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Abstract

Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very
long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with
fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung
TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantifi-
cation (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In
total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened
by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th
day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs repre-
sented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cyto-
skeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold)
and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellu-
lar functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive
comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs.
Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might
inhibit the oxidative stress and cellular ageing and may have pro-proliferative effects through the inhibition of apoptosis. The group of proteins
identified in this study needs to be explored further for the role in pathogenesis of lung disease.
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Introduction

Telocytes (TCs) were identified as a new cell type of the stromal space
[1] (details at www.telocytes.com). TCs were described in the trachea
and lungs [2-5], besides other important locations: heart [6-9],
female reproductive system [10-13], skin [14, 15], digestive system
[16-19], liver [20], urinary tract [21, 22], prostate [23, 24], skeletal
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Recently, electrophysiological properties were described for TCs
[28-30], their microarray-hased gene expression analysis and micr-
ORNA signature were established [31, 32] and some of their genomic
features were revealed [33]. In a previous study, we reported the pro-
teomic profile differences between TCs and fibroblasts [34].

Since their description, it became clear that TCs develop a 3D net-
work through the organ interstitial space and are frequently detected
in close relationships with organ-specific structures, blood capillaries,
nerve endings and even with stem cells niches and immune cells [11,
16, 29]. Numerous studies have described the unusual immunophe-
notype of the TCs providing a list of molecular markers such as CD34,
PDGFR o and B, CD117 [20, 25, 35-37]. Some of these markers are
also expressed on endothelial cells (low level of CD34) and on peri-
cytes (PDGFR o and B). However ECs co-express CD31 and pericytes
co-express o-SMA, while TCs do not [25]. These similarities might be
suggestive for a common mesodermal pre-cursor for TCs, ECs and
for a perivascular origin of mesenchymal stem cells (for reviews see
[38-42)).

It is largely accepted that ECs in culture are subjected to pheno-
typic drift because of the lack of in vivo typical conditions [43], mainly
oxygen exposure which is higher in vitro. These aspects together with
the fact that proteomic studies also point out the differences between
venous and arterial ECs [44] should lead us to the idea that in vitro
culture studies should be viewed with circumspection without out-
looking in vivo physiological influences. A study by Nguyen ef al,
regarding differential proteomic analysis of lymphatic, venous and
arterial endothelial cells extracted from bovine mesenteric vessels
underline the lack of substantial overlap between results from differ-
ent research groups [45].

The present study shows the proteomic analysis of the TCs, by
comparing them with ECs using iTRAQ labelling to identify the differ-
entially expressed proteins. We think that the identification of a panel
of 98 proteins at 5th day, and 82 proteins at 10th day in cell cultures,
may represent the most differentially expressed proteins between TCs
and ECs. We found that 38 proteins were overexpressed in TCs com-
pared to ECs (at 5th day) and that 26 proteins were overexpressed in
TCs compared to ECs (at 10th day). Bioinformatics analysis of the up-
regulated proteins came again to confirm the involvement of TCs in
intercellular communication, oxidative stress and cellular ageing.
Also, TCs may have pro-proliferative effects through the inhibition of
apoptosis.

Material and methods

Cell lines and tissue sampling

Human lung samples were obtained from the patients undergoing sur-
gery for lung cancer. Lung fragments were removed from normal tissue
area located at least at 15 cm from the tumour tissue. All tissue
samples were obtained in accordance with a protocol approved by the
Ethical Evaluation Committee of Zhongshan Hospital, Fudan University,
Shanghai, China. Samples were processed within 30 min. from surgery.
Cells were cultured using the protocol previously described [34].
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Human pulmonary microvascular endothelial cell line was obtained from
ScienCell Research Laboratories (Cat. no. 3000; Carlsbad, CA, USA).

Cell culture and lysis

Cells from primary culture were used for the experiments. Cells
(1 x 10%) were placed in 10-cm dishes with 10 ml high glucose DMEM
(Gibco, Grand Island, NY, USA) complete medium, including 10% foetal
calf serum (Gibco, Grand Island, NY, USA), 100 Ul/ml penicillin and
0.1 mg/ml streptomycin (Sigma Chemical, St. Louis, MO, USA) in a
humidified atmosphere of 5% CO, at 370°C. Confluent cells were trypsi-
nized at day 5 and day 10 respectively. Approximately 10° cells from
day 5 or day 10 were re-suspended in a solution of 9.5 moles/I urea,
1% dithiothreitol, 40 mg/ml protease inhibitor cocktail, 0.2 mmoles/I
Na,V03; and 1 mmole/l NaF. The mixture was incubated and stirred by
end-over-end rotation at 4°C for 60 min. The resultant suspension was
centrifuged at 40,000 x g for 1 hr at 15°C. The supernatant was stored
in small aliquots at —80°C, and the protein concentration was deter-
mined using a modified Bradford method.

Automated 2-D nano-ESI LC-MS/MS analysis of
peptides

Proteins extracted from primary cultures of TCs and EC were analysed
by automated 2-dimensional nano-electrospray ionization liquid chroma-
tography tandem mass spectrometry as was previously described
[46, 47].

Sample preparation

The samples were ground in liquid nitrogen. One millilitre of lysis buffer
(8 M urea, 1x Protease Inhibitor Cocktail (Roche Ltd. Basel, Switzer-
land)) was added to sample, followed by sonication on ice and centrifu-
gation at 29,000 x g for 10 min. at 4°C. The supernatant was
transferred to a fresh tube, and stored at —80°C until needed.

iTRAQ labelling and protein digestion

For each sample, proteins were precipitated with ice-cold acetone, and
then were redissolved in the dissolution buffer (0.5 M triethylammoni-
um bicarbonate, 0.1% SDS). Then proteins were quantified by BCA pro-
tein assay, and 100 pg of protein was tryptically digested and the
resultant peptide mixture was labelled using chemicals from the iTRAQ
reagent kit (Applied Biosystems, Foster City, CA, USA). Disulphide
bonds were reduced in 5 mM Tris-(2-carboxyethy) phosphine for 1 hr
at 60°C, followed by blocking cysteine residues in 10 mM methyl meth-
anethiosulfonate for 30 min. at room temperature, before digestion with
sequence-grade modified trypsin (Promega, Madison, WI, USA). For
labelling, each iTRAQ reagent was dissolved in 50 pl of isopropanol and
added to the respective peptide mixture.

