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Intrinsic K-Ras dynamics: A novel 
molecular dynamics data analysis 
method shows causality between 
residue pair motions
Sezen Vatansever1,2,3, Zeynep H. Gümüş2,3 & Burak Erman1

K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that 
directly target it in the clinic. Recent studies utilizing dynamics information show promising results 
for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms 
by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. 
Understanding the direction of information flow can provide new mechanistic insights for K-Ras 
targeting. Here, we present a novel approach –conditional time-delayed correlations (CTC) – using the 
motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein 
fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields 
predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads 
to residue correlations with relatively long characteristic decay times. Furthermore, our study is the 
first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the 
direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: 
active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control 
both. Our results provide novel insights for strategies that directly target mutant K-Ras.

K-Ras is a small GTP-binding protein pivotal in cellular signaling. Somatic K-Ras mutations are among the most 
common activating cancer lesions, especially driving pancreas, colon and lung cancers1–3. Signaling through 
K-Ras is dependent on the bound nucleotide, where the GTP-bound state is active while the GDP-bound state 
is inactive. In GTP-bound K-Ras, P-loop (residues 10–17), switch I (SI, residues 25–40) and switch II (SII, res-
idues 60–74) regions make up the active site whose well-ordered conformations allow effector protein binding 
for K-Ras signaling (Fig. 1). However, oncogenic gain-of-function mutations impair GTP hydrolysis and freeze 
K-Ras in its active state4, causing uncontrollable cellular growth and evasion of apoptotic signals5–7. Tumors 
driven by oncogenic K-Ras are often resistant to standard therapies and result in poor outcomes; they are also 
excluded from treatment with other targeted therapies, making mutant K-Ras a high priority target in cancer 
treatment8,9. However, no clinically available drugs directly target mutant K-Ras.

Part of the challenge in oncogenic K-Ras inhibitor design has been due to structure analyses that suggest a lack 
of well-defined druggable sites on its surface10. However, studies that have utilized protein dynamics data such 
as NMR and mass spectrometry have identified binding pockets on specific K-Ras oncogenic mutants and have 
attempted to stabilize their conformational states11–14. Accumulating studies suggest that K-Ras proteins are in 
dynamic and flexible states and their distinct characteristics cannot be identified by structural studies alone12–21. 
K-Ras dynamics in different conformational states, that can also change due to allosteric interactions between 
protein residues, also need to be quantified22. However, we still need to clearly understand the intra-molecular 
allosteric networks between distant sites on K-Ras23. While such allosteric interaction sites have recently been 
discovered in its catalytic domain24–26, they remain largely understudied23. Understanding allosteric interactions 
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can present novel opportunities for small molecules that target mutant K-Ras in attempts to restore its dynamics 
to those of the wild-type, which first requires a deeper understanding of the intrinsic K-Ras dynamics.

In allosteric regulation of protein dynamics, correlated motions between protein residues are essential27–29. 
These motions enable the transfer of fluctuation information through the allosteric network30, which inherently 
involves directionality, or “causality” of events31. If the motions of two residues are correlated, it would be valuable 
to identify whether the motions of one residue drive the motions of the other. However, while correlation calcula-
tions indicate interaction (which is necessary for allosteric transitions) they are symmetric and do not reveal the 
direction of information flow.

Here, we introduce a novel method that predicts causality relationships between residue pairs of a protein. For 
this purpose, we first record residue fluctuations calculated at every time step of a molecular dynamics (MD) sim-
ulation as a time series. We then calculate the conditional time-delayed correlation (CTC) of a residue pair as the 
correlation between two time series subject to the condition that fluctuations of the first trajectory are correlated 
with later fluctuations of the second and thereby predict how past fluctuations of one trajectory affects the future 
fluctuations of the second. In some cases, CTC function of two trajectories may be asymmetric, with one affecting 
the other more strongly. We then predict that the fluctuations of a given residue control and modify the fluctuations 
of the delayed one. CTC in two time-series is extensively used in causality analyses in economics since its inception32, 
leading to the Nobel prize, but has not been widely adopted in biophysics. This is a new approach to analyzing of 
structure-function relationships. We demonstrate the simplicity of computing CTC functions in studying protein 
dynamics by applying it to understand K-Ras motions. We specifically focus on K-Ras because it is clinical important 
and well-characterized in the literature, enabling us to validate our predictions. While correlations between the fluc-
tuations of residue pairs have already been shown in several Ras protein studies33–35, despite extensive literature on 
K-Ras, there has been little attention on the role of causality (or directionality) in correlation dynamics of its residues.

In summary, we present a comprehensive study of intrinsic K-Ras dynamics, including detailed analyses of 
causality between the motions of its residues. We first provide detailed, quantitative descriptions of both GTP- 
and GDP-bound K-Ras from extensive MD simulations. We use a statistical thermodynamics interpretation of 
fluctuation correlations to quantify K-Ras ‘stiffening’ upon activation. Stiffening changes protein dynamics. More 
importantly, using stiffness calculations jointly with measurements of reduced relative fluctuations, we define 
protein stability and show that K-Ras is more stable in active conformation. To characterize correlated motions 
that are persistent within the MD simulations of GTP- and GDP bound K-Ras, we map the correlated motion 
patterns within their residues individually, and then compare and discuss their correlation decay time differences 
in detail. Our results show that inactive K-Ras is marked by a pronounced decrease in correlated motions of resi-
dues for shorter periods, while active K-Ras correlations have longer decay times. We analyze the ensuing events 
at the atomic scale. Finally, to enable a deeper understanding of K-Ras dynamics, we introduce the first causality 
calculations for K-Ras and predict specific driver/follower residue pairs during protein simulations.

Results and Discussion
Comparison of stiffness changes in active and inactive K-Ras. GTP binding increases K-Ras stiffness.  
To understand how nucleotide binding affects K-Ras dynamics, we quantified changes in its ‘stiffness’ – a metric 

Figure 1. Three-dimensional structure of wild-type K-Ras protein in GTP-bound state (PDB: 4OBE). (A) 
K-Ras structure ribbon representation with secondary structures in blue for α -helices and green for β -sheets. (B) 
Schematic of K-Ras sequences (residues 1–169). Functional regions are in same color used in K-Ras structure in A.
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that inversely correlates with residue pair fluctuations - upon GTP vs. GDP binding. For this purpose, we repre-
sented the interaction between two fluctuating residue pairs (i and j) as a spring with a constant kij, and related its 
magnitude to the mean square fluctuations of residues i and j and to their cross-correlations using the Gaussian 
Network Model (GNM). GNM is a coarse grained model at the residue level but it has been used widely for 
predicting protein behavior36. Plotting this spring constant for every residue pair in both GTP- (Fig. 2A) and 
GDP-bound (Fig. 2B) K-Ras, we observe strong coordination in the fluctuations of GTP phosphate groups with 
those of K-Ras (Fig. 2A).

