and decrease by 50% for each 
increasing level. The weights are used as multipliers to 
conventional classification metrics such as counts of 
true/false positives/negatives. The multipliers are then 
used to quantify the agreement between predicted and 
experimental pathways. We use the Jaccard Index as met-
ric for pathway similarity. It is defined as:

A

CPC

B

E
PB × PE

D
PB × PD

PB

X

X

Above
Threshold

Below
Threshold

Predicted

Not
Predicted

Fig. 3  The prediction process for an example pathway. PB and PC 
are probabilities of reactions that would transform compound A 
to compounds B and C, respectively. PD and PE are probabilities of 
reactions that would transform compound B to compounds D and 
E, respectively. A hypothetical probability threshold x is used to 
demonstrate how compounds C and D are pruned from the pathway
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where TP and FP are the True and False positives, respec-
tively, and FN represents the False negatives. WD rep-
resents the weight multiplier that is dependent on the 
depth of the metabolite in the pathway. For an exam-
ple see Fig. 4. This metric avoids the infinite number of 
potential true negatives1, and gives equal weight to each 
pathway in the validation set independent of the pathway 
length. The average score from all pathways in the valida-
tion set represents the accuracy of the model.

Intermediate metabolites
Intermediate metabolites are compounds with enhanced 
reactivity. They are quickly transformed to downstream 
metabolites, and therefore exist only in very low concen-
trations. These intermediates are sometimes included in 
the experimental data and sometimes not. This depends 
on the choice of the author of the experimental study 
report or the data package and the underlying experi-
mental evidence. If they are not included, the transfor-
mation of the educt is reported to lead directly to the 
downstream metabolite. While prediction of such an 
intermediate would be mechanistically correct, they 
might not be present in the available data. Such a sce-
nario would incorrectly inflate the count of false positives 

Sim =

∑
(TP ×WD)

∑
(TP ×WD)+

∑
(FP ×WD)+

∑
(FN ×WD)

during the Single-Generation evaluation, and would be 
even more detrimental in the Multi-Generation evalu-
ation procedure. The intermediate metabolite would be 
penalized, along with all metabolites downstream to it, as 
they would appear at an incorrect depth in the pathway.

In order to correctly accommodate the intermedi-
ate metabolites in the evaluation procedure, we have 
designed a process that adjusts the depth level of the 
downstream compounds accordingly. The process first 
determines a list of compounds that are present in both 
the predicted and observed pathways. Then it checks if 
any of them are immediately downstream to one another 
in the observed pathway. The compound pairs which 
fit this criterion are examined to test if additional com-
pounds are between them in the predicted pathway. 
These compounds are then added to the list of interme-
diates. Such intermediate metabolites might still be cor-
rectly predicted without the downstream node from the 
observed pathway. However, the use of a correctly pre-
dicted downstream nodes is required to identify them 
in a reliable manner and treat them properly. In other 
words, we can correct the evaluation of intermediates if 
and only if they have downstream products in the refer-
ence pathway that were correctly predicted.

The list of intermediate compounds is used to adjust 
depth levels in the predicted pathway accordingly. The 
shortest path between each of the compounds in the 
pathway and the root compound is determined using a 
Breadth-first search. The list of in-between compounds 
is determined and the depth level of the end compound 
is then decreased by the number of intermediate com-
pounds that are in this list of in-between compounds. 
The intermediate compounds are ignored by the Multi-
Generation evaluation scoring algorithm.

Figure  5 shows an evaluation example incorporating 
concepts from both the Weighting System and the treat-
ment of intermediate metabolites.

Experimental setup
We carried out several experiments to assess the pro-
posed evaluation approach. We used a combination of 
pathway data selection as well as several experiment 
designs to evaluate the validity and difference in perfor-
mance compared to the Single-Generation evaluation 
approach.