Proteins were labelled with the iTRAQ tags as follows: Pulmonary micro-
vascular endothelial cells (5 days) - 113 isobaric tag, TCs (5 days) - 116
isobaric tag, Pulmonary microvascular endothelial cells (10 days) - 117
isobaric tag, TCs (10 days) - 121 isobaric tag. The labelled samples were
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combined and dried in vacuo. A SepPac™ C18 cartridge (1 cm®/50 mg;
Waters Corporation, Milford, MA, USA) was used to remove the salt buffer
and then was dried in a vacuum concentrator for the next step.

High pH reverse phase separation

Using a described protocol [48], the peptide mixture was redissolved in
the buffer A (buffer A: 20 mM ammonium formate in water, pH 10.0,
adjusted with ammonium hydroxide), and then fractionated by high pH
separation using a Aquity UPLC system (Waters Corporation) connected
to a reverse phase column (XBridge C18 column, 2.1 mm x 150 mm,
3.5 um, 300 A; Waters Corporation). High pH separation was performed
with a linear gradient. Starting from 2% B to 40% B in 45 min. (B:
20 mM ammonium formate in 90% ACN, pH 10.0, adjusted with ammo-
nium hydroxide). The column was re-equilibrated at initial conditions for
15 min. The column flow rate was maintained at 200 pl/min. and col-
umn temperature was maintained at room temperature. Fourteen
fractions were collected, and each fraction was dried in a vacuum con-
centrator for the next step.

Low pH nano-HPLC-MS/MS analysis

The peptides were re-suspended with 80 pl solvent C (C: water with
0.1% formic acid; D: ACN with 0.1% formic acid), separated by nanoLC
and analysed by on-line electrospray tandem mass spectrometry. The
experiments were performed on a Nano Aquity UPLC system (Waters
Corporation) connected to an LTQ Orbitrap XL mass spectrometer
(Thermo Electron Corp., Bremen, Germany) equipped with an online
nanoelectrospray ion source (Michrom Bioresources, Auburn, CA, USA).
20 pl peptide sample was loaded onto the Thermo Scientific Acclaim
PepMap C18 column (100 um x 2 c¢cm, 3 um particle size), with a flow
of 10 wl/min. for 5 min. and subsequently separated on the analytical
column (Acclaim PepMap C18, 75 um x 15 c¢m) with a linear gradient,
from 5% D to 45% D in 165 min. The column was re-equilibrated at
initial conditions for 15 min. The column flow rate was maintained at
300 nl/min. and column temperature was maintained at 35°C. The elec-
trospray voltage of 1.9 kV versus the inlet of the mass spectrometer
was used.

LTQ Orbitrap XL mass spectrometer was operated after a protocol
previously described [34].

Database searching and criteria

Protein identification and quantification for the iTRAQ experiment was
performed with the ProteinPilot software version 4.0 (Applied Biosys-
tems). The database was the Human UniProtKB/Swiss-Prot database
(Release 2011_10_15, with 20248 sequences). The Paragon Algorithm
in ProteinPilot software was used for peptide identification and isoform
specific quantification. The detailed method of ProteinPilot analysis was
described previously [34]. For iTRAQ quantification, the peptide for
quantification was automatically selected by Pro Group algorithm (at
least two peptides with 99% confidence) to calculate the reporter peak
area, error factor and P-value. For the selection of differentially
expressed proteins, we considered the following situation: (1) the pro-
teins must contain at least two unique high-scoring peptides; (2) the
proteins must have a P < 0.05, and the proteins identified with mass
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tag changes ratio must be >1.3 or <0.75. Differentially expressed pro-
teins were screened by two-sample t-test (P < 0.05) and fold change
(>2), based on the bioinformatics analysis.

The biological interpretation of the results was aided by PANTHER
(Protein  ANalysis THrough Evolutionary Relationships) Classification
System annotations (http://www.pantherdb.org/).

Heat maps were created after MS/MS fragmentation spectra were
analysed using PEAKS search engine tool (PEAKS Studio 7; Bioinfor-
matics Solutions Inc., Waterloo, ON, Canada).

We also used the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) (http://www.string-db.org/) database of physical and
functional interactions to evaluate the interactions among the up-regu-
lated proteins of the TCs and ECs. Bonferroni correction was used as a
conservative method to control the family wise error rate when high-
lighting proteins involved in different biological processes.

Results

Quantitative proteomics has been used to evaluate the differentially
expressed proteins in TCs and ECs. We compared the protein expres-
sion profiles between those two cell types, at different moments in
time (5th day and 10th day in cell culture). In particular, we identified
a total of 1609 proteins of which 98 satisfied our filtering criteria of
proteins that exhibited fold changes >2 in TCs versus ECs at day 5
(Table 1), and 82 proteins in TCs versus ECs at day 10 (Table 2),
respectively.

TCs versus ECs 5th day in cell culture

Up-regulated proteins

We identified, by comparison between TCs and ECs, that there are
38 proteins up-regulated in TCs, especially Myosin-14 (18.84-fold),
superoxide dismutase (SOD2; 14.59-fold), acid ceramidase (AC;
7.63-fold), envoplakin and epiplakin (~6-fold each).

Down-regulated proteins

In TCs, compared to ECs there are 60 proteins down-regulated, espe-
cially cell surface glycoprotein MUC18 (15.54-fold), Ras-interacting
protein 1 (13.42-fold), BTB/POZ domain-containing protein (7.26-
fold), peptidyl prolyl cis/trans isomerase (6.65-fold) and nestin (5.92-
fold) and von Willebrand factor (5.74-fold).

Functional analysis of the identified proteins
The protein expression profiles were analysed with the aid of PAN-
THER Classification System and depicted in Figures 1-3 (details are
given in Tables S1 and S2). The highly expressed proteins in TCs are
involved in important molecular functions such as: catalytic activity
(17 proteins), structural molecule activity (13 proteins) as seen in
Figure 1A compared to ECs where significantly more proteins are
involved in catalytic activity (30 proteins) and 29 proteins have
molecular binding function (Fig. 1B). In addition, in ECs, two up-
regulated proteins are involved in nucleic acid-binding transcription
and one has anti-oxidant activity.

