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Preterm infants show abnormal structural and functional brain
development, and have a high risk of long-term neurocognitive
problems. The molecular and cellular mechanisms involved are poorly
understood, but novel methods nowmake it possible to address them
by examining the relationship between common genetic variabil-
ity and brain endophenotype. We addressed the hypothesis that
variability in the Peroxisome Proliferator Activated Receptor
(PPAR) pathway would be related to brain development. We em-
ployed machine learning in an unsupervised, unbiased, combined
analysis of whole-brain diffusion tractography together with
genomewide, single-nucleotide polymorphism (SNP)-based geno-
types from a cohort of 272 preterm infants, using Sparse Reduced
Rank Regression (sRRR) and correcting for ethnicity and age at
birth and imaging. Empirical selection frequencies for SNPs as-
sociated with cerebral connectivity ranged from 0.663 to zero,
with multiple highly selected SNPs mapping to genes for PPARG
(six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG
were significantly overrepresented (ranked 7–11 and 67 of 556,000
SNPs; P < 2.2 × 10−7), and were mostly in introns or regulatory re-
gions with predicted effects including protein coding and nonsense-
mediated decay. Edge-centric graph-theoretic analysis showed that
highly selected white-matter tracts were consistent across the group
and important for information transfer (P < 2.2 × 10−17); they most
often connected to the insula (P < 6 × 10−17). These results suggest
that the inhibited brain development seen in humans exposed to the
stress of a premature extrauterine environment is modulated by ge-
netic factors, and that PPARG signaling has a previously unrecognized
role in cerebral development.

brain development | preterm | magnetic resonance imaging |
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Preterm birth accounts for 11% of all births (1), and is the
leading global cause of death and disability under 5 y of age

(2). Over 30% of survivors experience neurocognitive problems
from early life (3) lasting into adulthood (4), including anxiety,
inattention, and social and communication problems (5), and
socioemotional problems (6). Psychiatric disorders are present in
around 25% of preterm adolescents, constituting a 3–4-fold in-
creased risk compared with term-born peers (review in ref. 7),
including a risk ratio of 7.4 for bipolar affective disorder and
2.5 for nonaffective psychosis (8), and a threefold increase in the
prevalence of autism-spectrum disorders (ASD) (9).
Imaging studies have shown that adverse functional outcomes

are associated with changes in brain structure, connectivity, and
function (10, 11), but while this phenotype has been extensively
investigated in recent years, few studies have addressed the
cellular or molecular mechanisms involved. Recent advances in
machine learning and imaging genomics now make it possible to
investigate potential mechanisms by studying the genetic vari-
ability associated with the cerebral endophenotypes.

Previously, our preliminary candidate gene and genomewide
pathway-based studies have suggested an association between
white-matter development and a number of metabolic pathways,
with the strongest link to the Peroxisome Proliferator Activated
Receptor (PPAR) pathway (12, 13), raising the hypothesis that
the PPAR pathway modulates brain development in preterm
infants. To test this, and to explore genetic influences on preterm
brain development further, we collected a large cohort of linked
diffusion MRI (d-MRI) and genomic data, and undertook an
unsupervised, unbiased machine-learning analysis of whole-brain
diffusion tractography together with genomewide, single-nucleotide
polymorphism (SNP)-based genotypes.

Results
Participants. A cohort of 272 infants born at less than 33 wk ges-
tational age (GA) (mean 29 wk + 4 d) had suitable imaging at term-
equivalent age [mean age at scan (SA) 42 wk + 4 d] and allied
genomic DNA available (SI Appendix, Supplementary Methods).

Population Stratification. Relatedness between individuals in the
cohort was assessed by calculating pairwise identity by state
(IBS) values and using this distance matrix to perform principal
component analysis. This revealed a degree of stratification
along the first two components, corresponding to parental self-
reported ethnicity (SI Appendix, Fig. S1). The first principal
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component of the IBS matrix was used as a covariate for ad-
justment of the phenotype.