To zoom in on and directly compare the effects of nucleotide binding on K-Ras stiffness, we calculated the 
differences in spring constant values between GTP- and GDP- bound K-Ras. In the following paragraphs we show 
that the spring constants calculated in this way are in agreement with experimental findings. In Fig. 2C, red dots 
indicate that the differences are largely due to the stiffening effects of GTP-binding on residue pair fluctuations. 
Notice that Regions 1–3 in Fig. 2C that correspond to secondary structures show significant increase in kij when 
GTP-bound. Furthermore, Region 1 corresponds to strong coordination of β 2 and β 3 motions, while Regions 2 
and 3 correspond to increased stiffness of β 4-α 3 and α 4.

Nucleotide binding affects spring constant of α2 (SII). We next investigated the effects of nucleotide binding on the 
spring constant of α 2 (SII), because previous studies have shown that stiffness increases when SII refolds into an 
α -helical conformation through GTP binding37. We calculated the spring constants of the two terminal residues 
of α 2 (A66 and T74), which were 0.10 kcal/mol∙A2 (69.91 pN/nm) for active and 0.04 kcal/mol∙A2 (27.78 pN/nm)  
for inactive K-Ras. Previous studies have utilized various experimental methods that have all led to spring con-
stants within ~0.09–1.15 kcal/mol∙A2 (60–80 pN/nm) for helices38,39. Our results for both K-Ras forms are on the 
same order of magnitude. Note that for active K-Ras the α 2 spring constant is equalent to the characteristic spring 
constant of α -helices, while it is lower in inactive form. Hence, our results validate and quantify earlier, qualitative 
observations of Noe et al.37 that the α 2 spring constant reaches to the level of an α -helix spring constant during 
GTP binding.

Figure 2. Stiffness results for GTP- and GDP-bound K-Ras and their difference. In panels A and B, both axes 
marks 1–169 represent the residue Cα  atoms of K-Ras and marks 170-on represent GDP and GTP nucleotide 
heavy atoms, respectively with kij >  1.5 kcal/mol∙A2. (A) kij for K-Ras-GTP. Atoms 170–181 are the γ , β , α 
-phosphate groups and 182–201 are the guanine atoms of GTP. (B) kij for K-Ras-GDP. Atoms 170–178 are the β  
and α  phosphate groups and 178–197 are the guanine atoms of GDP. (C) Difference between active and inactive 
K-Ras kij values. Red regions are stiffer in K-Ras-GTP (kij values of K-Ras-GTP >  K-Ras-GDP by at least 0.75 kcal/
mol∙A2) and blue regions are stiffer in K-Ras-GDP (kij values of K-Ras-GDP >  K-Ras-GTP by at least 0.75 kcal/
mol∙A2 ). (D) Mean spring constants ki  for GTP and GDP bound states. (E) Mean spring constant differences ∆ki
for GTP and GDP bound states. Positive values correspond to larger mean stiffness in K-Ras-GTP.
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Overall spring constant is higher in active complex. To estimate global changes in stiffness in response to nucle-
otide binding, we calculated the overall spring constants koverall (details in Methods) of nucleotide-K-Ras com-
plexes, which were 0.70 kcal/mol∙A2 (481.75 pN/nm) for GTP-bound, and 0.55 kcal/mol∙A2 (385.12 pN/nm) for 
GDP-bound K-Ras. Both are of the same order of magnitude with an experimental study for another protein, 
myoglobin, which has an overall spring constant of ~300 pN/m40,41 pointing to an order of magnitude agreement 
of overall stiffnesses of proteins in general. In conclusion, GTP-binding increases the overall K-Ras stiffness. In 
other words, GTP-binding decreases pairwise residue fluctuations of K-Ras overall, making the protein more 
rigid.

Secondary structure motions show the strongest coordination with the rest of the protein. Quantifying the spring 
constant based on fluctuations allows for analyzing how, analogous to a virtual spring, the fluctuations of a specific 
residue are coupled with fluctuations of rest of the protein. To discover residues whose fluctuations are in strong 
coordination with K-Ras fluctuations and how they change between the two states, we compared the mean spring 
constant ki of each residue i, for both active and inactive K-Ras (Fig. 2D) as described in Methods. A large ki value 
indicates that the motions of residue i are stiffly coupled with protein motions; while a small ki value indicates that 
the motions of the ith residue and the protein are flexibly coupled. For simplicity, we categorized the significant 
mean spring constant ki values as highest, high and smallest (For details please see Supplementary Table S1). In 
both states, the highest ki values are of β -strand residues β 4, β 5 and β 6, showing the strongest coordination of 
their motions with K-Ras motions. Next, high ki values of β 1, P-loop and α 5 residues indicate that their fluctua-
tions are also strongly coupled with those of the protein. On the other hand, the smallest ki values belong to SII 
region in active and SI and SII regions in inactive K-Ras which show that their residue fluctuations are not corre-
lated with the rest of the protein (Supplementary Table S2). Since we have defined the stiffness metric as a signifier 
of a decrease in residue fluctuations, we provide a second line of proof that increased stiffness stabilizes dynamic 
fluctuations in both forms of K-Ras by using Root Mean Square Fluctuation (RMSF) graph (Supplementary Figure S1). 
Clearly, the residues with the smallest mean spring constant ki values from Fig. 2D have the highest RMSF values 
in Supplementary Fig. S1 and vice versa.

As indicated in previous studies where NMR and Atomic Force Microscopy were used, protein stiffness 
depends on secondary structure40,41, where loops contribute to structural flexibility and show large fluctuations, 
while β -strands and α -helices provide mechanical stability and show small fluctuations40. Our K-Ras results are 
consistent with these general observations. In addition, we observe stiff coupling of the fluctuations of the P-loop 
and the protein. This observation is important since P-loop is the phosphate binding site of K-Ras and connects  
β 1 and α 1 (Fig. 1). Although loops are often flexible regions of proteins and show higher fluctuations, in K-Ras, 
motions of P-loop residues are stiffly coupled to those of the protein, especially in active state ( = .k 1 08i  kcal/
mol∙A2 for K-Ras-GTP, = .k 0 85i  kcal/mol∙A2 for K-Ras-GDP).

The mean spring constant values of residues in β2, β3, α3 and switch regions –especially SI- are higher in active 
K-Ras than in inactive K-Ras. Finally, we calculated mean spring constant differences between GTP-bound 
active and GDP-bound inactive K-Ras, ∆ki  (kiK-Ras-GTP  −  kiK-Ras-GDP). Figure 2E shows that the fluctuations of β 2 
and β 3 terminal (D38 and D57) and α 3 center (D92-I93) residues are in stronger coordination with those of 
active K-Ras (vs. inactive K-Ras) (∆ki >  0.43 kcal/mol∙A2). Our results also indicate that although residues of 
switch regions have the smallest ki values in both forms, some of their ki values increase significantly in active 
form. In Fig. 2E, ∆ki ranges between 0.20–0.36 kcal/mol∙A2 for residues in SI (D30-R41) and 0.02–0.19 kcal/
mol∙A2 for residues in SII (G60-T74). These ∆ki values show stiffer coupling of the motions of GTP-K-Ras with 
the motions of switch residues, especially SI (vs GDP-K-Ras). This result is important as SI includes the binding 
site to effector proteins which only bind to GTP-bound K-Ras when SI flexibilty is reduced42. Earlier studies that 
used NMR spectra and RMSF calculation also support our results that GTP binding reduces the flexibility of both 
SI and SII, especially SI35,43. Our results improve on this information by showing that fluctuations of switch 
regions –notably SI- are more stiffly coupled with K-Ras-GTP fluctuations (Fig. 2E).