Analysis of PANTHER biological processes, in which the 38 up-
regulated proteins in TCs are involved, revealed that 18 proteins are
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Table 1 Selected list of top 98 proteins identified with more than twofold change in TCs versus ECs at 5th day sorted by iTRAQ ratio and
presenting the number of peptides hits

Accession Protein name ::;5'],,‘/1';85 ‘(’/;g;] v ::2:1\0 ;glr(iichment P
ECs:TCs in TCs
MYH14_HUMAN Myosin-14 18 7.67 0.053 18.84 0.0002
SODM_HUMAN Superoxide dismutase [Mn], mitochondrial 10 35.14 0.069 14.59 0.0002
ASAH1_HUMAN Acid ceramidase 2 5.82 0.131 7.63 0.0315
EVPL_HUMAN Envoplakin 1 0.79 0.161 6.22 0.0346
EPIPL_HUMAN Epiplakin 17 16.07 0.167 5.99 0.0250
HBB_HUMAN Haemoglobin subunit beta 2 15.65 0.219 4.56 0.0466
HBA_HUMAN Haemoglobin subunit alpha 2 16.90 0.244 4.09 0.0055
THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 12 33.50 0.245 4.08 0.0186
SQRD_HUMAN Sulphide:quinone oxidoreductase, mitochondrial 9 19.78 0.245 4.08 0.0015
LMO7_HUMAN LIM domain only protein 7 3 2.02 0.246 4.06 0.0246
FRIL_HUMAN Ferritin light chain 1 8.57 0.252 3.97 0.0178
ALDH2_HUMAN Aldehyde dehydrogenase, mitochondrial 5 10.06 0.253 3.96 0.0152
TAGL_HUMAN Transgelin 15 7512 0.258 3.88 0.0058
ACADV_HUMAN Very long-chain specific acyl-CoA dehydrogenase, 6 9.62 0.301 3.33 0.0325
mitochondrial
TPSN_HUMAN Tapasin 3 5.13 0.318 3.14 0.0292
PGRC1_HUMAN Membrane-associated progesterone receptor 4 18.97 0.328 3.04 0.0068
component 1
SUCA_HUMAN Succinyl-CoA ligase [GDP-forming] subunit alpha, 5 17.63 0.344 2.90 0.0018
mitochondrial
[CAM1_HUMAN Intercellular adhesion molecule 1 6 14.66 0.374 2.67 0.0021
TFR1_HUMAN Transferrin receptor protein 1 5 5.79 0.378 2.65 0.0073
NLTP_HUMAN Non-specific lipid-transfer protein 9 12.43 0.390 2.57 0.0013
CO1A1_HUMAN Collagen alpha-1(l) chain 4 3.01 0.407 2.46 0.0290
AT1A1_HUMAN Sodium/potassium-transporting ATPase subunit 17 18.77 0.412 2.43 0.0000
alpha-1
COX5B_HUMAN Cytochrome ¢ oxidase subunit 5B, mitochondrial 4 34.11 0.438 2.28 0.0042
DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 11 25.00 0.442 2.26 0.0000
MYH10_HUMAN Myosin-10 45 19.59 0.445 2.25 0.0240
KAD3_HUMAN GTP:AMP phosphotransferase, mitochondrial 2 10.57 0.451 2.22 0.0107
CO4A_HUMAN Complement C4-A 4 2.52 0.460 217 0.0215
COX5A_HUMAN Cytochrome ¢ oxidase subunit 5A, mitochondrial 6 58.67 0.470 2.13 0.0015

1038
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Table 1. Continued

J. Cell. Mol. Med. Vol 18, No 6, 2014

Accession Protein name :’:5'1‘/1')185 ‘()/;g;] v 222\0 ;:Ir(iichment P
ECs:TCs in TCs
DLDH_HUMAN Dihydrolipoyl dehydrogenase, mitochondrial 10 27.50 0.472 2.12 0.0047
ALBU_HUMAN Serum albumin 11 14.45 0.473 2.11 0.0098
A2MG_HUMAN Alpha-2-macroglobulin 7 4.34 0.476 2.10 0.0268
ETHE1_HUMAN Protein ETHE1, mitochondrial 2 9.45 0.480 2.08 0.0370
KAD2_HUMAN Adenylate kinase 2, mitochondrial 8 41.42 0.487 2.05 0.0004
ERGI1_HUMAN Endoplasmic reticulum-Golgi intermediate 4 18.97 0.488 2.05 0.0258
compartment protein 1
ERP29_HUMAN Endoplasmic reticulum resident protein 29 7 28.74 0.490 2.04 0.0015
GRP75_HUMAN Stress-70 protein, mitochondrial 32 40.94 0.493 2.03 0.0114
ETFA_HUMAN Electron transfer flavoprotein subunit alpha, 10 38.44 0.494 2.02 0.0002
mitochondrial
CH60_HUMAN 60 kD heat shock protein, mitochondrial 60 62.30 0.496 2.02 0.0011
Peptides %GCov iTRAQ Fold P
Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs

PUR6_HUMAN Multifunctional protein ADE2 4 6.59 2.007 2.01 0.0375
G6PI_HUMAN Glucose-6-phosphate isomerase 4 7.35 2.019 2.02 0.0029
RS13_HUMAN 40S ribosomal protein S13 5 29.80 2.025 2.02 0.0035
PROF1_HUMAN Profilin-1 23 75.71 2.026 2.03 0.0004
TXND5_HUMAN Thioredoxin domain-containing protein 5 15 40.51 2.030 2.03 0.0011
LEG1_HUMAN Galectin-1 27 91.11 2.053 2.05 0.0001
ARC1B_HUMAN Actin-related protein 2/3 complex subunit 1B 2 5.11 2.056 2.06 0.0126
AMPN_HUMAN Aminopeptidase N 7 7.03 2.061 2.06 0.0162
LDHB_HUMAN L-lactate dehydrogenase B chain 8 23.35 2.094 2.09 0.0021
ACLY_HUMAN ATP-citrate synthase 11 11.08 2.096 2.10 0.0004
THIO_HUMAN Thioredoxin S 51.43 2.115 2.11 0.0022
GDIB_HUMAN Rab GDP-dissociation inhibitor beta 5 14.83 2.118 2.12 0.0007
EEA1_HUMAN Early endosome antigen 1 4 2.62 2.140 2.14 0.0111
TGM2_HUMAN Protein-glutamine gamma-glutamyltransferase 2 18 21.25 2.145 2.15 0.0351
RL19_HUMAN 60S ribosomal protein L19 3 14.80 2.207 2.21 0.0133
COF1_HUMAN Cofilin-1 21 71.69 2.210 2.21 0.0138
FLNB_HUMAN Filamin-B 96 41.78 2.210 2.21 0.0000
H15_HUMAN Histone H1.5 7 23.45 2.219 2.22 0.0186
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Table 1. Continued

