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Simple Summary: Immune checkpoint blockade (ICB) with antibodies targeting CTLA-4 (Cytotoxic
Lymphocyte Antigen 4) and/or programmed death-1 protein (PD-1)/programmed death ligand-1
(PD-L1) has significantly modified the therapeutic landscape of a broad range of human tumor
types, including advanced non-small-cell lung cancer (NSCLC). Despite great advances of checkpoint
immunotherapies, a minority of NSCLC patients (<20%) respond and/or experience long-term clinical
benefits from these treatments. Limited response rates of T cell–based checkpoint immunotherapies
suggest the presence of other checkpoints able to inhibit effective anti-tumor immune responses.
Natural Killer (NK) cells represent a promising target for tumor immunotherapies, particularly
against tumors that escape T-cell-mediated control. Like T cell function, NK cell function is also
regulated by inhibitory immune-checkpoint molecules. In this review, we will provide an overview
of the rationale, mechanisms of action, and clinical efficacy of these NK cell-based checkpoint therapy
approaches. Finally, the future directions and current enhancements planned will be discussed.

Abstract: Immune checkpoint inhibitors (ICIs) immunotherapy has represented a breakthrough in
cancer treatment. Clinical use of ICIs has shown an acceptable safety profile and promising antitumor
activity. Nevertheless, some patients do not obtain clinical benefits after ICIs therapy. In order to
improve and cure an increasing number of patients, the field has moved toward the discovery of
new ICIs expressed by cells of innate immunity with an elevated inherent antitumor activity, such as
natural killer cells. This review will focus on the recent findings concerning the role of classical and
non-classical immune checkpoint molecules and receptors that regulate natural killer cell function, as
potential targets, and their future clinical application.

Keywords: NK cells; immuno-checkpoint inhibitors (ICI); non-small cell lung cancer (NSCLC); PD-1

1. Introduction

To date, cancer immunotherapy with immune checkpoint inhibitors (ICIs) has been
a cornerstone of the treatment for several solid and hematologic malignancies; among
these, non-small cell lung cancer (NSCLC) treatment has gained significant benefits from
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the introduction of ICIs, as such agents have been approved for use at virtually any
disease stage, from resectable to advanced disease, both as a single-agent approach and
as part of combination regimens with chemotherapy. Notably, the currently approved
agents are directed on programmed death 1 (PD-1) protein or its ligand (PD-L1), as well
as cytotoxic lymphocyte antigen 4 (CTLA-4), which mostly involve T cell lymphocytes.
With reference to advanced NSCLC, single-agent PD-1 is the current standard of care for
non-oncogene addicted NSCLC with high PD-L1 expression, while combinations involving
ICIs and chemotherapy are employed with absent or low PD-L1 expression [1]. While
the contribution of ICIs to NSCLC management is extremely relevant, there is still space
for further development; indeed, it is known that the complexity of the immune system
allows to consider other mechanisms. On one hand, the effect of PD-1/PD-L1 or CTLA-4
blockade on the antineoplastic activity of other immune cells, such as Natural Killer (NK)
lymphocytes, still needs to be elucidated. Along this line, additional immune checkpoints
(ICs) can be exploited with therapeutic intent, including specific NK-related ICs (including
lirilumab and monalizumab), as well as other novel therapeutic immune targets. From
a clinical perspective, the development of novel ICI-based regimens [2] might lead to
the improvement of current practice; indeed, a current priority in the management of
non-oncogene-addicted NSCLC is represented by the ability to overcome the resistance to
established ICIs, which in turn is expected to result in improved response and survival [3].
This review aims to summarize the current state of knowledge of the effects elicited by ICIs
on NK cells, as well as the novel immunotherapeutic agents likely to be soon introduced in
clinical practice.

2. NK Cell Subsets Diversity

Traditionally, two main circulating NK cell populations have been defined based on
their differential expression of CD56 and CD16 markers, termed CD56bright and CD56dim

NK cells, which do not overlap for a number of phenotypic and functional properties [4,5].
These include the expression of a high level of perforins and granzymes, as well as, MHC
class I-specific inhibitory Killer Ig-like Receptors (KIRs), which are restricted to CD56dim