Biotransformation pathway data
Several sets of biotransformation pathways were used in 
this work:

EAWAG-BBD The set of biodegradation pathways 
contained in the EAWAG Biocatalysis/Biodegrada-
tion Database package [2] contains primarily xenobi-
otic chemical compounds and microbial biocatalytic 

A BTP

DFP

CFN

+1/2

−1/4

−1/4

+X

−X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Fig. 4  A pathway combined from a prediction and an observed 
pathway in the comparison process. True/false positives/negatives are 
determined in the comparison, and weights are assigned according 
to their depths for rewards and penalty calculations

1  As the observed data is based on experiments where we can only be sure 
of observed compounds, we can never know for sure if a not observed com-
pound is a truly negative or just not observed yet.
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reactions. Information on such microbial enzyme-cata-
lyzed reactions carries great importance in the fields of 
biotechnology and environmental research.

EAWAG-SOIL The set of biodegradation pathways in 
the EAWAG-SOIL package [7] contains pesticide deg-
radation pathways compiled from laboratory soil deg-
radation studies. These pesticides are registered in the 
EU, and their degradation pathways are freely accessi-
ble regulatory data.

From the EAWAG-SOIL package we selected diverse 
subsets of pathways as training and test sets that evenly 
cover the chemical space. This is done to obtain a rep-
resentative set without over-representation of certain 
compound clusters. The selection is based on the Tani-
moto similarities from Morgan2 fingerprints [24]:

where Na and Nb are the numbers of 1 bits present in 
the fingerprints of compounds a and b, and Nab is the 
number of 1 bits occurring in both fingerprints. We used 
the MaxMin algorithm [25] to incrementally pick com-
pounds with the least similarity to the most similar com-
pound from the already selected set. We selected 80% of 
the EAWAG-SOIL pathways to become the TRAIN-SOIL 
package for model training purposes. The remaining 20% 
make up the TEST-SOIL package which is to be used as a 
test set. We excluded pathways that are not representa-
tive for typical organic chemistry, i.e. when their root 
compounds are inorganic salts, much larger than the rest, 
or contain heavy metal elements.

Experiment designs
We use the set of validated biotransformation rules from 
the EAWAG-BBD package to build relative reasoning 
models with compound structures from pathways inside 
specified training packages. We have set the probability 
threshold for reactions to a low value of 0.1 for all experi-
ments, in order to efficiently capture differences between 
the two evaluation approaches. The following are the 
experiment designs used for examination, and data sets 
for both evaluation approaches:

Validation Test A procedure to strictly validate the 
accuracy of the proposed mathematical approach that 
compares biotransformation pathways. Three sub-proce-
dures are performed:

•	 Full pathway Evaluate each pathway against itself. 
The result is expected to be 1.

•	 Empty pathway Evaluate each pathway against only 
its starting compound. As the comparison of the 
pathway starting compound is ignored in the scoring 
system, the result is expected to be 0.

•	 Half full pathways A random process is performed 
to remove all but the starting compound in approxi-
mately 50% of a cloned set of pathways. Each pathway 
in the original set is evaluated against the associated 
one in the cloned set. Results of some metrics such as 
Accuracy and Recall are expected to be close to the 
ratio of unmodified pathways in the cloned set.

Evaluation with Test Sets A procedure where the entire 
chosen list of compounds is used to train a relative rea-
soning model once. Then we carry out the evaluation on 
the nominated test set TEST-SOIL. This procedure is 
performed on these pathway set combinations: TRAIN-
SOIL, EAWAG-BBD + TRAIN-SOIL.

T (a, b) =
Nab

Na + Nb − Nab

A C

Experiment 1/2

A BFP CTP

1/2 1/4Predicted

A B CTP

1/2Adjusted

X

X

Observed

Not
Observed

Reward

Penalty

Predicted

Not
Predicted

Fig. 5  The depth adjustment process according to intermediate 
metabolites determined in the predicted pathway. Compounds A 
and C are present in both observed and predicted pathways, which 
allows compound B to be identified as an intermediate metabolite. It 
can be ignored and the depth-associated weight for scoring can be 
adjusted accordingly for compound C 
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Evaluation with Holdout This procedure uses a ran-
dom process to select approximately 66% of the chosen 
molecules to train a relative reasoning model. The model 
is then evaluated on the remaining 34% of the data. A 
list of compounds extracted from all selected pathways 
is used for selection for the Single-Generation evalu-
ation approach, and the list of pathways is used for the 
Multi-Generation approach. The process is repeated 100 
times, and the results of each individual run are aver-
aged. This approach additionally allows an opportunity 
to also repeatedly examine the model’s prediction ability 
on data that is new to the training set. This procedure is 
performed on these pathway set combinations: EAWAG-
BBD, EAWAG-SOIL, TRAIN-SOIL, EAWAG-BBD + 
EAWAG-SOIL, EAWAG-BBD + TRAIN-SOIL.