Comparison of residue pair correlations for active and inactive K-Ras. To identify if the fluc-
tuations of one residue are related to fluctuations of another residue, we calculated the correlations of all 
residue-residue pairs in both GTP- vs GDP bound K-Ras complexes. As expected, cross-correlation coefficient 
maps of K-Ras-GTP (Fig. 3A) and K-Ras GDP (Fig. 3B) exhibit different correlation characteristics. The most 
remarkable differences between Fig. 3A and B belong to two parts: (i) the correlation of α 1-SI with L10-α 5 
and (ii) the correlations between β 2 and β 3. Positive correlation patterns within these two parts are evident 
in K-Ras-GTP simulations, but absent in K-Ras GDP simulations. To provide comprehensive information on 
nucleotide-dependent K-Ras dynamics, we present these two remarkable results from correlation analyses (Fig. 3) 
as well as sources of correlated motions (i.e. H-bonds) together in the following sections.

The correlation of α1-SI with L10-α5 in active K-Ras motions is due to three specific H-bonds. MD simulations 
show that the correlation between α 1-SI and L10-α 5 in the active form results from GTP binding to active site 
residues, which also form specific H bonds with other K-Ras residues and water. Based on the average number 
of H-bonds each residue forms throughout the simulation, we estimated that the nucleotides remain bound to 
active site residues S17, D30, D119 and K147, and that GTP-binding (vs. GDP) is more stable for S17 and D30 
(Supplementary Table S3). Furthermore, correlated motions of α 1-SI and L10-α 5 in GTP-bound K-Ras origi-
nate specifically from three H-bonds: (i) A146-Q22, (ii) D30-GTP, (iii) D30-a water molecule. We observed a 
sustained H-bond between A146-Q22 during active but not in inactive complex simulation. This suggests that 
A146-Q22 interaction causes a strong relationship between L10α 5 (A146-D154) and α 1 (L19-I24) in active K-Ras 
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(Fig. 3A) with a correlation coefficient of 0.75, and a weak correlation coefficient of 0.28 for inactive K-Ras. At the 
same time, the active site residue D30 forms an H-bond with the nucleotide in both active and inactive K-Ras, 
while it also binds to a water molecule only in the active form. However, the H-bond in the active form between 
D30(O)-GTP(O2A) is more permanent than the H-bond in the inactive form between D30(O)-GDP(O2’).

Since H-bond of D30-GTP is effective throughout the full trajectory, the D30-GTP distance is invariant and the fluc-
tuation correlations of the D30-GTP have longer decay times during K-Ras-GTP simulation. We next combined 
cross-correlation results with the distance distribution of D30 and nucleotides and quantified the decay times 
of their correlations during MD simulations. In addition to more permanent binding of D30(O)-GTP(O2A), 
nucleotide-D30 distance distribution pattern is close to the normal distribution curve with a mean of a smaller 
value in active K-Ras (Fig. 4A), with a correlation coefficient of 0.97. To quantify decay time of this correlation in 
both complexes, we first defined two “connectivity vectors”, ΔR30-GTP and ΔR30-GDP, between D30(O) and nucleo-
tides. As illustrated in Fig. 4B, ΔR30-GTP connects the starting point of fluctuation vector of ΔRD30(O) to end point 
of negative ΔRGTP(O2A); ΔR30-GDP starts from ΔRD30(O) to negative ΔRGDP(O2’). We then calculated time-delayed 
autocorrelations of each connectivity vector throughout the MD simulations. The autocorrelation plot in Fig. 4B 
summarizes the correlation of connectivity vectors at various time delays, where vector correlation coefficients 
are plotted with 1 ns delays at a time; slow decay of correlations in active K-Ras is clearly observed. Correlations 
decay to 1/e in about 3 ns for K-Ras-GDP (red line), vs. to ~10 ns for K-Ras-GTP (black line). One reason for this 
slow correlation decay is the H-bond, which binds D30 to a water molecule in active K-Ras. The O atom of D30 
establishes an H-bond with the nearest water during 28% of the trajectory while it does not make any contact with 
waters when K-Ras is inactive.

A continuously acting H-bond stabilizes β2-β3 distance and promotes longer decay times for β2-β3 correlations 
during K-Ras-GTP simulation. β 2 and β 3 are two parallel β  strands located between SI and SII regions (Fig. 5A). 
Due to the presence of a persistent H-bond between R41(β 2)-D54(β 3) in K-Ras-GTP simulation, the peak value 
of R41–54 distribution decreases (Fig. 5B) and fluctuations of β 2 and β 3 become correlated (Fig. 3A). Time-delayed 
autocorrelations of the vector ΔR38–57 between their terminal residues D38 and D57 are presented in Fig. 5C 
showing that ΔR38–57 correlation decays much more slowly in active K-Ras.

Causality of Correlated Motions. Correlated motions of proteins often have a direction or causal rela-
tionship30. Correlations in the fluctuations of two residues indicate interaction, which is necessary for allosteric 
transitions. However, this is not sufficient for understanding the dynamic phenomenon completely since these 
symmetric correlations do not contain information on driver and follower relationships. To deduce causality, 
CTCs need to be analyzed. Our observation is supported by recent work30 that identified causality in correlated 
motions from MD simulations using an information theory measure of transfer entropy. This work, in turn, 
was built on a study by Schreiber, who introduced the entropy transfer concept for fluctuating environments44. 

Figure 3. Cross-correlation coefficient maps for GTP and GDP bound states. Red dots show positive 
correlations (1 ≥  C(Δ Ri, Δ Rj ) ≥  0.6) and blue dots show negative correlations (− 0.45 ≥  C(Δ Ri, Δ Rj ) ≥  − 1). 
Residues indices 1–169 refer to K-Ras. (A) Correlated fluctuations of K-Ras-GTP. Indices between 170–201 
refer to GTP heavy atoms (182–201 are guanine atoms). (B) Correlated fluctuations of K-Ras-GDP. Indices 
between 170–197 refer to GDP heavy atoms (178–197 are guanine atoms).
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We follow up on these ideas and introduce a new method to dissect dynamic correlations of all residue pairs of 
a protein to identify driver and follower residues. For this purpose, we evaluate strong time-delayed (τ =  5 ns) 
correlations between residue pairs. The strongest causal relations are as follows (Fig. 6).