NK cells and license this subset to mediate strong cytotoxic response upon the engagement
of activating receptors (i.e., NCR, NKG2D, and DNAM-1). Moreover, the high expres-
sion of the Fcγ receptor CD16 provides CD56dim NK cells with the capacity to exert
antibody-dependent cell-mediated cytotoxicity (ADCC). Conversely, CD56bright NK cells
are considered efficient cytokine producers endowed with immunoregulatory properties,
but poorly cytotoxic, unless appropriately activated. A recent series of observations have
greatly expanded on NK cell lineage diversity by showing that circulating NK cell subsets
actually represent only a minor part of total NK cells in our body, as peripheral tissues
harbor a relevant amount of “unconventional” subsets of NK cells that apparently do
not recirculate in the blood or lymphatics, and possess distinct phenotypic profiles [6,7].
Tissue residency has now been described as a feature for several subsets of lymphocytes,
such as NK cells, “helper”-like innate lymphoid cells (ILCs), and T cell subsets [8]. As for
other lymphocytes, NK cells that reside in tissues display markers, such as CD69, CD103
(Integrin alpha E), CD49a (i.e., the α1 subunit of α1β1 integrin), and CXCR6, which are all
involved in their retention within tissues and, practically, allow for their identification and
isolation [9]. To date, discrete subsets of TR-NK cells have been identified in normal human
districts such as the uterus (both at steady-state and during pregnancy), bone marrow (BM),
secondary lymphoid organs (SLO), liver, and lung [6,7]. Recent advances have character-
ized several novel human (h)-NK subsets. Among them, adaptive NK cells demonstrate an
intriguing, specialized antibody (Ab)-dependent response and several adaptive immune
features [10]. Most adaptive NK cells express a high level of NKG2C and lack NKG2A,
express KIRs, Leukocyte Ig-like Receptor B1 (LILR-B1/ILT2), low levels of natural cyto-
toxic receptors (NCRs) (i.e., NKp46 and NKp30), CD161, and T-cell immunoglobulin and
mucin-containing domain (TIM-3). In addition to peripheral blood (PB) NK cells, adaptive
NK cells can be detected the lymph nodes (LNs) tonsils, liver, pleural fluid, and other
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sites. Adaptive NK cells are often associated with prior human Cytomegalovirus (HCMV)
infection [11]. Interestingly, adaptive NK cells can also infiltrate into tumor tissues, such
as NSCLC [12]. Functionally they are able to mount ADCC, thus adaptive NK cells may
play a part in tumor eradication by specific targeted Ab-based cancer therapy. In the tumor
microenvironment (TME), a large number of immune-suppressive pathways are combined
to inhibit NK cell function. In addition, the continuous exposure to tumor cells and the
microenvironment contributes to the exhaustion of the immune effector cells. Exhausted
Tumor-associated (TA)-NK cells exhibit downregulation of effector cytokines, decreased
degranulation potential, downregulation of activating receptors (such as NKG2D), upreg-
ulation of inhibitory receptors such as PD-1, TIM-3, T cell immunoreceptor with Ig, and
Immunoreceptor Tyrosine-based inhibition Motif (ITIM) domains (TIGIT) and NKG2A
and decreased expression of Eomesodermin and T-bet transcription factors (TFs) [13,14].
Expression of the latter markers on NK cells correlates with decreased NK cell functionality
and blockade of these receptors can increase NK cell cytotoxicity and function [14].

3. Expression of MHC Class I- Specific Inhibitory Receptors by NK Cells (Classical ICs)

NK cell functions depend on the balance between inhibitory and activating signals
mediated by cell surface receptors.

Classical inhibitory receptors expressed by NK cells are mainly human leukocyte
antigen (HLA) class I- binding molecules and include KIRs, CD94/NKG2A, and LILR-
B1/ILT2. [15]. The family of inhibitory KIRs (iKIRs) includes the two domain KIR2DL1 and
KIR2DL2/3 molecules and the three domain KIR3DL1 and KIR3DL2 receptors that recog-
nize epitopes shared by different groups of classical HLA class I molecules. CD94/NKG2A
is specific for the non-classical HLA-E molecules in complex with several peptides derived
from the leader sequence of HLA-A, -B, or -C molecules [16,17] or from CMV [18,19]. LILR-
B1/ILT2 displays a promiscuous recognition of many classical and non-classical HLA class
I molecules as well as of the CMV-derived class I-like molecules UL18 [20].

4. Expression of Non-Classical ICs by NK Cells

NK cells also express other immunoregulatory receptors that function as non-classical
IC. These include PD-1, TIGIT, Tactile/CD96, TIM-3, CD161, and Lymphocyte-activation
gene 3 (LAG3) [21]. Resting NK cells usually do not express these molecules, while they
can be often found on “stressed”/activated NK cells during infection or tumors.

PD-1 is an inhibitory receptor of cellular immune response expressed in different
immune cell populations. PD-1 can bind some specific ligands, i.e., PD-L1 (B7-H1, CD274),
or PD-L2 (B7-DC, CD273) [22].

These inhibitory receptors are required for peripheral tolerance generation and for the
inhibition of damage during inflammation in peripheral tissues. While PD-L2 expression is
mostly limited to dendritic cells (DC), macrophages, and lung cells, PD-L1 is most widely
expressed and can be overexpressed on several tumor cells [23,24] thus, probably, favoring
escaping of tumor cells from immune surveillance. PD-1 expression on NK cells was
shown in patients with ovarian carcinoma, Kaposi sarcoma myeloma, and gastrointestinal
cancers [25–27]. It is conceivable that the TME, through signals delivered by soluble
factors and/or cells, can induce PD-1 expression [28]. Moreover, trogocytosis can act as
a mechanism by which PD-1 is transferred from tumor cells to NK and T cells. PD-1
trogocytosis sharply inhibits the potential of NK cells to eradicate tumors in vivo [29].
Recently, it has been also reported that PD-1 is stored in cytotoxic granules and its surface
expression increased following recognition of tumor cells, concurrent with CD107a surface
mobilization [30] on NK cells. TIGIT is an inhibitory IC expressed by resting T and NK cells,
upregulated along with activation [31] and often overexpressed in a variety of cancers [32].
TIGIT competes with CD226 to bind to PVR (CD155) and Nectin-2 (CD112) two molecules
often up-regulated on tumor cells thus playing an important role in the NK-cell activity
inhibition in part counterbalanced by the co-stimulatory activity exert by DNAM-1(CD226)
receptor [33,34]. Tactile/CD96 is another important IC for NK cell effector functions, which
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shares with TIGIT the ligands. CD96+ NK cells are significantly increased in the intra-
tumor tissues of hepatocellular carcinoma (HCC) [35,36]. CD96+ NK cells are functionally
impaired with reduced capacity to release IFN-γ and TNF-α, and low gene expression
levels of Tbx21, Prf1, and GzmB. TIM-3 is expressed in both adaptive and innate immune
cells, but human NK cells transcribe the highest amounts of TIM-3 among lymphocytes [37].