Sparse Reduced Rank Regression Selects a Consistent Cerebral
Endophenotype. White-matter tracts, defined as the edges in the
tractography connectivity matrix, were ranked according to their
selection probabilities in the Sparse Reduced Rank Regression
(sRRR) model. Selection frequencies ranged from 0.817 to zero;
Fig. 1 shows the 100 most frequently selected edges. Two sepa-
rate approaches were employed to eliminate individual relation-
ships between imaging and genetic data and achieve a set of null
results: (i) permutation of individuals within the imaging dataset; and
(ii) replacing the original phenotype matrix with a matrix of ran-
domly generated values with standard normal distribution and the
same dimensions. Fig. 1 shows the empirical distribution together
with these two null sets. The random replacement, but not the
permutation of individuals, produced a null distribution with
uniformly low selection frequency, which demonstrates a level of
similarity between individuals and a consistent endophenotype.

Consistently Selected White-Matter Tracts Have a Significant Role in
Information Flow. To understand the cerebral endophenotype
further, the 10 tractography connections selected most often in
the sRRR model were visualized according to University of
North Carolina Automated Anatomical Labeling atlas coordi-
nates using BrainNet Viewer software (14), and the group me-
dian connectivity matrix was examined from an edge-centric

perspective, applying graph theoretical measures to detect link
communities (15). These tracts were distributed within middle-
frontal, middle-temporal, and parahippocampal/entorhinal link
communities (15), and integrated fractional anisotropy ranged
from 0.06 to 0.2 (Fig. 1, Inset and SI Appendix, Figs. S3 and S4).
Their impact on information flow in the network was then
studied using an “edge lesioning” strategy (15), in which the
effect on global communicability of removing them was com-
pared with the effect of removing other sets of 10 edges at
random. Global communicability captures information flow in
the network and accounts for both shortest paths and all other
paths connecting two nodes (16). Removal of the top 10 tracts
decreased global communicability from an unlesioned baseline
of 1–0.858, significantly more than in 1,000 random lesions (SI
Appendix, Fig. S5, P < 2.2 × 10−17, Wilcoxon rank sum test),
supporting the importance of highly selected white-matter tracts
in the cerebral network architecture. The cortical regions linked
by the 100 most highly selected tracts were extracted and coun-
ted (Fig. 2), with the insular cortex occurring significantly more
frequently than predicted (P < 6 × 10−17, Fisher’s Exact Test).

Genetic Variation Is Associated with the Preterm Cerebral Endophenotype.
Genetic associations with image features were identified using
the sRRR method as previously reported (17, 18). Genomewide
SNPs were ranked according to their selection probabilities in
the sRRR model, and the empirical and null distributions were
inspected. This revealed empirical selection frequencies between
0.663 and zero, with a steeper rate of decrease after the top
100 ranked SNPs, and uniformly low null distribution (Fig. 3).
The top 100 SNPs were thus examined in more detail as a
stringent subset of genetic variables most highly and stably as-
sociated with the tractography features (SI Appendix, Table S4).
These top 100 SNPs mapped to 47 genes (SI Appendix, Table
S1), mostly in linkage equilibrium with each other apart from
three separate hotspots of linkage disequilibrium centered on
the genes PPARG (six SNPs), Integrin Subunit Alpha 6 (ITGA6)
(four SNPs), and Fragile X Mental Retardation, Autosomal
Homolog 1 (FXR1) (two SNPs).

SNPs in the PPARG Gene Are Most Highly Associated with Variability
in Imaging Features. SNPs in PPARG were significantly over-
represented among the top 100 SNPs (P < 2.2 × 10−7, Fisher’s
Exact Test), ranked by the sRRR model according to strength of
association in positions 7–11 (rs17036282, rs6801982, rs4135334,
rs4135336, rs4135342) and position 67 (rs6442313) of 556,000,
with uniform selection frequencies of 0.663. The PPARG SNPs
were mostly in intronic or regulatory regions (promoter flanking
regions and open chromatin regions) (SI Appendix, Fig. S6), with
predicted effects on processes including protein coding, retained
introns, and nonsense-mediated decay (SI Appendix, Table S2).