Results and discussion
To assess the effectiveness and validity of our Multi-
Generation evaluation approach, we summarize the 
results from the procedures detailed in the Experiments 
section in the following. We calculated Accuracy, Preci-
sion, Recall and Area under the Precision-Recall Curve 
(AUPRC). Due to the nature of the Multi-Generation 
evaluation approach, where pathways potentially have an 
infinite number of true negatives, the false positive rate 
cannot be computed. In the Single-Generation evaluation 
approach, the number of true negatives can be calculated 
from the applicable transformation rules, which are nei-
ther predicted (i.e. below the threshold) nor observed 
experimentally. The Area under the Receiver Operating 
Characteristic curve (AUROC) is hence only available 
for the Single-Generation approach and is provided as an 
indicator.

Illustrative evaluation of an example pathway
We demonstrate the main differences between the two 
evaluation approaches on an illustrative example using 
the 1,1,1-Trichloroethane pathway from the EAWAG-
BBD package (Fig.  6). For simplicity and better read-
ability, we removed false positive predictions in Fig.  6 
and the evaluation below, which would distract from the 
main points of this demonstration. Please note, however, 
that five of these false positives are mentioned in the tex-
tual description [26] of the pathway as minor products 
or are reported in the literature (trichloroacetic acid, 
dichloroacetic acid, ethane, 2-chloroethanol, acetic acid), 
which highlights the difficulty related to the incomplete-
ness of such minor products in the reference data. The 
Multi-Generation approach mitigates the problem by 
reduced scoring weights for metabolites at higher depth 
in the pathway or zero weight for transient intermedi-
ate metabolites. Our example demonstrates the impact 
of not recognizing such intermediate metabolites. It is 

indicated in the metadata of the observed pathway that 
the final metabolite acetaldehyde (6) is formed indirectly 
from chloroethane (4) via intermediates. Indeed, there is 
no transformation rule in EAWAG-BBD for this transfor-
mation. Therefore, the model predicts acetaldehyde only 
via ethanol (5) or 2-chloroethanol (not shown) as inter-
mediate steps.

In this scenario, the Single-Generation evaluation 
approach will return three true positives: two reactions 
from the root node leading to products 2 and 3, and one 
subsequent reaction from 3 to 4. The predicted reaction 
from chloroethane (4) to ethanol (5) is counted as false 
positive. The reported transformation from chloroeth-
ane (4) to acetaldehyde (6) is not evaluated at all, because 
there is no corresponding transformation rule in the 
underlying set of rules. This example demonstrates that 
the Single-Generation evaluation does not adequately 
address the likely intermediate and the final product 
acetaldehyde. The resulting accuracy for this example is 
0.75, although the predicted pathway can be considered 
correct.

1

2 3

4

6

(a) Observed Pathway

1

2 3

4

5

6

(b) Predicted Pathway
Fig. 6  The pathway for 1,1,1-Trichloroethane as given in the 
EAWAG-BBD package (a), and the corresponding branch of the 
predicted pathway (b)
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The Multi-Generation evaluation approach will 
return two true positives with weight 1

2
 (2 and 3 at 

depth = 1), one TP with weight 1
4
 (4 at depth = 2) and 

one TP with weight 1
8
 (6 at depth adjusted from 4 to 

3). The intermediate metabolite ethanol (5) gets zero 
weight and does not influence the final score. The 
resulting Multi-Generation accuracy for this example 
is 1. The comparison of the evaluation metrics from 
both approaches is summarized in Table 1. Please note 
that both approaches would yield lower accuracy, if the 
disregarded false positives would have been included 
in the example. Thus, ultimately the Multi-Generation 
accuracy would be lower (but better reflect the real-
ity) than the SG accuracy, because it penalizes also the 
false positives predicted downstream of primary false 
positives as discussed below.