Peptides %GCov iTRAQ Fold P

Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs

RAN_HUMAN GTP-binding nuclear protein Ran 7 32.87 2.245 2.25 0.0117
NQO1_HUMAN H dehydrogenase [quinone] 1 2 7.66 2.246 2.25 0.0206
NAD(P)
HS90B_HUMAN Heat shock protein HSP 90-beta 37 35.77 2.275 2.27 0.0006
RCN1_HUMAN Reticulocalbin-1 8 22.66 2.283 2.28 0.0093
CDC37_HUMAN Hsp90 co-chaperone Cdc37 10 27.25 2.306 2.31 0.0005
G3P_HUMAN Glyceraldehyde-3-phosphate dehydrogenase 42 64.48 2.338 2.34 0.0045
SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3 3 34.41 2.341 2.34 0.0160
ITA5_HUMAN Integrin alpha-5 7 8.20 2.366 2.37 0.0011
EHD2_HUMAN EH domain-containing protein 2 8 17.13 2.374 2.37 0.0009
PPIA_HUMAN Peptidyl-prolyl cis-trans isomerase A 17 75.76 2.383 2.38 0.0001
MOES_HUMAN Moesin 26 44.71 2.394 2.39 0.0054
PRDX1_HUMAN Peroxiredoxin-1 14 46.73 2.419 2.42 0.0006
UCHL1_HUMAN Ubiquitin carboxyl-terminal hydrolase isozyme L1 7 37.22 2.486 2.49 0.0033
TAGL2_HUMAN Transgelin-2 19 74.87 2.533 2.53 0.0000
HPRT_HUMAN Hypoxanthine-guanine phosphoribosyltransferase 2 11.01 2.570 2.57 0.0220
PLST_HUMAN Plastin-3 11 19.37 2.570 2.57 0.0000
WDR1_HUMAN WD repeat-containing protein 1 10 18.15 2.577 2.58 0.0000
UB2L3_HUMAN Ubiquitin-conjugating enzyme E2 L3 1 4.54 2.601 2.60 0.0052
HMGB1_HUMAN High mobility group protein B1 3 15.35 2.614 2.61 0.0014
TRXR1_HUMAN Thioredoxin reductase 1, cytoplasmic 9 16.49 2.618 2.62 0.0001
NSF1C_HUMAN NSFL1 cofactor p47 4 19.19 2.696 2.70 0.0192
APEX1_HUMAN DNA-(apurinic or apyrimidinic site) lyase 2 6.60 2.718 2.72 0.0292
K6PP_HUMAN 6-phosphofructokinase type C 5 8.29 2.741 2.74 0.0004
HINT1_HUMAN Histidine triad nucleotide-binding protein 1 3 40.48 2.775 2.77 0.0244
STIP1_HUMAN Stress-induced-phosphoprotein 1 11 19.34 2.777 2.78 0.0000
RL15_HUMAN 60S ribosomal protein L15 2 7.84 2.792 2.79 0.0232
S10AD_HUMAN Protein S100-A13 S 44.90 2.832 2.83 0.0016
CSRP1_HUMAN Cysteine and glycine-rich protein 1 3 21.76 2.843 2.84 0.0280
VAT1_HUMAN Synaptic vesicle membrane protein VAT-1 homologue 12 31.81 2.911 2.91 0.0012
6PGD_HUMAN 6-phosphogluconate dehydrogenase, decarboxylating 5 10.77 2.952 2.95 0.0346
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Table 1. Continued

J. Cell. Mol. Med. Vol 18, No 6, 2014

Peptides %GCov iTRAQ Fold P
Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs

SDPR_HUMAN Serum deprivation-response protein 3 9.18 3.146 3.15 0.0278
GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 4 18.14 3.740 3.74 0.0010
FSCN1_HUMAN Fascin 6 16.63 4.026 4.03 0.0012
HMGA1_HUMAN High mobility group protein HMG-I/HMG-Y 2 22.43 4.281 4.28 0.0031
PECA1_HUMAN Platelet endothelial cell adhesion molecule 9 11.52 4.492 4.49 0.0131
SCRN1_HUMAN Secernin-1 2 5.80 4.937 4.94 0.0203
VWF_HUMAN von Willebrand factor 19 7.93 5.740 5.74 0.0002
NEST_HUMAN Nestin 22 16.84 5.924 5.92 0.0000
FKB1A_HUMAN Peptidyl-prolyl cis-trans isomerase FKBP1A 4 34.26 6.650 6.65 0.0168
KCD12_HUMAN BTB/POZ domain-containing protein KCTD12 3 9.85 7.264 7.26 0.0038
RAIN_HUMAN Ras-interacting protein 1 1 1.14 13.416 13.42 0.0393
MUC18_HUMAN Cell surface glycoprotein MUC18 7 12.69 15.540 15.54 0.0050

Table 2 Selected list of top 82 proteins identified with more than twofold change in TCs versus ECs at 10th day sorted by iTRAQ ratio and
presenting the number of peptides hits

Accession Protein name F;sp‘;:(;es :/;g;) v :':22\0 ;g:'?chment P
ECs:TCs in TCs
PTGIS_HUMAN Prostacyclin synthase 7 15.80 0.112 8.93 0.0016
MUC1_HUMAN Mucin-1 2 1.75 0.199 5.02 0.0390
EPIPL_HUMAN Epiplakin 17 16.07 0.209 4.78 0.0083
SODM_HUMAN Superoxide dismutase [Mn], mitochondrial 10 35.14 0.222 4.50 0.0155
AL1B1_HUMAN Aldehyde dehydrogenase X, mitochondrial 5 13.93 0.246 4.06 0.0133
SERA_HUMAN D-3-phosphoglycerate dehydrogenase 4 8.07 0.295 3.39 0.0019
CYB5_HUMAN Cytochrome b5 4 32.09 0.306 3.27 0.0483
SQRD_HUMAN Sulphide:quinone oxidoreductase, mitochondrial 9 19.78 0.328 3.05 0.0000
THIM_HUMAN 3-ketoacyl-CoA thiolase, mitochondrial 12 33.50 0.338 2.95 0.0000
ERGI1_HUMAN Endoplasmic reticulum-Golgi intermediate 4 18.97 0.348 2.88 0.0088
compartment protein 1