Highly Associated Genes Are Involved in Biological Processes
Including Lipid Metabolism. To explore the 47 top-ranked genes
the Gene Ontology (GO) framework was surveyed using the
Cytoscape tool ClueGO (19) to create a functionally organized
GO term network (SI Appendix, Fig. S7). This revealed several
significantly overrepresented themes of interest (hypergeometric
test, adjusted P < 0.05 with Benjamini–Hochberg correction)
including lipid metabolism (PPARG), neuron projection re-
generation (ADM, PRRX1), response to nerve growth factor
stimulation (BPTF, EP300), acetylcholine biosynthesis (CHAT),
and presynaptic membrane assembly (PTPRD) (full annotation
in SI Appendix, Table S3).
Given the significant overrepresentation of PPARG SNPs

among the most highly ranked SNPs and our previous finding of
association between lipid metabolism genes and white-matter
integrity in preterms (12, 13), the top 100 SNPs were tested for
significant overlap with a list of SNPs mapping to genes classified
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Fig. 1. Selection frequencies of imaging variables with sRRR. Solid green
line: Empirical selection frequencies of imaging variables (edges from the
probabilistic tractography connectivity matrix) as ranked by the sRRR model
with 1,000 subsamples of size 2/3 total number of subjects and convergence
criterion = 1 × 10−6. Empty gray circles: A permuted distribution was com-
puted with the same parameters by permuting the order of individual im-
aging datasets between each subsample of the data. Solid gray circles: A null
distribution was computed using a randomly generated matrix of standard
normally distributed values with the same dimensions as the empirical data,
using 20,000 subsamples of 2/3 of samples. Inset (larger in SI Appendix):
Surface anatomical location of the 10 edges most highly ranked by the sRRR
method, using cortical atlas coordinates from the UNC AAL neonatal atlas
(71), rendered with the BrainNet viewer (14). Surface views, cortical regions
shown as gray circles and brain surface semitransparent. First row from left to
right: lateral view of left hemisphere, view from above, lateral view of right
hemisphere. Second row from left to right: medial view of left hemisphere, in-
ferior aspect, medial view of right hemisphere. Third row: anterior aspect and
posterior aspect. Top 10 ranked tracts (directionality not implied), subscripts “_L”
and “_R” indicate laterality: (RegionA * RegionB): Insula_R*Temporal_Inferior_R;
Insula_R*Occipital_Middle_R; Insula_L*Occipital_Middle_L; Frontal_Superior_
R*Temporal_Superior_R; Frontal_Middle_R*Insula_R; Occipital_Superior_
R*Temporal_Inferior_R; Hippocampus_R*Occipital_Middle_R; Rolandic_Operculum_
R*Insula_R; Frontal_Superior_R*Insula_R; Frontal_Middle_L*Insula_L.
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with the GO term “lipid metabolism” (GO: 0006629), using the
R package SuperExactTest (20). Four genes (PPARG, ADM,
CHAT, and PNPL6) involved in lipid metabolism according to
the GO classification were present among the top 100 SNPs
ranked by sRRR, more than would be expected by chance (P <
0.005) (Fig. 4). As a null frame of reference, this result was
compared with the overlap between the bottom-ranked 100
SNPs and the GO lipid list, which was not significant.

Highly Associated Genes Are Associated with Neuropsychiatric Diseases.
Given the uniform selection frequency of the top 100 ranked
SNPs, we examined evidence in literature for all their mapped
genes. A machine-learning-based text-mining strategy was employed,
using the Agilent Literature Search tool in Cytoscape (21) to query
text-based search engines and extract associations among the genes,
visualizing them as a network with the sentences for each association
forming the network edges (SI Appendix, Fig. S8). Mentions of at
least 2 of the 47 genes of interest were found in 405 Pubmed-
indexed abstracts, which were queried for the occurrence of dis-
ease terms using the tool pubmed.mineR (22). The most fre-
quently occurring disease terms related to cancer, reflecting a
known ascertainment bias in the literature (23). Once cancer-
related terms were removed, the most frequently occurring disease
terms were “autism spectrum disorder,” “intellectual disability,” and
“schizophrenia” (SI Appendix, Fig. S9), neuropsychiatric conditions
more common in the preterm population.

