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Small-animal models have been developed for several Filoviridae
species; however, serial adaptation was required to produce lethal
infection. These adapted viruses have sequence changes in several
genes, including those that modulate the host immune response.
Nonhuman primate models do not require adaptation of filovi-
ruses. Here, we describe lethal models of disease for Bundibugyo,
Sudan, and Zaire species of Ebolavirus in the domestic ferret,
using wild-type nonadapted viruses. Pathologic features were con-
sistent with disease in primates. Of particular importance, this is
the only known small-animal model developed for Bundibugyo
and the only uniformly lethal animal model for Bundibugyo.
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Until recently, 3 members of the genus Ebolavirus—Zaire ebo-
lavirus (ZEBOV), Sudan ebolavirus (SEBOV), and Bundibugyo
ebolavirus (BEBOV)—have been responsible for small, sporadic
outbreaks of Ebola hemorrhagic fever (EHF) in humans
throughout Central Africa. From December 2013 through Jan-
uary 2016, the devastating emergence of ZEBOV in Western
Africa resulted in overwhelming societal tolls in the region.
The already weakened public health infrastructure of the region,
coupled with a dearth of available, approved diagnostic assays,
vaccines, or therapeutic agents, likely contributed to the severity
of this epidemic. During the course of the epidemic, a number
of medical countermeasures were introduced, but screening and
validation of these interventions in animal models were limited
by the use of host-adapted small-animal models or the availabil-
ity of nonhuman primate (NHP) resources [1].

NHPs have historically served as the gold standard for mod-
eling filovirus pathogenesis because they recapitulate many fea-
tures of human disease, including fever, vascular leakage, and
coagulopathy, without the need for virus adaptation. Several
immunocompetent small-animal models have been developed
for ZEBOV, including mice, hamsters, and guinea pigs. Howev-
er, all of these small-animal models require host adaptation of
the challenge virus [1]. Some severely immunodeficient models
have been described, allowing the use of wild-type virus, but
there are substantial limitations in the usefulness of these mod-
els in the development of countermeasures for circumstances
in which dependency on an intact immune response is central
[1, 2]. A further limitation is that only the NHP models account
for the different species of Ebolavirus beyond ZEBOV, with the
recent exception of guinea pig models of SEBOV [3, 4].

The domestic ferret (Mustela putorius furo) is an animal
model for a variety of viral diseases, including rabies, influenza,
severe acute respiratory syndrome, and for several medically
important paramyxoviruses [5]. None of these ferret models
require adaptation of the challenge virus to produce a lethal
infection. Recent availability of an annotated genome for the
ferret has suggested that the susceptibility it shares with humans
to these infections is potentially attributable to substantial
homologies to many disease-relevant human proteins, includ-
ing viral entry receptors [6]. Collectively, these data provided
the rationale to assess the utility of the ferret as a model for
Ebolavirus disease. Here, we performed a narrowly focused
study to determine whether ferrets have the potential to serve
as a small-animal model for 3 species of Ebolavirus.

MATERIALS AND METHODS

Animal Challenge, Disease Monitoring, and Biological Sampling
Fifteen female ferrets weighing 0.75–1 kg were housed 2–3 per
cage per study. Ferrets were anesthetized by intramuscular in-
jection with a ketamine-acepromazine-xylazine cocktail prior
to all procedures. Prior to challenge, transponder chips (Bio-
Medic Data Systems) were subcutaneously implanted for iden-
tification and temperature monitoring. Subjects were challenged
intranasally with 1000 plaque-forming units (PFU) of ZEBOV
strain Kikwit (n = 5), SEBOV strain Gulu (n = 5), and BEBOV
(n = 5), respectively. The passage history of challenge viruses
can be found in the Supplementary Methods. To account for
variations between challenge events, 2 independent studies
were completed, with the initial experiment having 3 animals,
followed by a repeat confirmatory study with 2 additional ferrets
per virus group. Whole-blood, ethylenediaminetetraacetic
acid–associated plasma, and citrated plasma samples were
collected from the superior vena cava for hematologic, serum
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biochemical, and coagulation assays and viremia determination
on days 0, 2, 4, and 6 and at the time of euthanasia. Clinical
signs, weights, and transponder-mediated temperatures were
recorded daily up to the point of euthanasia. Clinical scores
were determined on a scale of 0–12, based on coat appearance,
social behavior, and provoked behavior. Animals scoring ≥9
were euthanized per the University of Texas Medical Branch
(UTMB) Institutional Animal Care and Use Committee pro-
tocol criteria.

Gross pathology findings were documented, and portions of
select tissues were aseptically removed and frozen at −70°C for
virus infectivity assays. Portions of select tissues were also fixed
in formalin and processed for histologic and immunohisto-
chemical analyses as shown in the Supplementary Methods.