Validation tests
Results of the validation tests performed on the 
EAWAG-BBD compounds are presented in Table 2. As 
expected, the evaluated full pathways from both pack-
ages achieve 1.0 for Accuracy, Precision and Recall, as 
there are only true positives and no false positives or 
negatives. The expected values for evaluated empty 
pathways from both packages are also 0 for all three 
metrics, as there are only false positives without any 
true positives. The “Half Full” pathways from both 
packages achieve 1.0 for Precision, and a value that is 
proportional to the amount of empty pathways (see 
Table 3) for Accuracy and Recall. The empty pathways 
will contribute with false negatives while the full path-
ways will contribute to the true positive score.

Evaluation with test sets
Relative reasoning models were trained with the TRAIN-
SOIL package and the combination of EAWAG-BBD + 
TRAIN-SOIL packages. In both cases we evaluated the 
models on the TEST SOIL package. Tables 4 and 5 show 
the results, and Fig.  7 gives the associated Precision-
Recall curves.

The numerical values of each metric are noticeably 

lower for the Multi-Generation evaluation approach 
compared to the Single-Generation approach. This has 
two main reasons: First, the Single-Generation evalu-
ation is based only on defined transformation rules, 
whereas Multi-Generation evaluates all nodes in the ref-
erence pathway and thus penalizes the incompleteness 
of the transformation rules. Second, a wrong prediction 
in the Multi-Generation approach is more detrimental, 
because all the downstream nodes from this branch will 
be wrong as well. In other words, for a true positive to be 
tallied, all upstream nodes also have to be predicted cor-
rectly. Additionally, a false positive will lead to even more 
false positives downstream. These two reasons make the 
Multi-Generation approach a much harder evaluation 
criterion, and thus the lower numerical values do not 
simply imply a worse result.

Another point worth noting from the Multi-Gener-
ation evaluation results is that the values for recall do 
not reach one (see Precision-Recall curve, Fig.  7). The 
gap between the maximum recall and the value of 1.0 
is caused by transformations in the reference pathways 
which are not covered by transformation rules and their 
downstream nodes. The products of such reactions can 

Table 1  Evaluation metrics for the illustrative example 
1,1,1-Trichloroethane from the EAWAG-BBD package

Evaluation 
approach

Accuracy Precision Recall

SG 0.75 0.75 1.0

MG 1.0 1.0 1.0

Table 2  Results of validation tests performed for Multi-Generation evaluation

The validation process was performed on three different modified versions of the training data itself

Pathways Accuracy Precision Recall

BBD SOIL BBD SOIL BBD SOIL

Full 1.0 1.0 1.0 1.0 1.0 1.0

Half Full 0.51 0.47 1.0 1.0 0.5 0.47

Empty 0 0 0 0 0 0

Table 3  Counts of the full and empty pathways in the validation 
test process where a random 50% of pathways are emptied

Pathways Count

BBD SOIL

Full 113 153

Empty 105 165

Ratio 0.52 0.48
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therefore never be predicted correctly, no matter how 
low the probability threshold is and will always count 
as false negatives. Moreover, as discussed above, any 
downstream nodes won’t be predicted either. In contrast, 
missing transformation rules have no effect on the Sin-
gle-Generation performance, since Single-Generation is 
only evaluated on the existing rules. Thus, the maximum 

recall value at probability threshold zero can be used as 
an indicator for the completeness of the rules for the test 
set.

Furthermore, the results show that the precision val-
ues for both approaches do not reach 1, which means 
the number of false positives does not go down to 0, no 
matter how high the probability threshold is set. This is 
expected and implies that there are always products pre-
dicted with a high probability that are not correct. Given 
that the transformation rules are extremely general and 
can easily be triggered, the role of the machine learn-
ing models is to limit this. These results simply show 
that they do not predict perfectly, which will be hard to 
achieve with the available data.