EZRI_HUMAN Ezrin 19 31.40 0.354 2.83 0.0162
CP51A_HUMAN Lanosterol 14-alpha demethylase 2 3.98 0.361 2.77 0.0156
PLOD2_HUMAN Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 15 22.39 0.370 2.70 0.0061
CO1A2_HUMAN  Collagen alpha-2(1) chain 9 791 0382 2.62 0.0001
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Table 2. Continued

Accession Protein name :);5‘)‘,2;]&3 ‘(y;g;’ v ::22\0 ;glr?chmem P
ECs:TCs in TCs
ECH1_HUMAN Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase, 4 2378  0.385 2.60 0.0099
mitochondrial
RRS1_HUMAN Ribosome biogenesis regulatory protein homologue 3 9.86 0.393 2.54 0.0059
ACADV_HUMAN Very long-chain specific acyl-CoA dehydrogenase, 6 9.62 0.414 2.4 0.0449
mitochondrial
NB5R1_HUMAN NADH-cytochrome b5 reductase 1 1 2.95 0.414 2.41 0.0084
NOP2_HUMAN Putative ribosomal RNA methyltransferase NOP2 3 4.06 0.436 2.29 0.0138
PGRC1_HUMAN Membrane-associated progesterone receptor 4 18.97 0.440 2.27 0.0210
component 1
FINC_HUMAN Fibronectin 35 20.03 0.453 2.21 0.0002
DHB12_HUMAN Estradiol 17-beta-dehydrogenase 12 3 11.54 0.454 2.20 0.0098
DHB4_HUMAN Peroxisomal multifunctional enzyme type 2 11 25.00 0.479 2.09 0.0418
TAGL_HUMAN Transgelin 15 7512 0.482 2.08 0.0000
OAT_HUMAN Ornithine aminotransferase, mitochondrial 5 14.12 0.487 2.05 0.0007
LPPRC_HUMAN Leucine-rich PPR motif-containing protein, 12 9.83 0.497 2.01 0.0403
mitochondrial
Peptides %Cov iTRAQ Fold P
Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs
H15_HUMAN Histone H1.5 7 23.45 2.002 2.00 0.0037
RL7A_HUMAN 60S ribosomal protein L7a 6 21.80 2.009 2.01 0.0001
PLOD1_HUMAN Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 13 20.22 2.063 2.06 0.0000
FETUA_HUMAN Alpha-2-HS-glycoprotein 4 6.81 2.083 2.08 0.0373
ALDOA_HUMAN Fructose-bisphosphate aldolase A 24 53.02 2.090 2.09 0.0000
PEA15_HUMAN Astrocytic phosphoprotein PEA-15 2 16.92 2.100 210 0.0063
PROF1_HUMAN Profilin-1 23 75.71 2.107 2.11 0.0005
TPIS_HUMAN Triosephosphate isomerase 20 64.26 2.137 2.14 0.0000
CNN2_HUMAN Calponin-2 9 37.86 2.156 2.16 0.0009
ENOA_HUMAN Alpha-enolase 46 73.27 2172 217 0.0000
DEST_HUMAN Destrin 5 28.48 2.175 2.18 0.0118
SH3L3_HUMAN SH3 domain-binding glutamic acid-rich-like protein 3 3 34.41 2.185 219 0.0196
H12_HUMAN Histone H1.2 7 30.99 2.197 2.20 0.0056
TGM2_HUMAN Protein-glutamine gamma-glutamyltransferase 2 18 21.25 2.205 2.21 0.0247
WDR1_HUMAN WD repeat-containing protein 1 10 18.15 2.218 2.22 0.0000
1042 © 2014 The Authors.
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Peptides %Cov iTRAQ Fold P
Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs

GPX1_HUMAN Glutathione peroxidase 1 6 23.15 2.259 2.26 0.0005
ACTN4_HUMAN Alpha-actinin-4 44 42.15 2.269 2.27 0.0057
P3H3_HUMAN Prolyl 3-hydroxylase 3 4 7.74 2.275 2.27 0.0138
COTL1_HUMAN Coactosin-like protein 4 18.31 2.275 2.27 0.0125
ITA5_HUMAN Integrin alpha-5 7 8.20 2.320 2.32 0.0001
RL24_HUMAN 60S ribosomal protein L24 6 31.21 2.329 2.33 0.0009
PDLI7_HUMAN PDZ and LIM domain protein 7 4 8.97 2.329 2.33 0.0027
6PGD_HUMAN 6-phosphogluconate dehydrogenase, decarboxylating 5 10.77 2.360 2.36 0.0152
PLST_HUMAN Plastin-3 11 19.37 2.388 2.39 0.0000
ZYX_HUMAN Zyxin 10 18.53 2.515 2.51 0.0234
CSRP1_HUMAN Cysteine and glycine-rich protein 1 & 21.76 2.525 2.53 0.0014
PDLI1_HUMAN PDZ and LIM domain protein 1 6 26.75 2.529 2.53 0.0001
ACTN1_HUMAN Alpha-actinin-1 37 38.68 2.557 2.56 0.0000
DPYL2_HUMAN Dihydropyrimidinase-related protein 2 10 21.33 2.560 2.56 0.0032
NTF2_HUMAN Nuclear transport factor 2 2 17.32 2.599 2.60 0.0162
MOES_HUMAN Moesin 26 44.71 2.609 2.61 0.0004
SPHM_HUMAN N-sulphoglucosamine sulphohydrolase 2 4.98 2.639 2.64 0.0049
EHD2_HUMAN EH domain-containing protein 2 8 17.13 2.738 2.74 0.0007
AMPN_HUMAN Aminopeptidase N 7 7.03 2.760 2.76 0.0290
VIME_HUMAN Vimentin 200 83.69 2.833 2.83 0.0001
CATB_HUMAN Cathepsin B 7 23.89 2.985 2.98 0.0041
PTRF_HUMAN Polymerase | and transcript release factor 17 42.82 3.019 3.02 0.0019
FLNB_HUMAN Filamin-B 96 41.78 3.050 3.05 0.0000
K6PP_HUMAN 6-phosphofructokinase type C 5 8.29 3.090 3.09 0.0001
TSP1_HUMAN Thrombospondin-1 3 3.16 3.138 3.14 0.0056
VAT1_HUMAN Synaptic vesicle membrane protein VAT-1 homologue 12 31.81 3.235 3.23 0.0000
HSPB1_HUMAN Heat shock protein beta-1 17 61.46 3.306 3.31 0.0311
FSCN1_HUMAN Fascin 6 16.63 3.473 3.47 0.0000
TPP1_HUMAN Tripeptidyl-peptidase 1 7 12.08 3.573 3.57 0.0200
SDPR_HUMAN Serum deprivation-response protein 3 9.18 3.951 3.95 0.0004
NEST_HUMAN Nestin 22 16.84 4134 413 0.0004
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Table 2. Continued