Animal studies were completed under biosafety level 4 (BSL-
4) biocontainment at the Galveston National Laboratory and
were approved by the UTMB Institutional Laboratory Animal
Care and Use Committee, in accordance with state and federal
statutes and regulations relating to experiments involving ani-
mals, and by the UTMB Institutional Biosafety Committee.

Hematologic, Serum Biochemical, Blood Coagulation, and
Proinflammatory Markers
Complete blood counts, coagulation dynamics, and serum
blood chemical analyses were performed on blood, serum, or
plasma specimens obtained from each experimental animal.
Analysis of tumor necrosis factor α (TNF-α), nitrite (a marker
for nitric oxide production), and coagulation parameters mea-
sured in serum or plasma specimens was also performed as de-
tailed in the Supplementary Methods.

Virus Isolation
Determination of infectious virus in plasma, spleen, liver, kid-
ney, adrenal gland, pancreas, lung, and brain was performed
using conventional plaque assays as detailed in the Supplemen-
tary Methods.

Statistics Statement
Conducting animal studies in a BSL-4 facility severely restricts
the number of animal subjects, the volume of biological samples
that can be obtained, and the ability to repeat assays indepen-
dently and, thus, limits the power of statistical analyses. Conse-
quently, data are presented as the mean calculated from
replicate samples, not replicate assays, and error bars represent
the standard deviation across replicates.

RESULTS

Gross Findings
The disease course of all Ebolavirus-challenged ferrets was
closely monitored after challenge. One of the initial signs of dis-
ease observed was fever for all groups, beginning on day 3 after
infection, which was followed by rapid-onset hypothermia just
prior to euthanasia. Next, we observed an appreciable weight
loss beginning on day 4 for both ZEBOV- and SEBOV-infected

ferrets; the BEBOV-infected animals did not have weight loss
for another 2 days (Supplementary Figure 1). Common clinical
signs included progressively worsening depression, diarrhea,
dehydration, nasal and ocular discharge, labored breathing,
hunched posture, and altered gait.

Remarkably, ferrets died at a mean of 6, 7, and 9 days after in-
fection for ZEBOV, SEBOV, and BEBOV, respectively (Figure 1
and Supplementary Figure 1). Gross inspection at necropsy re-
vealed hallmark features of EHF, including petechial rashes at
the skin surface, reticulated pallor of the liver, and mottled sple-
nomegaly, all of which was comparable across experimental
groups (Figure 2 and Supplementary Figure 1). Evidence of
hemorrhage was evident at the pyloric/duodenal junction,
spleen, urinary bladder, and lymph nodes (inguinal, axillary,
and mesenteric; Figure 2 and Supplementary Figure 2; lymph
node data not shown).

Histologic and Immunohistochemical Analyses
Histopathologic lesions in all ferrets were consistent with
ZEBOV, SEBOV, and BEBOV infections in primates [7, 8].
The most significant lesions noted on hematoxylin-eosin stain-
ing in infected animals were marked lymphohistiocytic and
neutrophilic necrotizing hepatitis and necrotizing splenitis.
Both SEBOV- and BEBOV-infected animals also had marked
hepatic vacuolar degeneration. Diffuse immunolabeling of
viral antigen was seen in hepatic sinusoidal mononuclear
cells, sheets (ZEBOV) or small clusters (SEBOV or BEBOV)
of hepatocytes, and individual-to-small clusters of mononuclear
cells within the red and white pulp of the spleen. Striking in-
creases of terminal deoxynucleotidyl transferase dUTP nick
end labeling in the spleen was noted in all infected ferrets as
compared to the control ferret spleens, suggesting increased
lymphocyte apoptosis in these areas. All experimental histo-
pathologic findings were compared against historical control
tissue from Ebolavirus-naive ferrets (Supplementary Figure 3).

Hematology, Serum Biochemistry, Blood Coagulation, and
Proinflammatory Markers
All ferrets had progressive, coinciding neutrophilia and
lymphocytopenia beginning on day 4 after infection (Supple-
mentary Table 1). Progressive monocytosis, eosinophilia, and
basophilia were noted mainly in late stages of disease. Evidence
of multiorgan failure was noted in terminal serum samples,
where striking increases in levels of enzymes associated with
liver function and markers of kidney function were detected.
Evidence of vascular leakage was also noted with hypoalbumi-
nemia and hypoproteinemia (Supplementary Table 1). Beginning
on day 4, progressively increasing levels of the circulating proin-
flammatory markers TNF-α and nitric oxide were also recorded
in all animals (Supplementary Figure 2).

Thrombocytopenia along with increased partial thrombo-
plastin and activated partial thromboplastin times in terminal
samples of all ferrets was suggestive of a consumptive
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coagulopathy. Progressive increases in levels of circulating fi-
brinogen were also noted beginning on day 4, which were fol-
lowed by marked depletion in all terminal animals. Circulating
activated protein C activity was diminished to approximately

50% in terminal SEBOV- and BEBOV-infected animals. Inter-
estingly, a sharp increase in activity was noted in all terminal
ZEBOV-infected animals (Figure 1, Supplementary Table 1,
and Supplementary Figure 4).