So far, galectin-9, phosphatidylserine, and High Mobility Group Box (HMGB)1 have
been described as TIM-3 ligands. To date, many aspects of the biology of TIM-3 have not
yet been completely elucidated. Thus, while it has been reported that, to exert its function,
TIM-3 should interact with Carcinoembryonic antigen related cell adhesion molecule
(CEACAM)-1 (in cis and/or trans) [38], a recent study does not provide any evidence for an
interaction between these receptors, suggesting that the inhibitory signaling in effector cells
is mediated by TIM-3 cytoplasmic sequences [39]. LAG-3 is another inhibitory IC that can
be found on activated NK cells [40]. In T cells, LAG-3 co-localizes with CD4 molecules in
endosomes, secretory lysosomes, and MicroTubule Organizing center (MTOC) [41]. LAG-3
main ligands are MHC class II molecules, and the fibrinogen family protein 1 (FGL1) [42].
In humans, FGL1 is usually overexpressed by several tumors. In melanoma and lung cancer
patients, elevated FGL1 plasma levels are correlated with resistance to immunotherapy with
anti-PD-1 mAbs and poor outcome. These data indicate that the FGL1/LAG-3 interaction
may aid tumor immune escape. Along this line, evidence that a combined blockade of FGL1
and PD-1 has a synergistic effect has been obtained in animal models [42]. Finally, CD161,
belonging to the C-type lectin superfamily, is an inhibitory receptor that recognize Lectin-
Like Transcript 1(LLT1), a ligand expressed by several tumors such as non-Hodgkin’s
lymphoma (NHL) [43].

5. NK Cell Targeting to Improve Anti-Tumor Response
5.1. Harnessing NK Cells: Immune Checkpoint Inhibitors (ICIs)

To challenge infections, immune innate cells exploit their effector by a variety of
activating receptors (aRs) including NCRs, NKG2D, and DNAM-1. These aRs sense
pathogen-associated or endogenous molecules that are up-regulated or are expressed
de novo at the cell surface under pathological conditions such as infections and/or tumors.
Both events result in cytolytic activity and/or production of effector cytokines. Since
during inflammation immune-mediated responses might also exert damage to self-tissues,
sophisticated control mechanisms to avoid unwanted responses are needed.

These functions are mediated by a number of inhibitory receptors (iRs) called in-
hibitory ICs, which limit the threshold for effector cell activation and control homeostasis,
resolution of inflammation, and self-tolerance. Tumors hijack inhibitory ICs to escape
immune eradication. ICIs therapy was confirmed a powerful approach to cancer im-
munotherapy. In particular, antibodies (Abs) able to abrogate PD-1/PD-L1 interaction
have demonstrated extraordinary activity in several types of cancers including metastatic
melanoma and NSCLC. Monoclonal Abs (mAbs) targeting PD axis are able to prompt
an effective antitumor response mainly through reinvigoration of exhausted PD-1+ CD8+

effectors T cells at the tumor site. However, resistance to PD-1/PD-L1 axis blockade re-
mains a challenge for many patients. Besides specific T lymphocytes, also NK cells play an
important role in anti-tumor immunity. Indeed, NK cells are potentially able to recognize
and eliminate tumors that elude CD8+ T cell-mediated control by reducing HLA class I
expression on their surface. Along this line, in long survey subjects, a lower degree of NK
cytolytic potential has been correlated with cancer incidence [44]. Furthermore, several
studies have provided evidence that in various solid malignancies the presence of TA-NK
cells is associated with a better patient outcome [45].

The function of human NK cells is primarily regulated by classical ICs (including
KIRs and NKG2A) specific for HLA-class I molecules which counteract the function of
aRs. The fully anti-tumor potential of NK cells could be hindered by other non-classical
ICs, recognizing ligands other than HLA class I molecules (PD-1, TIGIT, CD96, TIM-3, and
LAG-3) (see above section). Of note, in hematological malignancies, a high expression of
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ligands for IC correlates with poor patients’ prognosis [46]. In TA-NK cells, the expression
of some of these ICs can be modulated by signals present in the TME, thus inhibiting NK
cell functions.

Thus, since their blocking may restore NK-cell responses against tumor cells, all these
ICs may represent therapeutic targets. Due to the impressive inhibitory effect exerted by
human mAbs blocking classical ICs on NK cells, they were the first to enter clinical phase.
These include lirilumab (1-7F9, IPH2101) targeting KIR2DL1, KIR2DL2, and KIR2DL3 in
patients with AML, myeloma, or solid tumors in AML [47,48] and IPH4102, a first-in-class
monoclonal antibody targeting KIR3DL2 in patients with cutaneous T-cell lymphoma,
predominantly those with Sézary syndrome. Unfortunately, only IPH4102 has shown, so
far, promising clinical activity [49]. Dual ICIs therapy with nivolumab plus lirinumab in
patients with recurrent resectable squamous cell carcinoma of the head and neck (SCCHN)
is also being evaluated (NCT03341936).

An important improvement supporting the use in the clinic of mAbs recognizing
NK cell-“specific” ICs has been obtained by Andrè and collaborators who analyzed the
potential of an NKG2A blocking mAb (used either alone or combined other therapeutic
mAbs) to unleash NK cell effector functions against HLA-E+ tumor cells [50].

Notably, the non-classical HLA class I molecule HLA-E is expressed by various human
malignancies (such as lung, colon, pancreas, stomach, head and neck, and liver tumors),
and NKG2A+ NK cells can be found in the tumor nest.