SII motions drive SI in active K-Ras. SI-SII relationship is better understood by examining residues that drive 
their motions throughout the trajectory. Our causality calculations show that SI is driven by SII (Figs 6A and 7). 
We present CTC plots of R68(SII) with V29(SI) (Fig. 7A) and with P34(SI) (Fig. 7B) for active K-Ras. Red curve 
shows that the fluctuations of R68 at time t affect the fluctuations of V29 at time t +  τ. Fluctuation decay of K-Ras 
residues is in the order of 1 ns. The red curve persists for time periods that are an order of magnitude longer. The 
reverse does not show a significant correlation: V29 does not correlate with later fluctuations of R68. Previously, 
a study reported that SI loop at residues 29–34 swings into the water using V29 and P34 as hinges during Ras 
inactivation37. We improved on this information by calculating time-delayed correlations and identified that SII 
residues - especially R68 and D69- sustain active state conformation of SI by driving the motions of hinge residues 
V29 and P34. Another study also assessed the conformational transition of Ras from inactive to active state45, 
where displacement of SII triggers the active state transition and SI follows SII after a lag time of multiple nano-
seconds. Dominance of SII region motions was also observed in several studies46,47. The nucleotide-bound form 
behavior is regulated by the relative arrangement of the two switches, rather than their individual conformations. 
We quantified this by verifying that SI fluctuations follow SII fluctuations in K-Ras-GTP. Since from an informa-
tion theoretic point of view correlations are regarded as information sources, we conclude that information flows 
from SII to SI. The directionality originates from the differences in the characteristic decay times. The problem 
is one of dynamics within few nanosecond time periods. Disruption of this flow is expected to interfere with the 
switch mechanism function, which is the basis of K-Ras activity.

α3 and Loop 7 (L7) motions drive switch region (SI & SII) motions in active K-Ras. (Figure 6B) Fluctuations 
of the helical dimer interface residues of α 3, E98 and R10248 drive fluctuations of A66 (α 2; SII), as shown in 
Fig. 7C and D. Additionally, helical dimer interface residue S106 (L7) drives the motion of Y71 (α 2; SII) (Fig. 7E). 
On the other hand, fluctuations of R102 (α 3) and S106 (L7) drive SI residues N26, D30, Y32 (Fig. 7F to H).

Correlated motions of α 2 and α 3-L7 have been described in other studies, which also emphasized the neces-
sity of understanding their effect on protein function17,33,46. We contribute to this knowledge by identifying their 
cause and effect relations. Furthermore, in previous studies, starting from the allosteric interaction between  
α 2 and α 3-L7, a novel ligand binding pocket, termed p3, which includes residues of L7 was defined and targeted 
for lead generation17,49,50. It was reported that ligand binding to p3 pocket weakens effector protein binding by 
allosterically stabilizing Ras effector binding site (SI). Another proposed allosteric mechanism is that ligand bind-
ing to p3 pocket changes the switch region conformation. Our results suggest that allosteric modulation of ligand 
binding may freeze the fluctuations of L7 and stabilize SI motions. This is based on our finding that motions of 
effector binding site (D30-Y32) are driven by S106 (L7).

β2 and β3 both drive and follow residue motions in active K-Ras. Causality calculations suggest the following 
information flow in fluctuations: ILE21-GLN22 (α 1) drives β 2-β 3 (Figs 6 and S2); which drives Y157 (α 5), Q61 
(SII) and T74 (SII) (Figs 6 and S3, with details in Supplementary Table S4). Specifically, the differences in the 
characteristic decay times in Supplementary Fig. S3A,B demonstrate that information flows from β 2-β 3 to Y157 
(α 5). These findings improve on the previous observations of Abankwa et al. where they defined β 2–β 3 and α 5 
as a novel conformational switch51. Most importantly, we showed that Q61 (SII) motions follow E49 motions (β 
2-β 3) (Supplementary Figure S3D). Abankwa et al. also observed that mutations in D47-E49 cause hyperactive 
Ras. Our findings support this too by showing that fluctuations of E49 of the wild type cause fluctuations of the 

Figure 4. D30-GTP distance is more stable than that of D30-GDP. Fluctuations of D30(O) to GTP(O2A) 
“connectivity vector” are persistently correlated. (A) Distance distribution between D30 and connecting O 
atoms of GTP (black) and GDP (red) (B) Time delayed autocorrelations for the vector connecting Oxygen atom 
of D30 to O2A of GTP (black curve) and O2’ of GDP (red curve). X-axis is the time delay (τ) and Y-axis is the 
time delayed autocorrelation of the vector for τ.
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Figure 5. Correlation of β2 and β3 fluctuations is persistent in active K-Ras. (A) Locations of R41 (β 2) and 
D54 (β 3) relative to SI & SII. (B) Distance distribution between Cα  atoms of R41 and D54 in K-Ras-GTP (black) 
and K-Ras-GDP (red). Distance values between R41 (β 2) and D54 (β 3) populate at 3.90 Å during GTP binding; 
they populate at 5.46 Å for GDP-bound K-Ras. (C) Time delayed autocorrelations for the fluctuations of the 
vector from D38 (Cα ) to D57 (Cα ).

Figure 6. Causality relations in active K-Ras motions. Directionality in causal relationships is illustrated 
with arrows. Arrows start from driver residues and end at follower residues. Both residue types are represented 
with yellow spheres and marked with their residue numbers. The secondary structures they belong to are in 
turquoise. (A) R68 (SII) drives V29 and P34(SI). (B) E98 and R102 (α 3) drive A66 (α 2; SII). S106 (L7) drives 
Y71 (α 2; SII). R102 (α 3) drives N26 and Y32(SI). S106 (L7) drives D30. (C) ILE21-GLN22 (α 1) drives β 2-β 3. 
(D) I46 and D47 (β 2-β 3) drive Y157 (α 5).
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catalytic residue Q61 within SII, whose proper positioning is essential for effective catalysis52. Based on these 
results, we suggest that mutations in D47-E49 region may alter E49 fluctuations that cause improper Q61 fluctu-
ations. Therefore, GTP catalysis is disrupted which results in constituently active K-Ras.

Conclusions
We present a novel approach that combines several distinct analysis methods to quantify in detail dynamics of 
GTP and GDP bound K-Ras, for which a significant amount of experimental and theoretical data already exists 
in the literature to test our predictions. Oncogenic K-Ras is a high priority drug target in cancer treatment. To 
develop new direct inhibitors that selectively bind to mutant K-Ras conformations while sparing those of WT 
K-Ras, it is necessary to first understand the dynamic activity of the WT protein in detail. To evaluate the nucleo-
tide binding dependent changes in K-Ras stability, we used stiffness and RMSF calculations and proved that GTP 
binding rigidifies and hence stabilizes K-Ras motions. These results are in agreement with previous experimental 
and computational K-Ras studies35,53,54.