Discussion
The molecular and cellular events leading to abnormal brain
development in preterm infants are poorly understood, but
hypoxia, ischemia, and inflammation are all believed to play a
role (11) and the host response to these external insults is mod-
ulated by the combined effects of multiple genes (24, 25). The
present results are consistent with the hypothesis that changes in
white-matter structure that predict adverse outcome are modu-
lated by genetic variability in the PPAR signaling pathway.
The genetic imaging approach relies on heritability and an

appropriate endophenotype. Common DNA sequence variation
is estimated to account for up to 50% of additive genetic vari-
ation in complex traits, including neuroanatomical features (26)
and neurocognitive disorders including ASD (27) and schizo-
phrenia (28). Imaging cerebral endophenotypes generally have
high heritability and relevance (29, 30): in the neonatal period
60% of the variability between individuals in d-MRI features can
be attributed to genetic factors (31, 32), and d-MRI measures of
white-matter structure predict neurodevelopmental outcome
(33–35). Analysis of the cerebral connections selected by the
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Fig. 2. Cortical regions in top 100 tracts by ranked sRRR. Frequency of participation of cortical regions among the top 100 ranked tracts, normalized by total
frequency in the network. Insula occurrence is significantly higher than expected (P < 6 × 10−17, Fisher’s Exact Test). Regions (x axis, left to right): Insula;
Temporal Middle; Occipital Middle; Rolandic Operculum; Temporal Superior; Temporal Pole Middle; Precentral; Temporal Inferior; Postcentral; Supra-
marginal; Frontal Middle; Superior Motor Area; Temporal Pole Superior; Occipital Inferior; Occipital Superior; Frontal Inferior Trigone; Frontal Superior;
Lingual; Parietal Inferior; Hippocampus; Precuneus; Amygdala; Angular; Cuneus; Cingulum Posterior; Frontal Superior Medial; ParaHippocampal; Fusiform;
Paracentral Lobule; Frontal Inferior Operculum; Cingulum Anterior; Frontal Superior Orbital; Olfactory; Parietal Superior; Frontal Middle Orbital.

Fig. 3. Selection frequencies of top 1,000 SNPs ranked by sRRR. Selection
frequencies of top 1,000 SNPs ranked by the sRRR method over 1,000 sub-
samples of 2/3 of the individuals and convergence criterion = 1 × 10−6.
Empirical results (solid line) show that there is a plateau of the highest se-
lection frequencies (maximum 0.663), which is stable for a subset of 100
SNPs. The first 10 of 100 equally highly ranked SNPs mapped to six genes (in
alphabetical order): AGAP1, POGZ, PPARG, TSEN2, UBE2E1 (full list of
mapped genes in SI Appendix, Table S1 and a full list of SNPs in SI Appendix,
Table S4). The null distribution obtained through permutation of the indi-
viduals with 20,000 subsamples is very low and uniform (dotted line).

13746 | www.pnas.org/cgi/doi/10.1073/pnas.1704907114 Krishnan et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704907114/-/DCSupplemental/pnas.1704907114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704907114/-/DCSupplemental/pnas.1704907114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704907114/-/DCSupplemental/pnas.1704907114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704907114/-/DCSupplemental/pnas.1704907114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704907114/-/DCSupplemental/pnas.1704907114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1704907114


algorithm showed that they were stable within the group, and
virtual lesioning showed that they are important for information
transfer in the network. They thus represent structures that are
highly relevant to long-term neurological function.
Machine learning using penalized regression provided an un-

supervised, unbiased method to address the hypothesis. sRRR is
specifically designed to deal with cohorts where the number of
individuals is smaller than the number of features, and outper-
forms mass-univariate linear models when considering genetic
effect sizes comparable to those expected here (17). The ap-
proach involves fitting a predictive model for the phenotype
using all SNPs, while also ranking all SNPs based on their pre-
dictive value, and is of benefit in imaging genomics studies where
there are many more features than individuals and the number of
possible hypotheses is vast (17, 36). The strategy is not impacted
by multiple testing concerns since sRRR is based on selecting the
variables that contribute most to the relationship between pre-
dictors and responses within a multivariate model, rather than
performing repeated univariate tests.
In addition to testing the primary hypothesis, the study pro-