Monalizumab is an anti-NKG2A blocking mAb that not only boosts NKG2A+NK cell
responses against HLA-E+ tumor cells but also promotes the effectiveness of durvalumab
(a mAb that blocks PD-L1) by increasing the functional activity of NKG2A+PD-1+ NK cells
against HLA-E+PD-L1+ target cells. Currently, clinical trials testing monalizumab either
alone or combined with other mAbs (including anti-EGFR or anti-PD-L1) are active (see
next section).

Several studies in humans have shown that NK cells from cancer patients express
PD-1, which correlates with a lower anti-tumor activity [23,25,51,52]. Recently, it has been
described that the therapeutic effect of PD-1 and PD-L1 blockade may rely also on the
antitumor activity of NK cells [53]. Using several cancer mice models, Hsu and coworkers
found that activated NK cells express PD-1 and that PD-1 engagement by PD-L1+ tumor
cells potently suppress NK cell–mediated immunity to tumors [53]. Thus, the blockade of
PD-1 or PD-L1, is able to activate an NK response that could be crucial for the full effect
of PD-1/PD-L1 blockade. Our recently published results [54] correlate higher absolute
numbers of circulating NK cells with longer overall survival (OS) in NSCLC patients treated
with Nivolumab. These data are in line with what is already documented by [55], thus
suggesting that the exact impact of NK cells on the response to nivolumab is an aspect that
needs further studies.

TIGIT blockade can reverse the exhausted status of TA-NK cells [56], thus representing
a potential new strategy to explore in immunotherapy. Since TIGIT could act as a nega-
tive regulator of NK cell functions, it represents an ideal molecule that can be targeted
in checkpoint blockade strategies to boost NK tumor-immunity against CD155/PVR ex-
pressing cancers. Indeed, TIGIT has recently entered the spotlight as a promising IC target
in cancer immunotherapy [57,58]. It is worth noting that IL-15 increased both DNAM-
1/CD226 and TIGIT expression by TA-NK cells, thus in the presence of TIGIT-blocking
mAbs, IL-15-activated NK cells can be triggered via DNAM-1/CD226. These alterations
in both activating (CD226, the good one) and inhibitory (TIGIT, the bad one) receptors
levels, together with TIGIT -targeted therapy may tip the balance in the net activating
signaling output. It should also be stressed that translating TIGIT blockade into the clinic
would be safer than the PD-1 or CTLA-4 blockade. Indeed, mice deficient for TIGIT do
not show any sign of spontaneous autoimmunity or any defects in hematopoiesis. Thus
far, the therapeutic role of mAbs blocking TIGIT (utilized alone or combined with anti-
PD-1/PD-L1 mAbs) is being investigated in trials of patients with metastatic solid tumors
(see below section). It has been described that in lung carcinoma [59] and gastric cancer
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patients [60] TIM-3 upregulation on peripheral blood NK cells is associated with reduced
OS and advanced tumor stage, respectively. In patients suffering from esophageal tumors,
NK cells expressing TIM-3 display an exhausted phenotype. Along this line, in these
patients, high levels of TIM-3 on NK cells infiltrating the tumor nest are associated with
tumor progression [61]. This clinical evidence suggests that in metastatic patients TIM-3
can act as a marker of exhaustion in NK cells, thus supporting the role of TIM-3 blocking
mAbs in reinvigorating anti-tumor immunity. Further supporting these data, it has been
described that in melanoma patients TIM-3-targeted therapy was able to restore NK cell
function [62]. On the other hand, some studies described that TIM-3 can act as a stimulatory
molecule able to promote T cell activation and differentiation [63,64]. Thus, since TIM-3
can also display a triggering function, in clinical use, anti-TIM- 3 blocking mAbs should be
employed with care.

Lastly, whereas in mouse models it has been demonstrated that LAG-3 is able to impair
NK cell activity against metastases [65], limited information exists on human LAG-3+ NK
cells. In different tumor cell types, clinical trials investigating Relatlimab (a LAG-3 blocking
mAb), used either alone or combined with other IC blocking mAbs, are active (see below
section) (Figure 1).
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Figure 1. Overview of classical and non-classical ICs expressed by NK cells and their cognate ligands
expressed either on cancer cells or antigen-presenting cells (APCs). The blocking mAbs that are
currently being investigated in clinical trials, including anti- TIM-3, anti-NKG2A, anti-KIR, and
anti-TIGIT mAbs are depicted in red, while blocking mAbs that are approved by FDA and currently
used in clinic (such as anti-PD-1, anti-CTLA-4, and anti-LAG-3 mAbs) are represented in green.
Blockade of ICs could recover NK cell anti-tumor activity, thereby representing a promising approach
for immunotherapy.

5.2. Clinical Data on Therapeutic Approaches in Solid Tumors Involving Both Classical and
Emerging/Non-Classical Immune Checkpoints