Peptides %GCov iTRAQ Fold P
Accession Protein name (95%) (95) ratio enrichment
ECs:TCs in ECs

SYWC_HUMAN Tryptophanyl-tRNA synthetase, cytoplasmic 3 8.70 4.389 4.39 0.0009
TXND5_HUMAN Thioredoxin domain-containing protein 5 15 40.51 5918 5.92 0.0000
EGLN_HUMAN Endoglin 3 6.69 6.297 6.30 0.0067
FABP5_HUMAN Fatty acid-binding protein, epidermal 4 16.30 7134 713 0.0109
MUC18_HUMAN  Cell surface glycoprotein MUC18 7 12.69 9.313 9.31 0.0003
FKB1A_HUMAN Peptidyl-prolyl cis-trans isomerase FKBP1A 4 34.26 10.535 10.53 0.0244
PECA1_HUMAN Platelet endothelial cell adhesion molecule 9 11.52 13.313 13.31 0.0029
VWF_HUMAN von Willebrand factor 19 7.93 15.888 15.89 0.0000
CRIP2_HUMAN Cysteine-rich protein 2 2 14.90 100.000 100.00 0.0137
MARE1_HUMAN Microtubule-associated protein RP/EB family 2 7.46 100.000 100.00 0.0186

member 1

responsible for metabolic processes and 15 proteins in cellular pro-
cesses - Figure 2A, such as cell communication (4 proteins), cytoki-
nesis (2 proteins), cellular component movement (2 proteins), cell
cycle (2 proteins) - Figure 2C. Ten up-regulated proteins in TCs are
involved in developmental processes. anatomical structure morpho-
genesis (10 proteins), mesoderm development (3 proteins), system
development (2 proteins) and ectoderm development (1 protein) -
Figure 2E. Moreover, 10 proteins in TCs are related to localization
processes such as vesicle mediated transport (4 proteins), protein
transport (4 proteins) and ion transport (3 proteins) - Figure 2G.

Biological processes of the ECs are related to 42 up-regulated pro-
teins correlated with metabolic processes, 27 to cellular processes
(Fig. 2B) such as cell communication (11 proteins), cell cycle
(7 proteins), cellular component movement (3 proteins), cytokinesis
(2 proteins), chromosome segregation (1 protein) - Figure 2D. There
are 12 up-regulated proteins which are part of the developmental pro-
cesses such as anatomical structure morphogenesis (8 proteins), system
development (2 proteins), apoptotic processes (2 proteins), ectoderm
development (1 protein) - Figure 2F. Twelve proteins in ECs participate in
localization processes e.g. protein transport (11 proteins), nuclear trans-
port (8 proteins), vesicle mediated transport (2 proteins), RNA localization
(2 proteins) and ion transport (1 protein) - Figure 2H.

Interestingly to note, there are 6 up-regulated proteins in TCs
compared to ECs involved in biological regulation and 5 related to
response to stimulus.

The protein classes of the TCs enclose cytoskeletal proteins (12
proteins), oxidoreductase (8 proteins), structural proteins
(7 proteins), transferase (5 proteins) efc. - Figure 3A. The up-regu-
lated TCs proteins belong to the following pathways: nicotinic acetyl-
choline receptor (2 proteins), inflammation mediated by chemokines
(2 proteins), de novo purine biosynthesis (2 proteins), cytoskeletal

1044

regulation by Rho GTPase (2 proteins), TCA cycle (1 protein),
Parkinson disease (1 protein), integrin signalling (1 protein) and
blood coagulation (1 protein) - Figure 3C. In TCs, the up-regulated
proteins are related to the following cellular components: cell part (13
proteins), organelle (12 proteins), membrane (2 proteins), cell junc-
tion (2 proteins), extracellular region (1 protein) and extracellular
matrix (1 protein) - Figure 3E.

The up-regulated proteins in ECs are attributed to the follow-
ing protein classes. enzyme modulator (11 proteins), cytoskeletal
proteins (10 proteins), oxidoreductase (7 proteins), nucleic acid
binding (6 proteins), transferase, isomerase and chaperone (5
proteins each), etc. - Figure 3B. The pathways map depicted the
ECs proteins are related to: integrin signalling pathway (3 pro-
teins), Huntington disease (3 proteins), cytoskeletal regulation by
Rho GTPase (3 proteins), pentose phosphate pathway (2 pro-
teins), Parkinson disease (2 proteins), inflammation mediated by
chemokines (2 proteins), glycolysis (2 proteins), efc. - Figure 3D.
The cellular component of ECs proteome demonstrated proteins
related to: cell part (12 proteins), organelle (10 proteins), extra-
cellular region (1 protein) and extracellular matrix (1 protein) -
Figure 3F.

The heat map showing the differentially expressed proteins
between TCs and ECs, in cell culture after 5 days, can be observed in
Figure 4.

TCs versus ECs, 10th day in cell culture

Up-regulated proteins

Telocytes as compared to ECs, showed that there are 26 proteins up-
regulated in TCs, especially prostacyclin synthase (8.93-fold), epipla-
kin (4.78-fold) and superoxide dismutase (4.50-fold).

© 2014 The Authors.
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Down-regulated proteins

In TCs, compared to ECs there are 56 proteins down-regulated,
especially microtubule-associated protein RP/EB family member 1
(100-fold), cysteine-rich protein 2 (100-fold), von Willebrand factor
(15.89-fold) and platelet endothelial cell adhesion molecule (13.31-
fold) peptidyl prolyl cis/trans isomerase (10.53-fold) and cell surface
glycoprotein MUC18 (9.31-fold) - Table 2 (For details see Tables S3
and S4).