duced further observations. First, other genes were found to be
linked to the endophenotype: Integrin Subunit Alpha 6 (ITGA6)
(four SNPs) which is involved in insulin-like growth factor 1 sig-
naling, and Fragile X Mental Retardation, Autosomal Homolog
1 (FXR1) (two SNPs), while genes involved in lipid metabolism,
various neural processes, and neuropsychiatric disease appear to
be overrepresented among highly selected SNPs. Further work is
needed to understand the significance of these observations.
Second, insular cortex was more frequently involved in the top
100 ranked tracts than expected by chance. This is consistent
with previous observations. This region is highly connected, re-
ceiving direct input from the somatosensory cortex and projecting
outputs to both cortical and subcortical regions (37) and is part of

the rich club in adults (38) and preterm infants (39). In individuals
born preterm the volume, surface area, and folding of the insular
cortex is reduced in infancy and early adulthood (40–42) accom-
panied by alterations in functional activation patterns (43, 44),
visual function (45), and cognition (46, 47). Insular abnormalities
have been implicated in ASD (48, 49) and attention-deficit hy-
peractivity disorder (50, 51) that are more prevalent in the pre-
term population, and the insula has recently been shown in
preterms to be the source of spontaneous neuronal bursts (delta
brushes) that are instructive in neuronal circuit development (52).
Tractography methods aim to provide an insight into in vivo

macrostructural brain connectivity via the diffusion features of brain
tissue (53–55). Deterministic tractography algorithms propagate
streamlines from a seed region along the main estimated fiber
orientation, voxel-by-voxel, with one fiber orientation measurement
taken in each voxel. This strategy has been successfully employed in
the study of a wide range of neurological and psychiatric diseases,
but is typically challenged by areas of high uncertainty such as in
approaching the gray matter where the anisotropy is typically lower;
at areas of crossing fibers where there are fiber populations trav-
eling in different directions; in tracts such as cortico-striatal pro-
jections where functionally related anatomical subdivisions of the
striatum project to different cortical areas (information funneling);
and in the developing brain where there is generally less myelina-
tion and lower anisotropy in the white matter (56), resulting in
penalization of long-range connections. In our analysis we therefore
used advanced probabilistic approaches that provide an integrated
probabilistic analysis of whole tracts by estimating the orientation
dispersion function at all points in the tract simultaneously (57, 58).
This requires significant computing power but provides a much
more robust approach, particularly for interhemispheric fibers and
in the context of the higher water content and lower myelination of
the developing brain (manifesting as much lower fractional an-
isotropy values in white matter compared with adults), since it al-
lows tracking to overcome areas of high uncertainty (59), and we
have previously applied this successfully to the preterm brain (34).
Further work is required to characterize the exact relationship

between PPARG and preterm brain development, notably to de-
termine whether the effect is brain specific or systemic. PPARs are
ligand-dependent nuclear hormone receptor transcription factors
that are highly involved in cell growth, differentiation, inflammation,
lipid and glucose metabolism, and homeostasis (review in ref. 60).
The PPARG gene is expressed in many tissues including the brain
(61), within human white matter, and across brain cell types (SI
Appendix, Fig. S10). PPARG gene expression is up-regulated in
neurons in response to excitotoxicity and ischemia (62, 63), and
modulates the microglial response to injury (64, 65). PPARG ago-
nists improve neuronal and glial survival in a variety of animal
models involving ischemia and inflammation (62, 66–69) and it has
been suggested that they provide clinical improvement in children
with autism (70). The availability of safe drugs modulating PPARG
means that this finding has immediate clinical implications for re-
search into neuroprotective strategies for preterm infants.

Methods
Diffusion MR Imaging. All MRI studies were supervised by an experienced
pediatrician or pediatric nurse. Pulse oximetry, temperature, and heart rate
were monitored throughout the period of image acquisition; ear protection
in the form of silicone-based putty was placed in the external ear (President
Putty, Coltene; Whaledent) and Minimuffs (Natus Medical Inc.) were used for
each infant.