Monalizumab is an ICI active on NKG2A and thus able to activate anti-tumor activity
of NK cells. This agent was evaluated in combination with cetuximab and durvalumab
in a non-randomized, single-arm phase II trial involving treatment-naïve patients with
recurrent or metastatic SCCHN (NCT02643550); in this study, the combination including
monalizumab was characterized by acceptable safety profile and promising antitumor
activity [66]. With regards to NSCLC, the activity of monalizumab was recently explored
in the COAST trial (NCT03822351), an open-label phase II, randomized study in which
patients who had been treated with chemo-radiation for inoperable stage III NSCLC
were randomized to receive maintenance with durvalumab alone, the current standard
of care, or durvalumab in combination with either oleclumab (an anti-CD73 agent) or
monalizumab. With regards to the arm containing durvalumab plus monalizumab, the
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objective response rate (ORR) was 35.5%, while the median progression-free survival
(mPFS) was 15.1 months, while ORR and mPFS for durvalumab alone were 17.9% and
6.3 months, respectively; additionally, the combination was generally well tolerated [67].
Currently, other clinical trials are exploring the role of anti-NKG2A treatment. Among
these, the ongoing Precision Immuno-Oncology for Advanced Non-small Cell Lung Cancer
Patients With PD-1 ICI Resistance (PIONeeR) trial is extremely promising, as it aims to
enroll patients with NSCLC who had previously received ICIs and who will be treated
with a combination of durvalumab and other agents, including monalizumab, in order to
overcome acquired resistance to single-agent ICIs (NCT03833440) [https://clinicaltrials.
gov/ct2/show/NCT03833440 (accessed on 22 September 2022)].

Lirilumab is another agent active on NK cells, as it masks KIR2D receptors, hence
enhancing cytotoxicity of NK cells. After showing a manageable safety profile in dose-
finding, phase I studies, both alone and in combination with an anti-PD-1 agent [47,68],
the activity of lirilumab in combination with nivolumab in the neoadjuvant and adjuvant
setting for squamous cell cancer of head and neck was explored in a single-arm phase II
trial published by Hannah et al. In this study, the combination was generally well tolerated
and achieved good outcomes in terms of 1-year disease-free survival (DFS) and 1-year OS,
respectively, 55.2% and 85.7% [69]. Furthermore, lirilumab was employed in combination
with epacadostat (an Indoleamine 2,3-dioxygenase 1, IDO-1, inhibitor) and nivolumab in the
ECHO-208 trial; recently, the enrollment for this study was stopped, but its results are still
not available (NCT 03347123) [https://clinicaltrials.gov/ct2/show/results/NCT03347123
(accessed on 22 September 2022)]. The relevant clinical data of these agents are summarized
in Table 1.

Table 1. Relevant clinical data of immune checkpoint inhibitors specifically designed to enhance
anti-neoplastic NK cell activity. Legend -> DCR: disease control rate; DLT: dose-limiting toxicity;
DFS: disease-free survival; NSCLC: non-small cell lung cancer; SCCHN: squamous cell carcinoma of
head and neck; OS: overall survival; PFS: progression-free survival; TRAE: treatment-related adverse
event. * in the COAST trial, durvalumab was employed alone or in combination with oleclumab or
monalizumab. In this table, we are considering the outcomes of the regimen containing durvalumab
and monalizumab.

Target Agent Study Population Regimens Outcomes

NKG2A Monalizumab

Colevas et al. (single-arm
phase II trial) [66]

40 patients with
recurrent/advanced

SCCHN

Durvalumab plus
cetuximab plus
monalizumab

ORR: 32.5%
Median PFS: 6.9 months;

12 month-OS: 59%

COAST (open-label,
randomized, phase II

trial) [67]

189 patients with stage III
NSCLC candidates for

maintenance after
chemo-radiation

Durvalumab plus
monalizumab or
durvalumab plus

oleclumab vs.
durvalumab alone *

Monalizumab +
durvalumab arm vs.
durvalumab alone

Confirmed ORR: 35.5%
vs. 17.9%

Median PFS: 15.1 vs. 6.3
months

KIR 2D Lirilumab

Vey et al. (phase I trial)
[47]

37 patients with solid or
hematologic
malignancies

Escalating doses of
lirilumab

No DLT were identified;
full KIR occupancy

(>95%) was achieved
with all dosages

Armand et al. (phase I
trial) [68]

72 patients with classical
Hodgkin lymphoma,

non-Hodgkin lymphoma,
or multiple myeloma

Lirilumab plus
nivolumab

ORR: 76%
Grade 3–4 TRAE: 15%

Hannah et al. (single-arm
phase II trial) [69]

28 patients with operable
SCCHN

Lirilumab plus
nivolumab 7–21 days

before surgery, followed
by 6 cycles of adjuvant

lirilumab plus nivolumab

DCR at surgery: 96%
1-year DFS: 55.2%
1-year OS: 85.7%

Grade 3+ TRAE: 11%

https://clinicaltrials.gov/ct2/show/NCT03833440
https://clinicaltrials.gov/ct2/show/NCT03833440
https://clinicaltrials.gov/ct2/show/results/NCT03347123
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Another novel drug class with potential activity on NK is represented by the inhibitors
of TIGIT; indeed, TIGIT blockade is associated with prevention of NK exhaustion and
enhancement of NK anti-tumor immunity [56]. Tiragolumab is a novel immune check-
point inhibitor designed to target TIGIT, with promising activity in solid malignancies
and especially in NSCLC. Indeed, in the phase II trial CITYSCAPE, 135 patients affected
by advanced NSCLC with PD-L1 expression ≥1% were randomized (1:1) to receive ate-
zolizumab (anti-PD-L1) plus tiragolumab or atezolizumab alone. At the interim analysis,
the combination regimen achieved a statistically significant advantage in terms of PFS and
numerical, albeit non-statistically significant, advantage in terms of OS over single-agent
PD-L1 inhibitor; notably, in the sub-group analysis, the advantage achieved by the com-
bination was pronounced among patients whose tumor harbored high PD-L1 expression
(≥50%), but not among patients with PD-L1 between 1–49%. To date, the median OS has
not been reported yet [70]. Currently, the role of tiragolumab is being explored in other
settings for the management of NSCLC, such as maintenance after chemo-radiation for
locally advanced disease (NCT04513). Another promising immune-related molecule is
LAG-3, which has been firstly found on activated NK cells. Knockout LAG-3 mice have a
decreased natural killer activity. Notably, it has been observed that LAG-3 plays a critical
role in NKT cell function, and its expression results in decreased proliferation and functions
of NKT cells, i.e., a cell subset that expresses both NK receptors and T cell receptors [71].
Relatlimab (anti-LAG-3) was employed in combination with nivolumab in a population of
patients with advanced, pre-treated melanoma, resulting substantially safe and active [72].
Based on these results, the combination of relatlimab plus nivolumab was evaluated in a
placebo-controlled, randomized phase II/III trial (RELATIVITY-047) designed to include
patients with advanced melanoma. In this study, mPFS, the primary endpoint, was sig-
nificantly improved in the experimental arm (relatlimab plus nivolumab) compared to
placebo-nivolumab; hence, the combination of LAG-3 and PD-1 inhibition seems promising
from a clinical perspective [73].