Figure 7. SII fluctuations drive SI fluctuations; α3-L7 motions drive switch region (SI & SII) motions 
in K-Ras-GTP. Red curves for Δ Ri(t)Δ Rj(t +  τ) show that the fluctuations of residue i at time t affect the 
fluctuations of residue j at a later time t +  τ. All correlations (C(τ)) are normalized with respect their value at 
zero (C(0)). (A) R68 (SII) drives V29(SI). (B) R68 drives P34(SI). (C) E98(α 3) drives A66 (α 2; SII). (D) R102 
(α 3) drives A66. (E) S106 (L7) drives Y71 (α 2; SII). (F) R102 (α 3) drives N26(SI). (G) R102 drives Y32(SI). 
(H) S106 (L7) drives D30(SI).
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Our calculations that use stiffness, RMSF and correlation graphs (Figs 1 and 2, S1) confirm that GTP-binding 
increases K-Ras stiffness and thereby decreases fluctuation amplitudes, leading to distinct correlation patterns. 
These striking changes in GTP-bound-K-Ras dynamics enable its GTPase activity. Note that this nucleotide 
exchange is the first step in active to inactive transition55–62. Overall, our results support the well-established 
allosteric nature of K-Ras activation59, which has been suggested to play an important role in GTPase activity63. 
Although correlated fluctuations are necessary for allosteric information flow, their longer correlation decay times 
are also of crucial importance for complete allosteric transition. We calculated time-dependent autocorrelations 
of fluctuation vectors between residue pairs and discovered that correlations of K-Ras-GTP are stronger and per-
sist for longer correlation times during simulations. Their persistency may allow complete allosteric information 
flow in K-Ras-GTP.

We broadened our analysis to quantify causality in allosteric regulation of K-Ras function. The most impor-
tant results from our study are on causality. We applied a simple but powerful method that we defined as CTC into 
protein dynamics. To understand K-Ras dynamics, we investigated whether fluctuations of any residue caused 
fluctuations of another. Our results revealed the information flow in K-Ras switch mechanism and that SII fluctu-
ations drive SI fluctuations. This prediction is an essential validation of our approach since the dominance of SII 
motions over SI motions was observed in previous experimental and computational studies46,47. Surprisingly, in 
addition to the canonical switch mechanism, our algorithm also revealed causality relations in the novel switch 
mechanism that includes β 2–β 3 and α 5, where β 2–β 3 motions drive α 5. Moreover, fluctuations of α 3-L7 drive 
fluctuations of SI and SII. Interestingly, previous studies reported that Ras effector binding site (SI) is allosterically 
stabilized by ligand binding into a novel pocket that includes L717,49,50. Our results explain the allosteric effect of 
ligand binding on SI motions by showing the information flow from L7 to SI.

Note that functionally, the identified driver and follower sites do not show an enrichment trend in oncogenic 
mutations observed in human cancers (from 2266 missense K-Ras mutations observed in all cancers within 
cBioPortal www.cbioportal.org on July 28, 2016). However, the motions of the second most frequently mutated 
residue in cancer patients (113/2266 missense mutations), Q61 (SII region), are driven by those of E49 (β 3). 
While there are no known oncogenic mutations of residue E49, experiments have shown that mutating E49 leads 
to hyperactive Ras51, similar to the effects of Q61 mutations.

Our long-term goal is to discover small molecules that can eliminate unfavorable deviations from intrinsic 
K-Ras dynamics due to oncogenic mutations. While our method is directly applicable to study the effects of onco-
genic mutations or effector protein binding on K-Ras dynamics, each one of these investigations first requires a 
deep understanding of the causal relationships in intrinsic K-Ras motions. The detailed results we present here 
will serve as a reference point for such studies. The computational tools we introduce in the present work are 
also easily applicable to the analysis of simulation data from different proteins to understand causality in their 
allosteric regulations, which can then similarly be utilized in drug discovery. From this perspective, our approach 
has the potential to set a novel paradigm for drug design by directing attention to changes in protein dynamics. 
The latter is in close relation to changes in protein function whose restoration to normal is the target of all drug 
design activities.

Methods
MD Simulations. We performed all-atom MD simulations for both Mg+2GDP- and Mg+2GTP-bound K-Ras. 
Crystal structure of K-Ras-GDP was retrieved from Protein Data Bank (PDB ID: 4OBE) and K-Ras-GTP struc-
ture was obtained by changing GDP to GTP by adding a phosphate group to GDP using Discovery Studio 4.5 
software, (DS)64. Then, the complex was optimized with Clean Geometry tool of DS. This geometry optimization 
tool uses a fast, Dreiding-like forcefield to improve the geometry of the selected atoms and results in an approxi-
mate 3D structure. We solvated each protein in a TIP3P water box with 12 Å buffering distance. We applied peri-
odic boundary conditions and added ions to neutralize the system. We used a 2 fs time-step with a 12 Å cutoff for 
Van der Waals interactions and full particle-mesh Ewald electrostatics with 1 Å grid spacing and direct space 
tolerance of 10−6. We carried out all computations in N, P, T dynamics procedure. System temperature was kept 
constant at the physiological value of 310 K using Langevin dynamics with a damping coefficient of 2 ps−1. 
Constant pressure of 1 atm was maintained by The Nose-Hoover Langevin piston method with a 200 fs piston 
period and 100 fs decay time. We used NAMD 2.1065 with AMBER ff99SB66 and general amber force fields 
(GAFF)67. We obtained parameters of GTP and GDP (see Supplementary Methods). The initial system energy 
was first minimized for 10,000 steps, followed by 10,000 steps for equilibration. After equilibration, we performed 
300 ns simulations. Atomic coordinates R̂ of all atoms were saved every 1 ps. To eliminate all rotational and trans-
lational motions, we aligned the trajectories to the initial structure by using VMD software 1.9.268. We visualized 
trajectories using VMD. Additionally, to test whether WT K-Ras-GTP complex approached the active (close) 
state, we monitored the first 100 ns-trajectories of both GTP- and GDP-bound complexes with VMD. We 
observed that the active site residues obtain relatively close conformations in WT K-Ras-GTP. We calculated 
distance distributions of several residue pairs that flank GTP and observed that they were in support of the rela-
tively close active site conformation.

Stiffness. We quantified nucleotide-bound K-Ras stiffness using a statistical thermodynamics interpretation 
of fluctuation correlations69. We assumed that the interaction between two fluctuating residues i and j can be 
represented by a spring, where the spring constant follows from the Gaussian Network Model (GNM)36: 
kij =  (kβT)/(〈 (Δ Ri)2〉  −  2〈 (Δ RiΔ Rj)〉  +  〈 (Δ Rj)2〉 ) where Δ Ri is the instantaneous fluctuation of one end of the rod, 
Δ Rj is the fluctuation of the other end (Details in Supplementary Methods), kB is the Boltzmann constant and T 
is the absolute temperature. The spring constant has dimensions of force/length. In GNM spring definition, each 
residue i is attached to N −  1 other residues via N −  1 springs36. Thus, how stiffly a residue i is attached to a protein 

http://www.cbioportal.org
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can be quantified by = ∑ −k k N/ 1i j ij  where ki is the mean spring constant for a residue i. For stiffness esti-
mates of the complete complexes, we define an overall stiffness parameter koverall by the expression 

= ∑ >k koverall j i ij. To estimate the stiffness differences in active versus inactive K-Ras, we calculated ki for each 
residue and koverall for the protein for both states.