MRI was performed on a Philips 3-Tesla system (Philips Medical Systems)
using an eight-channel phased-array head coil, with acquisition of T2-
weighted and 32 direction d-MRI images. All MR images were assessed for
the presence of image artifacts and severe motion. Acquisition parameters
are in SI Appendix, Supplementary Methods. The T2-weighted MRI ana-
tomical scans were reviewed to exclude subjects with extensive brain ab-
normalities, major focal destructive parenchymal lesions, multiple punctate
white-matter lesions, or white-matter cysts. All MR images were assessed for
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plot illustrating all possible intersections between these three groups and
the corresponding statistics. The three tracks in the middle represent the
three SNP lists, with individual colored blocks showing “presence” (dark) or
“absence” (light) of the SNP groups in each intersection test. The height of
the bars in the outer layer is proportional to the log of intersection sizes,
indicated by the numbers on the top of the bars. The color intensity of the
bars represents the P-value significance of the intersections (background =
19,000 protein-coding human genes). The number of SNPs contributing to
each intersection is listed above the segment. There is a significant represen-
tation of the top 100 SNPs ranked by sRRR (group 1) among the SNPs in the GO
lipid metabolism category (group 3) (P < 0.05). The SNPs present in both
groups 1 and 3 map to four genes as shown (PPARG, ADM, CHAT, PNPLA6).
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the presence of image artifacts (inferior-temporal signal dropout, aliasing,
field inhomogeneity, etc.) and severe motion. All exclusion criteria were
designed so as not to bias the study but preserve the full spectrum of clinical
heterogeneity typical of a preterm born population.

Diffusion Tractography. Tractography was performed on diffusion MR data
using a modified version of probabilistic tractography that gives an idea of
the diffusive transfer between voxels (57). Regions of interest for seeding
tractography of cortico–cortical connections were obtained by segmentation
of the brain based on a 90-node anatomical neonatal atlas (71), and the
resulting segmentations were registered to the diffusion space using a
custom neonatal pipeline (72). A weighted adjacency matrix of brain regions
was produced for each infant, from which self-connections along the di-
agonal were removed and upon which symmetry was enforced, with re-
moval of the redundant lower triangle.

Tractography data were linearly adjusted for main covariates (GA, SA,
ancestry) and used to reconstruct weighted connectivity matrices for each
individual. Each individual matrix was converted into a single vector of nu-
merical values corresponding to edge weights, and appended to form the
rows of a single group matrix of n individuals by q edges, where n = 272 and
q = 4,005. This vectorized group connectivity matrix was then adjusted for
the main covariates of GA, SA, and ancestry, and used as the phenotype in
the model. Additionally, a group connectivity matrix was obtained from the
median of all individual subject connectivity matrices (SI Appendix, Fig. S11)
and used for selected downstream analyses. Another matrix of the same
dimensions n × q made up of randomly generated, normally distributed
values with mean zero and SD 1 was used as the null phenotype.

Genomewide Genotyping. Genetic predictors consisted of the genomewide ge-
notype matrix recoded in terms of minor allele counts, including SNPs with minor
allele frequency (MAF) ≥5% and 100% genotyping rate. Saliva samples were
collected using Oragene DNA OG-250 kits (DNAGenotek Inc.), and genotyped on
Illumina HumanOmniExpress-24 v1.1 chip (Illumina). Filtering was carried out us-
ing PLINK (73). SNPs withMAF ≥5%, 100%genotyping rate, and Hardy–Weinberg
equilibrium exact test P ≥ 1 × 10−6 were retained, resulting in 556,227 SNPs for
further analysis. This genotype matrix was converted into minor allele counts.