Notably, a co-formulation including nivolumab/relatlimab was approved for the
use of metastatic melanoma by the American Food and Drug Administration (FDA) in
March 2022 [https://www.fda.gov/drugs/resources--information--approved--drugs/fda-
-approves--opdualag--unresectable--or--metastatic--melanoma (accessed on 22 September
2022)] and by the European Medicine Agency (EMA) in July 2022 [https://www.ema.
europa.eu/en/medicines/human/EPAR/opdualag (accessed on 22 September 2022)].

Finally, another molecule TIM-3 represents a promising target as its expression is down-
regulated in activated NK cells [74]. The safety and activity of sabatolimab, an anti-TIM-3
antibody, administered alone or in combination with spartalizumab (an anti-PD-1 antibody)
were explored in a phase I/II trial designed to enroll patients with solid tumors; the safety
profile of the combination was generally manageable at the recommended phase II dose
identified in the dose escalation; indeed, the maximum tolerated dose was not reached.
With regards to activity, initial responses were observed, thus leading to further clinical
development of this combination [75]. The relevant clinical data of the aforementioned
agents are summarized in Table 2.

https://www.fda.gov/drugs/resources--information--approved--drugs/fda--approves--opdualag--unresectable--or--metastatic--melanoma
https://www.fda.gov/drugs/resources--information--approved--drugs/fda--approves--opdualag--unresectable--or--metastatic--melanoma
https://www.ema.europa.eu/en/medicines/human/EPAR/opdualag
https://www.ema.europa.eu/en/medicines/human/EPAR/opdualag
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Table 2. Relevant clinical data of immunotherapy agents with potential effect on NK cells. Legend ->
AE: adverse event; CI: confidence interval; CBR: clinical benefit rate; HR: hazard ratio; ITT: intent-to-
treat; MTD: maximum-tolerated dose; NR: not reached; NSCLC: non-small cell lung cancer; ORR:
objective response rate; RCC: renal cell carcinoma; SAE: severe adverse events. * p values were not
reported in the interim analysis.

Target Agent Study Population Regimens Outcomes

SLAM7 Elotuzumab
Yashar et al.

(single-arm phase II
trial) [76]

13 patients with
high-risk

relapsed/refractory
multiple myeloma

Elotuzumab plus
pomalidomide,

carfilzomib, and
low-dose

dexamethasone

ORR: 45.4%; CBR: 54.5%
SAE rate: 31%

TIGIT Tiragolumab

CITYSCAPE
(open-label,

randomized, phase II
trial) [70]

135 patients with
advanced NSCLC

(PD-L1 ≥ 1%)

Tiragolumab plus
atezolizumab vs.

atezolizumab alone

INTERIM ANALYSIS *
ITT population

Median PFS: 5.6 vs. 3.9 months; HR: 0.62
(95% CI: 0.42–0.91)

Median OS: 23.2 vs. 14.5 months; HR: 0.69
(95% CI: 0.44–1.07)

PD-L1≥ 50%
Median PFS: 16.6 vs. 4.1 months; HR: 0.29

(95% CI: 0.15–0.53)
Median OS: NR vs. 12.8 months; HR: 0.23

(95% CI: 0.10–0.53)
PD-L1 between 1–49%

Median PFS: 4.0 vs. 3.6 months; HR: 1.07
(95% CI: 0.67–1.71)

Median OS: 13.3 vs. 14.5 months; HR: 1.16
(95% CI: 0.70–1.94)

IDO1 Epacadostat

ECHO-110 (phase Ib
trial) [77]

29 patients with
advanced,

pre-treated NSCLC

Epacadostat
(increasing doses)
plus atezolizumab

Grade ≥ 3 AEs rate: 24%
8 patients achieved stable disease

1 patient achieved partial response

ECHO-
202/KEYNOTE-037
(phase I/II trial) [78]

62 patients with
advanced solid

tumors

Epacadostat
(increasing doses)

plus pembrolizumab

Grade ≥ 3 AEs rate: 24%
ORR melanoma: 12/22 patients (55%)

ORR NSCLC: 5/12 patients (42%)
ORR RCC: 2/11 patients (18%)

ECHO-
301/KEYNOTE-252
(placebo-controlled,
randomized, phase

III trial) [79]

706 patients with
unresectable stage III

or IV melanoma
previously untreated
with PD-1 or PD-L1

checkpoint inhibitors

Epacadostat plus
pembrolizumab vs.

placebo plus
pembrolizumab

Median PFS: 4.7 vs. 4.9 months; HR: 1.00
(95% CI: 0.83–1.21; p = 0.52)