Functional analysis of the identified proteins

Figures 5-7 show the distributions of differentially proteins in puta-
tive functional categories. The highly expressed proteins in TCs are
involved in important molecular functions such as: catalytic activity
(15 proteins), structural molecule activity (10 proteins), binding (5
proteins), receptor activity (3 proteins), transporter activity (2 pro-
teins) as seen in Figure 5A compared to ECs where significantly more

© 2014 The Authors.
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proteins are involved in binding (24 proteins), structural molecule
activity (21 proteins), catalytic activity (20 proteins), nucleic acid-
binding transcription (6 proteins), enzyme regulator activity (3 pro-
teins), anti-oxidant activity (1 protein) - Figure 5B.

The 26 up-regulated proteins found in TCs were assigned to the
following biological processes (according to PANTHER): metabolic
processes (16 proteins), cellular processes (11 proteins), develop-
mental processes (8 proteins), cellular component organization (8
proteins), etc. - (Fig. 6A). The only cellular process which involve
TCs up-regulated proteins is cell communication - Figure 6C. Eight
up-regulated proteins in TCs are involved in one developmental
process - anatomical structure morphogenesis - Figure 6E. Two
proteins in TCs are related to /ocalization processes such as vesicle
mediated transport (1 protein) and protein transport (2 proteins) -
Figure 6G.

The 56 proteins found to be up-regulated in the ECs are assigned
to the following biological processes: metabolic processes
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Fig. 2 Analysis of differentially expressed proteins at day 5 in TCs versus ECs by biological process (A and B), cellular processes (C and D), devel-

opmental processes (E and F) and localization (G and H).

(32 proteins), cellular processes (27 proteins), developmental pro-
cesses (18 proteins) - Figure 6B. The cellular processes which
involve ECs proteins are: cellular component movement (9 proteins),
cell communication (5 proteins), cell cycle (2 proteins) - Figure 6D.
The main developmental processes which involve ECs proteins are:
anatomical structure morphogenesis (13 proteins), system develop-
ment (8 proteins), mesoderm development (5 proteins), ectoderm
development (4 proteins), death (2 proteins), embryo development (1
protein) - Figure 6F. Five proteins in ECs participate in localization
processes e.g. protein transport (4 proteins), nuclear transport (3
proteins), vitamin transport (1 protein), vesicle mediated transport (1
protein), lipid transport (1 protein) - Figure 6H.

The protein classes of the TCs enclose oxidoreductase
(12 proteins), cytoskeletal proteins (8 proteins), structural proteins (6
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proteins), transferase (5 proteins) etc. - Figure 7A. The up-regulated
TCs proteins belong to the following pathways: integrin signalling
pathway (2 proteins) serine glycine biosynthesis (1 protein) - Fig-
ure 7C. In TCs, the up-regulated proteins are related to the following
cellular components: cell part (8 proteins), organelle (8 proteins),
extracellular region (2 proteins) and extracellular matrix (1 protein) -
Figure 7E.

The up-regulated proteins in ECs are attributed to the follow-
ing protein classes: cytoskeletal proteins (18 proteins), transcrip-
tion factor (6 proteins), nucleic acid binding (6 proteins),
hydrolase (5 proteins), oxidoreductase (4 proteins), structural
protein (4 proteins), etc. - Figure 7B. The pathways map depicted
the ECs proteins are related to: integrin signalling pathway (4
proteins), glycolysis (2 proteins), efc. - Figure 7D. The cellular

© 2014 The Authors.
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Fig. 3 Bar graph representation of the distribution of identified proteins in TCs and ECs (cell culture, 5th day) according to their protein class (A and B),

pathways (C and D) and cellular components (E and F) classification.

component of ECs proteome demonstrated proteins related to:
cell part (20 proteins), organelle (18 proteins), extracellular
region (3 proteins) and extracellular matrix (3 proteins), mem-
brane (1 protein), macromolecular complex (1 protein), cell junc-
tion (1 protein) - Figure 7F.

The heat map presenting the differentially expressed proteins
between TCs and ECs is showed in Figure 8 and demonstrate that the
differences between this two cell types are still preserved in cell cul-
ture after 10 days.

Figures 9 and 10 use radar-chart representation of differen-
tially expressed proteins between TCs and ECs at 5th day and at
10th day in cell cultures. Radar charts were chosen because they
allow the visualization of a large numbers of proteins at the
same time.

A String Network analysis was also performed to study the
relation among differentially expressed proteins. In the global
STRING-generated protein-protein network, several complexes and

© 2014 The Authors.

cellular functions formed prominent, tightly connected clusters as
assessed by means of molecular complex detection (see
Figs S1-S4). Figures 11 and 12 quantify protein-interaction
properties of the TCs and ECs, respectively where the confi-
dence view is presented and stronger associations are repre-
sented by thicker lines. These results indicate that while TCs
are involved mainly in oxidation-reduction processes
(Fig. 11A), ECs are involved (as expected) in haemostasis
(Fig. 12A). Both cell types release extracellular vesicles (exo-
somes) [29, 49], however their content is different as indi-
cated in Figures 11B and 12B.

Discussion

Previously, we performed a proteomic analysis of human lung TCs
compared to fibroblasts, at different time-points (the 5th and 10th
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day in primary cell culture) and we demonstrated that TCs protein
expression profile is different [34]. The results were suggestive for
specific roles of TCs in mechanical sensing and mechanic-chemical
conversion task, tissue homoeostasis and remodelling/renewal. In
addition, the presence of some proteins, specific for extracellular
vesicles, emphasize TGCs roles in intercellular signalling and stem
cell niche modulation [19, 34, 50].

Beyond scientific interest in general, the comparison of TCs with
ECs has a specific purpose. Both TCs and ECs are immunohisto-
chemically CD34 positive, but while ECs are CD31 positive, TCs are
(D31 negative. The present proteomic comparison confirms these
immunohistochemical differences.

Putative roles of differentially expressed proteins

We previously showed that myesin-14 which is the main up-regulated
protein in TCs make these cells candidates for a mechanical sensing
and mechanochemical conversion task [34].