Figure 2. A–E, Representative gross pathology of Ebolavirus infection. All represented lesions were from Zaire ebolavirus–infected ferrets; however, gross pathology severity
was comparable across ebolavirus species. A, Pyloric duodenal junction corresponding mucosal hemorrhage (arrow). B, Multifocal thymic hemorrhage (asterisk). C, Multifocal
hepatic necrosis. D, Splenomegaly, multifocal necrosis, and infarction (arrow).

Figure 1. Clinical parameters of Ebolaviruses infection in ferrets. Abbreviations: BEBOV, Bundibugyo ebolavirus; PFU, plaque-forming units; SEBOV, Sudan ebolavirus; ZEBOV,
Zaire ebolavirus.
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Circulating Virus and Tissue Burden
Infectious virus in plasma was not detected in any Ebolavirus
group at day 2 after infection, suggesting that any viremia de-
tected was owed to viral replication after exposure and not re-
sidual inoculum. By day 4, a mean of 4 log10 PFU/mL, 3 log10
PFU/mL, and 2 log10 PFU/mL was first detected for ZEBOV,
SEBOV, and BEBOV, respectively. Mean peak viremia levels
(±SD) were 7.6 ± 0.38 log10 PFU/mL on day 6 for ZEBOV-
infected animals, 7.6 ± 0.29 log10 PFU/mL on day 7 for SEBOV-
infected animals, and 6.9 ± 0.14 log10 PFU/mL on day 8 for
BEBOV-infected animals (Figure 1).

Infectious virus was isolated from all tissues tested for BEBOV.
No virus was isolated from the pancreas of ZEBOV- or SEBOV-
infected animals. Peak titers were noted in typical Ebolavirus target
organs such as liver and spleen where ZEBOV-infected animals
had a higher mean viral burden, followed by those infected with
SEBOV and BEBOV (Supplementary Figure 2).

DISCUSSION

While rodent models for ZEBOV (Mayinga strain) and SEBOV
(Boniface strain) have been described, these models require
serial passage to achieve uniform lethality. Here, we present
novel outbred, small-animal models that recapitulates hallmark
features of Ebolavirus infection of humans and NHPs without
adaptation: a uniformly lethal, ferret model of infection with
BEBOV, the Gulu strain of SEBOV, and the Kikwit strain of
ZEBOV. The Gulu and Kikwit strains have been used by
much of the filovirus research community as prototype strains
for validating countermeasures in NHPs, and thus screening in
ferrets may increase predictive efficacy of such interventions.

Ferrets have largely been used to study respiratory infections
such as those due to influenza virus, respiratory syncytial virus,
and henipaviruses, in which mucosal routes have been the most
relevant means of infection. The mucosal route of infection has
been implicated as an important means of Ebolavirus transmis-
sion and has also been demonstrated as an effective method of
artificial infection by small-particle aerosol [9–11].Accordingly,
we challenged ferrets intranasally, a commonly used route in
challenge experiments, to assess the mucosal route of infection
prior to attempts using less natural routes of infection (eg, par-
enteral injection). The resulting uniform lethality demonstrates
the utility of this intranasal infection model in potential muco-
sal-mediated transmission experiments or small-particle aero-
sol challenge, the latter being highly relevant for biodefense-
related concerns. A remarkable point about the intranasal
mode of infection is that, despite having direct access to the
lungs upon infection, we observed minimal evidence of gross
lung pathology; rather, the most impressive pathology and
viral burdens were noted in the liver and spleen, just as in
NHPs experimentally infected via the intramuscular route.

Here, we report 3 ferret models of infection with phylo-
genetically distinct Ebolaviruses that recapitulated hallmark

pathologic processes of Ebolavirus infection in primates, includ-
ing humans, with indications of fever, diarrhea, coagulopathy,
vascular leakage, lymphocyte apoptosis, granulocytosis, multior-
gan dysfunction, and abrogated proinflammatory molecule pro-
duction. As in NHPs, we additionally find that there are clear
differences in viral replication rates in ferrets among the different
species of Ebolavirus that likely result in correspondingly graded
differences in disease progression and time to death [8, 12].

Taken together, these data imply that the ferret models have
potential utility for dissecting key events in the pathogenesis of
several Ebolaviruses and may be useful for evaluating candidate
medical interventions prior to assessment in NHPs [12]. Fur-
ther studies are needed to more fully characterize the events
leading to death and suitability for transmission modeling in
these and related filovirus models of infection in ferrets, as
well as to determine this model’s predictive efficacy for testing
medical countermeasures.

Supplementary Data
Supplementary materials are available at http://jid.oxfordjournals.org.
Consisting of data provided by the author to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the author, so
questions or comments should be addressed to the author.
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