The data in the TRAIN-SOIL package is naturally more 
representative for the evaluated TEST-SOIL package in 
terms of chemical and biological properties compared 
to the EAWAG-BBD package. While the EAWAG-
BBD+TRAIN-SOIL configuration will provide better 
predictions for a broader chemical and biological space, 
the model trained with only the TRAIN-SOIL package 
will perform better on data that share greater chemical 
similarity. Therefore, the relative reasoning model trained 
without the EAWAG-BBD package is more compat-
ible with the evaluation data set. This can be observed 
in the statistics from the Single-Generation evaluation 
approach. However, the difference is evidently more 
obvious in the Multi-Generation evaluation results, par-
ticularly in the Precision-Recall curve. The differences in 
the areas under the Multi-Generation Precision-Recall 
curves are evidently larger than the Single-Generation 
evaluation counterpart.

Evaluation with holdout
We trained Relative Reasoning models with the EAWAG-
BBD package, EAWAG-SOIL package, TRAIN-SOIL 
package, EAWAG-BBD + EAWAG-SOIL, and EAWAG-
BBD + TRAIN-SOIL packages. For all cases, we repeated 
a holdout evaluation 100 times. Tables  6 and 7 give the 
results, and Fig. 8 shows the associated Precision-Recall 
curves. A zoom-in to the Multi-Generation Precision-
Recall curves from the Evaluation with Holdout experi-
ments is presented in Fig. 9.

Observations from the Evaluation with Test Sets results 
are also notably present in these results from a more 

Table 4  Statistics of the Evaluation with Test Sets experiments for threshold 0.1

Packages Accuracy Precision Recall

SG MG SG MG SG MG

BBD+TRAIN_SOIL 0.53 0.09 0.34 0.1 0.66 0.36

TRAIN_SOIL 0.6 0.15 0.4 0.21 0.71 0.38

Table 5  Statistics of the Evaluation with Test Sets experiments for 
the whole range of thresholds

Packages AUPRC AUROC

SG MG SG

BBD+TRAIN_SOIL 0.43 0.04 0.8

TRAIN_SOIL 0.41 0.09 0.82

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

EAWAG BBD + TRAIN SOIL SG
EAWAG BBD + TRAIN SOIL MG

TRAIN SOIL SG
TRAIN SOIL MG

Fig. 7  Precision-Recall curves for the Evaluation with Test Sets 
experiments. As the data in the TRAIN-SOIL package is more 
representative for the evaluated TEST-SOIL package in terms of 
chemical and biological properties compared to the EAWAG-BBD 
package, the relative reasoning model trained without the 
EAWAG-BBD package is more compatible with the evaluation data 
set. We can see that the Multi-Generation evaluation approach better 
reflects the compatibility between compound structures and the 
transformation rules used to train the model
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repetitive averaging process. The Precision-Recall curves 
are also notably smoother from the averaging process. 
The curves from the Multi-Generations approach also 
distinguish more clearly between results from only using 
the EAWAG-BBD package and other configurations. This 
is partially due to the fact that transformation rules from 
the EAWAG-BBD package are used to train all of these 
relative reasoning models. These rules were optimized for 
EAWAG-BBD but not for the other packages for which 
they are less suitable. Also note that soil is a much more 
complex system compared to the typical in vitro culture 
studies, which EAWAG-BBD is mainly comprised of. The 
outcome of a degradation experiment in soil is more dif-
ficult to predict. [7]

Figure 7 and 8 indicate that the Precision-Recall curves 
from each of the evaluation approaches occupy a differ-
ent region in this space. Numerical values of Precision 
and Recall from the Multi-Generation approach seem 
less ideal. However, it must be emphasized that this is not 
due to worse predictions (same prediction model), but 
from a more holistic evaluation, taking into account addi-
tional aspects on the pathway level.