Telocytes proteome revealed the presence of SOD2 (SODM), a tet-
rameric anti-oxidative enzyme located in the mitochondrial matrix,
encoded by genes located on chromosome 6 (6025.3). The enzyme

Structural molecule activity
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has manganese in its reactive centre, and catalyse the dismutation of
superoxide (O, ) into oxygen and hydrogen peroxide. SOD2 act as a
cytoprotective enzyme proved to be essential for the survival of aero-
bic organisms [51]. It also serves as key anti-oxidant being consid-
ered a tumour suppressor protein via modulating redox-related
transcriptional factors [52].

Acid ceramidase, (an enzyme encoded by the ASAH1 gene)
which was found to be up-regulated in TCs, is located in lyso-
somes and active at acidic pH [53]. It was shown to have a note-
worthy position in cancer biology: high AC activity leads to an
enhanced cell growth, while low AC activity leads to reduced cell
growth through an enhanced ceramide response [54]. Also, AC
has been shown to play important roles in tumour pathogenesis,
and in resistance to therapy having a key role in controlling the
ceramide-sphingosine-sphingosine-1-phosphate (S1P) balance that
regulates cellular homoeostasis[55]. Therefore, we can hypothesize
that TCs might have pro-proliferative effects through the inhibition
of apoptosis through the regulation of inter-conversion of cera-
mide, sphingosine and S1P.

Envoplakin is a protein that in humans is encoded by the EVPL
gene, and it is a member of a family of large multi-domain molecules
[56]. Periplakin (195 kD) and envoplakin (210 kD) are closely related

Fig. 4 Heat map generated from iTRAQ data by using PEAKS. It shows differential expression results between TCs and ECs (cell culture, 5th day).
Experimental samples are clustered on the horizontal axis and protein spots on the vertical axis. Colours correspond to the level of the measure-
ment: red indicates increased and green decreased expression ratio, while black squares indicate no change in protein abundance.

© 2014 The Authors.
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Fig. 6 Analysis of differentially expressed proteinsat day 10 in TCs versus ECs by biological process (A and B), cellular processes (G and D), devel-

opmental processes (E and F) and localization (G and H).

and have various functions to link cytoskeletal elements together and
to connect them to junctional complexes. As we previously suggested,
the presence of plakins in TCs is related to their homo and heterocel-
lular junctions and it might be related to mechanical sensing and
mechanochemical conversion task [34]. Plakins may also have addi-
tional roles in signal transduction [56].

Endothelial cells proteomic analysis revealed that proteins like
microtubule-associated protein RP/EB family member 1, MUC18,
cysteine-rich protein 2, von Willebrand factor (15.89-fold) and
platelet endothelial cell adhesion molecule were found to be up-
regulated at 5th day and also at 10th day in ECs culture. Microtu-
bule-associated protein RP/EB family member 1 is a ubiquitously
expressed protein which binds to the plus end of microtubules
and regulates the dynamics of the microtubule cytoskeleton, prob-
ably playing a role in cell migration [57]. MUC18 (CD146) is a
glycoprotein detected in endothelial cells as a surface receptor that

1050

triggers a transient increase in the intracellular calcium concentra-
tion [58]. Cysteine-rich protein (CRP) 2 is a member of the LIM-
only CRP family, also expressed in vascular smooth muscle cells
(VSMCs) of blood vessels [59]. Its role is to repress VSMC migra-
tion and vascular remodelling, because it was demonstrated that
the absence of CRP2 increases neointima formation, correlating
with increased VSMC migration [60]. von Willebrand factor is a
haemostatic protein stored in Weibel Palade bodies (considered as
a hallmark of endothelial cells) until release [61]. In addition, we
identified Ras-interacting protein 1 (RAIN) as being overexpressed
in ECs. We can consider RAIN - known to be essential for
endothelial cell morphogenesis and blood vessel tubulogenes - as
being a part of the specific signature for ECs , in consistency with
other recent proteomic study [62].

We found no significant differences between protein expression,
in ECs, at 5 days and at 10 days.

© 2014 The Authors.
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Fig. 7 Bar graph representation of the distribution of identified proteins in TCs and ECs (cell culture, 10th day) according to their protein class (A
and B), pathways (C and D) and cellular components (E and F) classification.

Our present results suggest that TCs are cells relatively rich
in mitochondria, which correlates with previous findings [34].
The primary functions of mitochondria include: generating energy
by oxidative phosphorylation, creating reactive oxygen species
(ROS) and regulating apoptosis. It is also known that cellular
ageing is influenced by oxidative phosphorylation, ROS and
telomeres. Therefore, this study enabled us to suggest TCs
involvement in the modulation of oxidative stress levels which
might lead to a rigorous control in apoptosis activation. This
finding is also in agreement with the fact that TCs are decreas-
ing during ageing of myocardium (work in progress).

This study provides a comprehensive approach to analyse the
comparative proteome between TCs and ECs and we can con-
clude that the significant discriminative power of each of the pro-
teins mentioned above supports the case for TCs as distinctive

© 2014 The Authors.

cells, while ECs are characterized by the already known marker
molecules such as MUC18 and von Willebrand factor. Also, it
supports once more the idea of TCs involvement in tissue homo-
eostasis and in stem cell activity, as previously suggested by our
group.

Moreover, it stands for a recent perspective suggested by Smith-
ies and Edelstein considering TCs as a very primitive nervous system
at the cellular level which can play a major role in morphogenetic bio-
electrical signalling [63, 64].

In conclusion, the current proteomic analysis presented here,
clearly depicts that TCs are completely different from ECs. Pro-
tein expression profile demonstrates that TCs might play specific
roles in intercellular signaling and also as physical and/or chemi-
cal sensors. Their close relationships with stem cells should not
be overlooked.
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Fig. 8 Differentially expressed proteins between TCs and ECs (cell culture, 10th day) were analysed by hierarchical clustering. In the heat map the experimen-
tal samples are clustered on the horizontal axis and protein spots on the vertical axis. Red: up-regulation; green: down-regulation; black: no change.
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Fig. 9 Radar plots of proteomic profile for

top proteins of TCs (A) and ECs (B) at 5th
day in cell culture.
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cess (A) and extracellular vesicular exosome (B) for TCs at day 5. Red nodes represent up-regulated proteins involved in these processes.
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Fig. 12 STRING analysis for ECs at day 5
investigating the interactions between up-
regulated proteins and depicting ECs
involvement in haemostasis (A) and extra-
cellular vesicular exosome (B). Red nodes
represent up-regulated proteins involved
in these processes.
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