Stability. We defined the stability of an interacting system of residues as the joint state of reduced RMSF and 
increased interaction stiffness. RMSF relates to the magnitude of fluctuations of individual residues and stiffness 
relates to the distance between two residues and therefore they are two independent quantities. (For details see 
Supplementary Methods). A small RMSF and a high stiffness denote increased stability.

Distance distributions between residue pairs. We calculated the distance between two residues (i, j) as 
= −R R t R t( ( ) ( ))ij i j

2 . Residue pair distance distributions W(Rij) were calculated by dividing the maximum 
distance between the pair into small bins and counting the number of observed distances in each bin. All distri-
butions were normalized.

Time independent correlations (cross-correlation coefficient map). Correlations intrinsic to K-Ras 
structure are defined by the cross-correlation coefficient map, C(ΔRi, ΔRj ):
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where ∙ denotes the dot product. Correlation varies between − 1 and 1. If motions of two atoms are independent, 
then 〈 Δ Ri(t) ⋅  Δ Rj(t)〉  =  0 and Cij =  0. If the atoms always move in parallel in the same direction, then they are 
perfectly positively correlated, and Cij =  1. If they always move in parallel in opposite directions, they are perfectly 
negatively correlated, and Cij =  − 1. Cross-correlation coefficients lie in the range of − 1 ≤  Cij ≤  1.

Time delayed correlations, mobility and causality. Time-delayed correlation of two fluctuations is 
defined by:

τ
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where χ  denotes that the average is a conditional average calculated according to 
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Here, p(Δ Rj(tk +  τ)|Δ Ri(tk))denotes the conditional probability of observing Δ Rj(tk +  τ) at time tk +  τ, given Δ 
Ri(tk) at time tk.

Similarly, if indices are exchanged, then Cji(τ) represents the correlations of ΔRi at time t +  τ with earlier 
ΔRj values at time t. If the fluctuations of residue i drive the fluctuations of residue j, then Cij(τ) >  Cji(τ). If 
Cji(τ) >  Cij(τ), residue j drives residue i because the fluctuation ΔRj at time t is correlated with future fluctuations 
of ΔRi. However, at τ =  0, the equality Cij(0) =  Cji(0) holds.

Note that time-delayed autocorrelation Cii(τ) is the correlation of the trajectory with its own past and future 
coordinates. If autocorrelation is large, it can correspond to a specific form of “persistence”, a tendency for a sys-
tem to remain in the same state from one observation to the next.

References
1. Slebos, R. J. C. et al. K-Ras Oncogene Activation as a Prognostic Marker in Adenocarcinoma of the Lung. New Engl J Med 323, 

561–565, doi: 10.1056/Nejm199008303230902 (1990).
2. Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging ras back in the ring. Cancer Cell 25, 272–281, doi: 10.1016/j.

ccr.2014.02.017 (2014).
3. Forbes, S. A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43, D805–

D811, doi: 10.1093/nar/gku1075 (2015).
4. Vetter, I. R. & Wittinghofer, A. Signal transduction - The guanine nucleotide-binding switch in three dimensions. Science 294, 

1299–1304, doi: 10.1126/science.1062023 (2001).
5. Downward, J. Targeting ras signalling pathways in cancer therapy. Nature Reviews Cancer 3, 11–22, doi: 10.1038/nrc969 (2003).
6. Chen, C. C. et al. Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D 

mutations. PLoS One 8, e55793, doi: 10.1371/journal.pone.0055793 (2013).
7. Lu, S. et al. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in 

Small GTPase K-Ras4B, Exposing the Effector Binding Site. J Biol Chem 290, 28887–28900, doi: 10.1074/jbc.M115.664755 (2015).
8. Pao, W. et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. Plos Med 2, 57–61, doi: 

ARTN e1710.1371/journal.pmed.0020017 (2005).
9. Lievre, A. et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Ann Oncol 17, 42 (2006).

10. Zhang, F. & Cheong, J. K. The renewed battle against RAS-mutant cancers. Cell Mol Life Sci 73, 1845–1858, doi: 10.1007/s00018-016-
2155-8 (2016).

11. Taveras, A. G. et al. Ras oncoprotein inhibitors: The discovery of potent, ras nucleotide exchange inhibitors and the structural 
determination of a drug-protein complex. Bioorgan Med Chem 5, 125–133, doi: 10.1016/S0968-0896(96)00202-7 (1997).

12. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and 
effector interactions. Nature 503, 548-+ , doi: 10.1038/nature12796 (2013).



www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:37012 | DOI: 10.1038/srep37012

13. Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl 53, 199–204, 
doi: 10.1002/anie.201307387 (2014).

14. Lito, P., Solomon, M., Li, L. S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping 
mechanism. Science 351, 604–608, doi: 10.1126/science.aad6204 (2016).

15. Patricelli, M. P. et al. Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer 
Discov 6, 316–329, doi: 10.1158/2159-8290.CD-15-1105 (2016).

16. Singh, H., Longo, D. L. & Chabner, B. A. Improving Prospects for Targeting RAS. Journal of Clinical Oncology 33, 3650-+ , doi: 
10.1200/Jco.2015.62.1052 (2015).

17. Grant, B. J. et al. Novel Allosteric Sites on Ras for Lead Generation. Plos One 6, doi: ARTN e2571110.1371/journal.pone.0025711 
(2011).

18. Leshchiner, E. S. et al. Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proceedings of the National 
Academy of Sciences of the United States of America 112, 1761–1766, doi: 10.1073/pnas.1413185112 (2015).

19. Lu, S., Jang, H., Gu, S., Zhang, J. & Nussinov, R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. 
Chem Soc Rev 45, 4929–4952, doi: 10.1039/c5cs00911a (2016).

20. Jang, H. et al. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 290, 
9465–9477, doi: 10.1074/jbc.M114.620724 (2015).

21. Jang, H. et al. The higher level of complexity of K-Ras4B activation at the membrane. Faseb J 30, 1643–1655, doi: 10.1096/fj.15-
279091 (2016).

22. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–339, doi: 10.1038/nature13001 
(2014).

23. Marcus, K. & Mattos, C. Direct Attack on RAS: Intramolecular Communication and Mutation-Specific Effects. Clin. Cancer Res. 21, 
1810–1818, doi: 10.1158/1078-0432.ccr-14-2148 (2015).