Median OS: not reached in any arm; HR:
1.13 (95% CI: 0.86–1.49; p = 0.81)

LAG-3 Relatlimab
Ascierto et al. (phase

I/IIa trial) [72]

43 patients
pre-treated with ICIs

for melanoma

Relatlimab plus
nivolumab

ORR: 16%; DCR: 45%
Any grade AEs rate: 46%; Grade 3–4 AEs

rate: 9%

RELATIVITY-047
(placebo-controlled,
randomized, phase

II/III trial) [73]

714 patients with
previously untreated
advanced melanoma

Relatlimab plus
nivolumab vs.
placebo plus
nivolumab

Median PFS: 10.1 vs. 4.6 months; HR: 0.75
(95% CI: 0.62–0.92; p = 0.006)

Grade 3–4 AEs rate: 18.9% vs. 9.7%

TIM-3 Sabatolimab Curigliano et al.
(phase I/II trial) [75]

219 patients with
solid tumors

Escalating doses of
sabatolimab alone or

sabatolimab plus
spartalizumab

MTD not reached
No response with sabatolimab alone

ORR (sabatolimab plus spartalizumab):
6%

In addition to the agents specifically designed to act on IC expressed by NK cells, there
are other relevant drugs, active on novel, emerging immune checkpoints; such checkpoints
are acknowledged to influence, among other immune cells, also NK. Elotuzumab, a mAb
directed on signaling lymphocytic activation molecule F7 (SLAM7), has shown the ability
to induce NK cell infiltration and cytotoxicity, albeit this activity was specifically observed
in multiple myeloma pre-clinical models [80]. In a single-arm, phase II trial, patients with
multiple myeloma received elotuzumab plus pomalidomide, carfilzomib, and low-dose
dexamethasone, with good tolerability and promising activity [76]. To date, knowledge on
the potential role of elotuzumab in solid tumors is still limited.
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Among the molecule of interest for immunotherapeutic agents, IDO-1 has emerged as
a potential novel target for immune checkpoint blockade (ICB), as it is known to inhibit pro-
liferation and activity of cytotoxic T cells and NK cells [81]. The IDO1 inhibitor epacadostat
has been evaluated in several trials designed to assess its tolerability and activity. In the
phase I ECHO-110 trial, epacadostat in combination with atezolizumab showed a globally
manageable safety profile, as well as some level of antineoplastic activity, thus leading
to further trial development [77]. Similarly, in a phase I/II trial, ECHO-202/KEYNOTE-
037, epacadostat in combination with pembrolizumab was generally manageable and
active, especially among patients with melanoma and NSCLC [78]. Based on these results,
the efficacy of epacadostat plus pembrolizumab was evaluated in a phase III, placebo-
controlled trial involving 706 patients affected by advanced melanoma and naïve from ICIs;
notably, the trial did not meet any of its co-primary endpoints, PFS and OS, and the author
concluded that the clinical role of IDO-1 inhibitors remains uncertain [79].

6. Role of NK Cells in Creating a More Inflamed Environment (to Prepare the Ground
for ICI)

Several studies have implicated an important role of NK cells in tumor immune
surveillance. Many results were derived from mouse models, which were either depleted
of NK cells or impaired in conventional NK cell activities. Remarkably, these studies also
demonstrated an exceptional capacity of NK cells to resist the hematogenous spread of
experimental and spontaneous tumor metastases [82]. These preclinical data were further
supported by observational studies in humans, even evaluating large cohorts, where NK
cell deficiencies [83], as well as lower NK cell activity in peripheral blood [44], could be
associated to a higher risk of developing various types of cancer. Regarding lung cancers,
the prognostic value of infiltrating NK cells in resected tumors still needs to be defined.
Primarily, this is due to the limited number of studies performed and the small size of
cohorts analyzed in each study. Moreover, it should be noted that these analyses were
performed using markers (i.e., CD57 and/or CD56) not exclusive of NK cells, but potentially
expressed by other immune/non-immune cell types. As such, some initial studies indicated
that the presence of NK cells in the immune infiltrate was associated with a lower risk
of relapse and/or longer survival [84,85] while subsequent studies, performed using the
more specific marker NKp46, failed to find an impact of high number of intra-tumoral
NK cells (at early stages of disease) on OS [86]. However, recent reports showed that the
number of infiltrating CD56+CD16+ NK cells in lung cancer tissue positively correlated to
patient survival [87]. Moreover, an “immune cluster” with a signature of NK cells and/or
plasma cells was discovered in a limited number of the analyzed NSCLC cases (5%) and
was associated with improved survival. Remarkably, this subgroup showed a favorable
prognosis despite the lack of markers for T cells or T-cell activation [88].