Assessment of Population Stratification. Whole genome SNP data were used
for IBS, based on pairwise Euclidean distance as implemented in PLINK 1.9
(73), to assess relatedness between individuals. Dimension reduction in the
IBS distance matrix was carried out by principal component analysis (74), and
the first principal component was used as a covariate in downstream anal-
yses to adjust for population stratification. Information on self-reported
ethnicity (as defined in ISB Standard DSCN 11/2008) was collected by ask-
ing mothers (and fathers when present) to define themselves according to a
list of options. The terms were drawn from Ethnic Category National Codes
as in Department of Health Guidance at the time. Parental self-reported
ethnicity was summarized into broader categories for the purposes of
data visualization by aggregating all White subcategories into a single
group “White,” all Black subcategories into “Black,” and all Asian subcate-
gories into “Asian.” In cases where either one parent self-reported as Mixed
or if there was a discrepancy between maternal and paternal ethnicities, the
term “Mixed” was applied. Where parents were both from an Association of
Southeast Asian Nations member state (two cases), the individual was clas-
sified by the authors as “SE Asian.” These aggregated ethnic categories were
used to label the datapoints of PCA plots of the first two principal compo-
nents of the IBS variance-standardized relationship matrix (SI Appendix, Fig.
S1). This illustrates the correspondence between the first two components of
genetic ancestry and ethnicity, and provides an overview of the cohort
population mixture as well as providing a means for phenotype adjustment.

sRRR.Genetic associations with image features were identified using the sRRR
model, which has been previously presented in detail (17, 18). sRRR is a
method for multivariate modeling of high-dimensional imaging responses

(measurements taken over regions of interest or individual voxels) and genetic
covariates (e.g., SNPs) that enforces sparsity in the regression coefficients.
Given the assumption that only a subset of genetic markers will be found in
statistically meaningful association with a subset of image features (i.e., there
is a sparse pattern), the model must be able to select those variables. This is
achieved by driving some coefficients in the model to zero by penalizing the l1
norm of the coefficients for genetic markers and image features (SI Appendix,
Fig. S2). Such sparsity constraints ensure that the model performs simultaneous
genotype and phenotype selection (17). The motivation behind this approach
is to improve the power to detect causal genetic variants associated with high-
dimensional imaging responses (18).

In the current work, genomewide SNPs were tested for association with
white-matter tracts reconstructed by probabilistic tractography. We define
an n × q matrix of phenotypes Y (where the q elements are the 4,005 vec-
torized edges from the tractography connectivity matrix), and an n × p
matrix X of minor allele counts for p SNPs (where P = 556,227 SNPs). Se-
lection frequencies for SNPs were ranked by the sRRR method over
1,000 subsamples of 2/3 of the individuals and convergence criterion = 1 ×
10−6. Model parameters in SI Appendix, Supplementary Methods.

Computational Literature Search.When a query is entered (e.g., a list of genes),
it is submitted to the user-selected search engine, and the retrieved results
(documents) are fetched from their respective sources. Each document is then
parsed into sentences and analyzed for protein–protein associations. Agilent
Literature Search (21) uses a set of “context” files (lexicons) for defining pro-
tein names (and aliases) and association terms (verbs) of interest.

Graph Theory Assessment of Top 10 Imaging Variables (Edges) Ranked by sRRR.
The 10 tractography edges ranked most highly by sRRR were assessed from an
“edge-centric” perspective as previously described for the adult brain (15). In the
current approach, the importance of selected edges for information flow in the
brain is investigated by removing the edges of interest and assessing the impact
of their loss on the “communicability” of the network, compared with removing
the same number of other randomly selected edges over many iterations. The
communicability measure was introduced (16) as a broad generalization of
the concept of shortest path between two nodes in a network, incorporating the
concept that information flow in a system can also follow routes other than
the shortest path (75). Details in SI Appendix, Supplementary Methods.

Data Availability. sRRR model code and data are available from the authors
upon request, subject to approval of future uses by the National Research
Ethics Service. Publicly available data: U.K.BEC (www.braineac.org/); RNA-seq
data (76) web.stanford.edu/group/barres_lab/brain_rnaseq.html; GIANT (data-
base giant.princeton.edu/); Brainspan (www.brainspan.org/).

The study was approved by the National Research Ethics Service, and
written informed consent was given by all participating families.
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