24. Buhrman, G., Holzapfel, G., Fetics, S. & Mattos, C. Allosteric modulation of Ras positions Q61 for a direct role in catalysis. 
Proceedings of the National Academy of Sciences of the United States of America 107, 4931–4936, doi: 10.1073/pnas.0912226107 
(2010).

25. Abankwa, D., Gorfe, A. A., Inder, K. & Hancock, J. F. Ras membrane orientation and nanodomain localization generate isoform 
diversity. Proc Natl Acad Sci USA 107, 1130–1135, doi: 10.1073/pnas.0903907107 (2010).

26. Kearney, B. N., Johnson, C. W., Roberts, D. M., Swartz, P. & Mattos, C. DRoP: A Water Analysis Program Identifies Ras-GTP-
Specific Pathway of Communication between Membrane-Interacting Regions and the Active Site. J. Mol. Biol. 426, 611–629, doi: 
10.1016/j.jmb.2013.10.036 (2014).

27. Goodey, N. M. & Benkovic, S. J. Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4, 474–482, doi: 
10.1038/nchembio.98 (2008).

28. Kern, D. & Zuiderweg, E. R. The role of dynamics in allosteric regulation. Curr Opin Struct Biol 13, 748–757 (2003).
29. Wand, A. J. On the dynamic origins of allosteric activation. Science 293, 1395, doi: 10.1126/science.293.5534.1395a (2001).
30. Kamberaj, H. & van der Vaart, A. Extracting the Causality of Correlated Motions from Molecular Dynamics Simulations. Biophysical 

Journal 97, 1747–1755, doi: 10.1016/j.bpj.2009.07.019 (2009).
31. Guarnera, E. & Berezovsky, I. N. Structure-Based Statistical Mechanical Model Accounts for the Causality and Energetics of 

Allosteric Communication. PLoS Comput Biol 12, e1004678, doi: 10.1371/journal.pcbi.1004678 (2016).
32. Granger, C. W. J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 37, 424–438, 

doi: 10.2307/1912791 (1969).
33. Grant, B. J., Gorfe, A. A. & McCammon, J. A. Ras conformational switching: simulating nucleotide-dependent conformational 

transitions with accelerated molecular dynamics. PLoS Comput Biol 5, e1000325, doi: 10.1371/journal.pcbi.1000325 (2009).
34. Lukman, S., Grant, B. J., Gorfe, A. A., Grant, G. H. & McCammon, J. A. The Distinct Conformational Dynamics of K-Ras and H-Ras 

A59G. Plos Computational Biology 6, doi: 10.1371/journal.pcbi.1000922 (2010).
35. Kapoor, A. & Travesset, A. Differential dynamics of RAS isoforms in GDP- and GTP-bound states. Proteins 83, 1091–1106, doi: 

10.1002/prot.24805 (2015).
36. Haliloglu, T., Bahar, I. & Erman, B. Gaussian dynamics of folded proteins. Physical Review Letters 79, 3090–3093, doi: 10.1103/

PhysRevLett.79.3090 (1997).
37. Noe, F., Ille, F., Smith, J. C. & Fischer, S. Automated computation of low-energry pathways for complex Rearrangements in proteins: 

Application to the conformational switch of ras p21. Proteins-Structure Function and Bioinformatics 59, 534–544, doi: 10.1002/
prot.20422 (2005).

38. Adamovic, I., Mijailovich, S. M. & Karplus, M. The elastic properties of the structurally characterized myosin II S2 subdomain: a 
molecular dynamics and normal mode analysis. Biophys J 94, 3779–3789, doi: 10.1529/biophysj.107.122028 (2008).

39. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. First edn, (Sinauer Associates, INC., 2001).
40. Rico, F., Rigato, A., Picas, L. & Scheuring, S. Mechanics of proteins with a focus on atomic force microscopy. J Nanobiotechnology 11 

Suppl 1, S3, doi: 10.1186/1477-3155-11-S1-S3 (2013).
41. Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288, 1604–1607 (2000).
42. Spoerner, M. et al. Conformational States of Human Rat Sarcoma (Ras) Protein Complexed with Its Natural Ligand GTP and Their 

Role for Effector Interaction and GTP Hydrolysis. Journal of Biological Chemistry 285, 39768–39778, doi: 10.1074/jbc.M110.145235 
(2010).

43. Shima, F. et al. Structural Basis for Conformational Dynamics of GTP-bound Ras Protein. Journal of Biological Chemistry 285, 
22696–22705, doi: 10.1074/jbc.M110.125161 (2010).

44. Schreiber, T. Measuring information transfer. Physical Review Letters 85, 461–464, doi: 10.1103/PhysRevLett.85.461 (2000).
45. Gorfe, A. A., Grant, B. J. & McCammon, J. A. Mapping the nucleotide and isoform-dependent structural and dynamical features of 

ras proteins. Structure 16, 885–896, doi: 10.1016/j.str.2008.03.009 (2008).
46. Clausen, R., Ma, B. Y., Nussinov, R. & Shehu, A. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, 

Cellular, and Multiscale Evolutionary Algorithm. Plos Computational Biology 11, doi: ARTN e100447010.1371/journal.pcbi.1004470 
(2015).

47. Grant, B. J., Gorfe, A. A. & McCammon, J. A. Ras Conformational Switching: Simulating Nucleotide-Dependent Conformational 
Transitions with Accelerated Molecular Dynamics. Plos Computational Biology 5, doi: ARTN e100032510.1371/journal.
pcbi.1000325 (2009).

48. Muratcioglu, S. et al. GTP-Dependent K-Ras Dimerization. Structure 23, 1325–1335, doi: 10.1016/j.str.2015.04.019 (2015).
49. Spoerner, M., Graf, T., Konig, B. & Kalbitzer, H. R. A novel mechanism for the modulation of the Ras-effector interaction by small 

molecules. Biochem Bioph Res Co 334, 709–713, doi: 10.1016/j.bbrc.2005.06.144 (2005).
50. Rosnizeck, I. C. et al. Stabilizing a Weak Binding State for Effectors in the Human Ras Protein by Cyclen Complexes. Angew Chem 

Int Edit 49, 3830–3833, doi: 10.1002/anie.200907002 (2010).
51. Abankwa, D. et al. A novel switch region regulates H-ras membrane orientation and signal output. Embo Journal 27, 727–735, doi: 

10.1038/emboj.2008.10 (2008).
52. Ito, Y. et al. Regional polysterism in the GTP-bound form of the human c-Ha-Ras protein. Biochemistry 36, 9109–9119, doi: 10.1021/

bi970296u (1997).



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:37012 | DOI: 10.1038/srep37012

53. Raimondi, F., Portella, G., Orozco, M. & Fanelli, F. Nucleotide Binding Switches the Information Flow in Ras GTPases. Plos 
Computational Biology 7, doi: ARTN e100109810.1371/journal.pcbi.1001098 (2011).