In analogy to language processing, the Single-Genera-
tion approach is analogous to evaluating each predicted 
word written by a columnist individually. The Multi-
Generation approach on the other hand, is analogous 
to extending this to sentences and paragraphs. That is, 
correct predictions in the former may be penalized in 
the latter for being in the wrong place. Such a relation-
ship between the two approaches indicate that it is natu-
ral to expect this difference in resulting numerical values 
between the two approaches.

Conclusion
In this paper, we present a new Multi-Generation 
approach for evaluating relative reasoning prediction 
models, that are used to predict biodegradation path-
ways. It includes methodology as well as performance 
in specifically designed experiments. The new approach 
evaluates predicted pathways with multiple generations 
of compounds holistically, in contrast to considering each 
reaction independently. Our approach additionally takes 
into consideration the increased uncertainty of observ-
ing compounds at higher depths in the pathways. We also 
propose an algorithm to account for intermediate metab-
olites, which would otherwise be incorrectly penalized 
during evaluation.

Our experiments show that the Multi-Generation eval-
uation metrics are much harder criteria. They provide 
a more realistic view on the prediction quality of whole 
pathways and reveal the incompleteness of the underly-
ing transformation rules. With our new approach we 
can now start to compare the predictivity of different 
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Fig. 8  Precision-Recall curves for the Evaluation with Holdout 
experiments. The repeat-and-average component of this training 
approach quite effectively smooth out the kinks observed from the 
Evaluation with Test Sets experiments. The differences in the gap 
that indicates the compatibility between the transformation rules 
and the observed compound structures are more visible in the 
Multi-Generation results. While the lower numerical values simply 
reflect a different measuring standard in this new approach, the 
expected relationships between threshold, precision and recall are 
preserved
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Fig. 9  Precision-Recall curves from the Multi-Generation results for 
the Evaluation with Holdout experiments. The thresholds used for the 
curve are derived from the distribution of probability values from 
all reactions evaluated. Note that this plot is extracted from Fig. 8 to 
show the differences of the Multi-Generation performances
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models on an objective basis in a model-agnostic way, 
i.e. independent from the model architecture and the set 
of transformation rules. Furthermore, we have demon-
strated that our approach is more suitable to address two 
important characteristics of biotransformation pathway 
data: missing minor products in the reference data and 
intermediate metabolites. Single-Generation evaluation 
on the other hand might still be useful for determining 
the predictivity for individual (defined) transformation 
rules or for computationally demanding steps like hyper-
parameter optimization.

Overall, our experiments demonstrate that it is still a 
long way until biotransformation prediction models can 
achieve top accuracy for complete pathways. However, 
with the Multi-Generation approach we improved our 
toolbox for the evaluation and comparison of pathway 
prediction models, which will facilitate the develop-
ment of better models. In future work, we will use this 
approach to improve the compatibility of the biotrans-
formation rules, for example by generating and test-
ing new sets of rules. Additionally, we will integrate the 
new knowledge about likely intermediates into model 
training.
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Table 6  Statistics of the Evaluation with Holdout experiments

Packages Accuracy Precision Recall

SG MG SG MG SG MG

BBD 0.65 0.17 0.58 0.31 0.76 0.3

SOIL 0.65 0.13 0.42 0.21 0.67 0.27

TRAIN_SOIL 0.65 0.13 0.42 0.22 0.66 0.25

BBD+SOIL 0.62 0.15 0.49 0.22 0.72 0.3

BBD+TRAIN_SOIL 0.63 0.15 0.5 0.233 0.71 0.28

Table 7  Statistics of the Evaluation with Holdout experiments

Packages AUPRC AUROC

SG MG SG

BBD 0.64 0.12 0.87

SOIL 0.47 0.07 0.83

TRAIN_SOIL 0.43 0.08 0.82

BBD+SOIL 0.56 0.09 0.85

BBD+TRAIN_SOIL 0.57 0.09 0.85

https://envipath.org/package/32de3cf4-e3e6-4168-956e-32fa5ddb0ce1
https://envipath.org/package/5882df9c-dae1-4d80-a40e-db4724271456
https://envipath.org/
https://github.com/enviPath/mg-evaluation
https://github.com/enviPath/mg-evaluation
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