The low number of infiltrating NK cells has raised questions about the actual function
of this cell population at the tumor site. However, even if generally underrepresented in
solid tumors, these cells could contribute to anti-tumor immune responses by means of
their cytolytic activity or their remarkable capacity to produce cytokines and chemokines
that recruit and activate (or potentially suppress) other hematopoietic cells [89]. Several
reports have found that cytotoxic CD56dim Perforinhigh NK cells are quite excluded from
tumor tissue. Conversely, CD56bright Perforinlow NK cells represent the main NK cell
population infiltrating human cancer tissues, and at least for some tumor types, such as
NSCLC and breast cancer, the ratio of cytotoxic CD56dim Perforinhigh to non-cytotoxic
CD56bright Perforinlow is completely inverted when compared to the matched normal tis-
sues. Interestingly, the relative accumulation of CD56bright Perforinlow was associated
with a switch in chemokine expression patterns of tissues upon the neoplastic transforma-
tion [90]. Thus far, this phenomenon remains an interesting and poorly explored aspect
in the field. Whether this may represent a specific strategy used by the immune system
to control tumor growth or rather a mechanism of tumor immune evasion is yet to be
determined. As such, the presence of non-cytotoxic CD56bright Perforinlow NK cells, which
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are devoid of CD16 and represent the dominant NK cell subset infiltrating several human
solid cancers, could limit the response of agents aimed at boosting NK-mediated ADCC.
Overall, defining how NK cell functional diversity integrates into innate and adaptive
immune responses to cancer represents a critical challenge. DCs, the most efficient APCs of
the immune system, are now established as a critical immune effector based on their ability
to induce anti-tumor T cell immunity and response to immunotherapies. Among different
tumor-infiltrating DC phenotypes found across solid human cancers, conventional type
1 DCs (cDC1s) are specialized in antigen cross-presentation and CD8+ T cell activation.
Accordingly, in human tumors, gene expression signatures related to cDC1s have been
correlated with better clinical prognosis and response to ICB [91,92]. Therefore, the possi-
bility of recruiting cDC1 into tumors, as well as improving their functionality, could prove
to be useful strategies for increasing antitumor immunity and response to immunother-
apies. Remarkably, an additional role of NK cells in the immune response to cancer has
been demonstrated by recent publications that showed NK cells controlling the levels of
intratumoral cross-presenting cDC1s, by expression of FLT3 Ligand [92] and chemokines,
such as CCL5 (RANTES) and XCL-1/XCL-2 [91,93]. In patients with melanoma, levels
of NK cells and intratumoral cDC1s even positively correlated with increased survival
and predicted response to anti-PD-1 therapy [92]. In this respect, NK cells have been
suggested as a “spark” that ignites immune cell infiltration and inflammation in the tu-
mor [94]. It is noteworthy that unique clusters of NK cells characterized by high expression
of XCL1/2 transcripts were also identified among total NK cells isolated from melanoma
metastasis [95]. DCs and NK cells can reciprocally engage in a bi-directional activation
that can influence the outcome of adaptive immunity, by influencing the development of T
helper-1 (TH-1) cells and cytotoxic T lymphocytes (CTLs), both essential for an effective
anti-tumor immune response. Granulocyte-macrophage-colony stimulating factor (GM-
CSF) is a potent cytokine promoting the differentiation of myeloid cells and is essential for
the differentiation of dendritic cells, which are responsible for processing and presenting
tumor antigens for the priming of CTLs [96]. Interestingly, NK cells may potentially be a
major source of Granulocyte-Macrophage Colony-Stimulating Factor (GM–CSF) in tumors,
especially CD56bright NK cells, which are enriched in neoplastic tissues [90] and represent
the NK cell subset producing the higher levels of this cytokine [4].

Overall, recruitment and modulation of APCs at the tumor site could have a great
impact on cancer immune surveillance, given the positive association of CD8+ T cell infiltra-
tion with longer survival in NSCLC patients [97,98]. Interestingly, in a mouse model of lung
adenocarcinoma, stimulation of tumor-infiltrating NK cells by a conditional expression of
activating NK cell ligands led to an increase of tumor-specific T cells. Mechanistically, the
accumulation of adaptive immune cells was not due to overt signs of cytotoxicity in tumors
against tumor cells but, rather, to the direct production of chemokines, such as CCL5, or
indirectly, to the stimulation of APCs, as suggested by the authors [99]. Finally, Zemek RM
et al. demonstrated, in both an animal tumor model of mesothelioma and datasets from
patients, that the presence of activated NK cells in the TME and expression of immune
response-related genes characterized by Signal transducer and activator of transcription 1
(STAT1) activation can correlate with the clinical response to ICI [100].

7. Conclusions

Although ICI immunotherapy is well positioned as a safe anti-tumor therapy, im-
portant questions remain open. Elucidating the key parameters that unleash not only the
activity and reinvigoration of T cells but also NK cell potential will be important as the
field progresses into developing approaches to address challenges specific to each different
neoplastic disease indication.

The relief from NK-specific IC implies potential therapeutic advantages related to
the quite modest autoimmune burden and significant anti-tumor activity of NK cells.
However, for the emerging NK cell therapy programs, decisions depend on still open issues,
such as the altered responsiveness of NK cells in the patients and the limited persistency
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of NK cell activation in vivo or in adoptively transferred NK cells. The generation of
engineered molecules, combining arms specific for different NK receptors and targeting
tumor epitopes, represents an important element for the assembly of new therapeutic
strategies. These multivalent molecules (bi- tri- or tetra-specific engagers) [101–104] may
combine multiple therapeutic effects, depending on the assembled specificities, stimulating
triggering NK receptors and cytokine receptors, blocking ICs, and targeting tumor cells.
Another important approach deals with the use of combined cytokine cocktails (IL-12, IL-18,
IL-15) to get the so-called Cytokine-Induced Memory-Like (CIML) NK cells. These cells are
able to “remember” the initial cytokine boost and maintain their increased responsiveness
and even persist in the patients after adoptive transfer [105]. Finally, engineered NK cell
products expressing chimeric Antigen Receptors (NK-CAR) can be obtained from fresh NK
cells or from precursor cells (including induced-Pluripotent Stem Cells—iPSC) [106].

Most of these tools, including the ICI, are being studied in clinics and hold promise,
but the real frontier in the field is the search for appropriate therapeutic combination to max-
imize the anti-tumor power of NK cells in the different specific pathologic conditions [107].
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