54. Diaz, J. F., Wroblowski, B. & Engelborghs, Y. Molecular-dynamics simulation of the solution structures of ha-ras-p21 gdp and gtp 
complexes - flexibility, possible hinges, and levers of the conformational transition. Biochemistry 34, 12038–12047, doi: 10.1021/
bi00037a047 (1995).

55. Prakash, P., Sayyed-Ahmad, A. & Gorfe, A. A. The Role of Conserved Waters in Conformational Transitions of Q61H K-ras. PLoS 
Computational Biology 8, e1002394, doi: 10.1371/journal.pcbi.1002394 (2012).

56. Prakash, P., Hancock, J. F. & Gorfe, A. A. Binding hotspots on K-Ras: consensus ligand binding sites and other reactive regions from 
probe-based molecular dynamics analysis. Proteins 83, 898–909, doi: 10.1002/prot.24786 (2015).

57. Zhang, L., Bouguet-Bonnet, S. & Buck, M. Combining NMR and Molecular Dynamics Studies for Insights into the Allostery of 
Small GTPase–Protein Interactions. Methods in molecular biology (Clifton, N.J.) 796, 235–259, doi: 10.1007/978-1-61779-334-9_13 
(2012).

58. Buhrman, G. et al. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase. Journal of molecular biology 413, 773–789, doi: 
10.1016/j.jmb.2011.09.011 (2011).

59. Prakash, P. & Gorfe, A. A. Lessons from computer simulations of Ras proteins in solution and in membrane. Biochimica et biophysica 
acta 1830, doi: 10.1016/j.bbagen.2013.1007.1024, 10.1016/j.bbagen.2013.07.024 (2013).

60. Grant, B. J. et al. Novel Allosteric Sites on Ras for Lead Generation. PLoS ONE 6, e25711, doi: 10.1371/journal.pone.0025711 (2011).
61. Edreira, M. M. et al. Phosphorylation-induced Conformational Changes in Rap1b: Allosteric effects on switch domains and effector 

loop. The Journal of Biological Chemistry 284, 27480–27486, doi: 10.1074/jbc.M109.011312 (2009).
62. Banerjee, A., Jang, H., Nussinov, R. & Gaponenko, V. The disordered hypervariable region and the folded catalytic domain of 

oncogenic K-Ras4B partner in phospholipid binding. Curr Opin Struct Biol 36, 10–17, doi: 10.1016/j.sbi.2015.11.010 (2016).
63. Grant, B. J., McCammon, J. A. & Gorfe, A. A. Conformational Selection in G-Proteins Lessons from Ras and Rho. Biophysical 

Journal 99, L87–L89, doi: 10.1016/j.bpj.2010.10.020 (2010).
64. Discovery Studio Modeling Environment v. Release 4.5 (San Diego: Dassault Systèmes, 2015).
65. Phillips, J. C. et al. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26, 1781–1802, doi: 10.1002/

jcc.20289 (2005).
66. Hornak, V. et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins-

Structure Function and Bioinformatics 65, 712–725, doi: 10.1002/prot.21123 (2006).
67. Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. Journal 

of Computational Chemistry 25, 1157–1174, doi: 10.1002/jcc.20035 (2004).
68. Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J Mol Graph Model 14, 33–38, doi: 10.1016/0263-

7855(96)00018-5 (1996).
69. Erman, B. Effects of ligand binding upon flexibility of proteins. Proteins 83, 805–808, doi: 10.1002/prot.24785 (2015).

Acknowledgements
SV acknowledges 2214-International Doctoral Research Fellowship funding from The Scientific and 
Technological Research Council of Turkey (TUBITAK). ZHG was supported by LUNGevity Foundation and 
start-up funds from Icahn School of Medicine at Mount Sinai.

Author Contributions
S.V. conducted the molecular dynamics simulations and data analyses, prepared the figures and evaluated results. 
Z.H.G. and B.E. contributed to study design and evaluation of the results. Z.H.G. and B.E. contributed oversight 
to the study. All authors have contributed to manuscript drafting and agree to the submitted manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Vatansever, S. et al. Intrinsic K-Ras dynamics: A novel molecular dynamics data 
analysis method shows causality between residue pair motions. Sci. Rep. 6, 37012; doi: 10.1038/srep37012 
(2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Intrinsic K-Ras dynamics: A novel molecular dynamics data analysis method shows causality between residue pair motions
	Results and Discussion
	Comparison of stiffness changes in active and inactive K-Ras. 
	GTP binding increases K-Ras stiffness. 
	Nucleotide binding affects spring constant of α2 (SII). 
	Overall spring constant is higher in active complex. 
	Secondary structure motions show the strongest coordination with the rest of the protein. 
	The mean spring constant values of residues in β2, β3, α3 and switch regions –especially SI- are higher in active K-Ras tha ...

	Comparison of residue pair correlations for active and inactive K-Ras. 
	The correlation of α1-SI with L10-α5 in active K-Ras motions is due to three specific H-bonds. 
	Since H-bond of D30-GTP is effective throughout the full trajectory, the D30-GTP distance is invariant and the fluctuation  ...
	A continuously acting H-bond stabilizes β2-β3 distance and promotes longer decay times for β2-β3 correlations during K-Ras- ...

	Causality of Correlated Motions. 
	SII motions drive SI in active K-Ras. 
	α3 and Loop 7 (L7) motions drive switch region (SI & SII) motions in active K-Ras. 
	β2 and β3 both drive and follow residue motions in active K-Ras. 


	Conclusions
	Methods
	MD Simulations. 
	Stiffness. 
	Stability. 
	Distance distributions between residue pairs. 
	Time independent correlations (cross-correlation coefficient map). 
	Time delayed correlations, mobility and causality. 

	Acknowledgements
	Author Contributions
	Figure 1.  Three-dimensional structure of wild-type K-Ras protein in GTP-bound state (PDB: 4OBE).
	Figure 2.  Stiffness results for GTP- and GDP-bound K-Ras and their difference.
	Figure 3.  Cross-correlation coefficient maps for GTP and GDP bound states.
	Figure 4.  D30-GTP distance is more stable than that of D30-GDP.
	Figure 5.  Correlation of β2 and β3 fluctuations is persistent in active K-Ras.
	Figure 6.  Causality relations in active K-Ras motions.
	Figure 7.  SII fluctuations drive SI fluctuations α3-L7 motions drive switch region (SI & SII) motions in K-Ras-GTP.



 
    
       
          application/pdf
          
             
                Intrinsic K-Ras dynamics: A novel molecular dynamics data analysis method shows causality between residue pair motions
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37012
            
         
          
             
                Sezen Vatansever
                Zeynep H. Gümüş
                Burak Erman
            
         
          doi:10.1038/srep37012
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep37012
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep37012
            
         
      
       
          
          
          
             
                doi:10.1038/srep37012
            
         
          
             
                srep ,  (2016). doi:10.1038/srep37012
            
         
          
          
      
       
       
          True
      
   




