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Serological surveys can provide evidence of cases that were not previously detected, depict the spectrum of
disease severity, and estimate the proportion of asymptomatic infections. To capture these parameters, survey
sample sizes may need to be very large, especially when the overall infection rate is still low. Therefore, we propose
the use of “snowball sampling” to enrich serological surveys by testing contacts of infected persons identified
in the early stages of an outbreak. For future emerging pandemics, this observational study sampling design
can answer many key questions, such as estimation of the asymptomatic proportion of all infected cases, the
probability of a given clinical presentation for a seropositive individual, or the association between characteristics
of either the host or the infection and seropositivity among contacts of index individuals. We provide examples,
in the context of the coronavirus disease 2019 (COVID-19) pandemic, of studies and analysis methods that use
a snowball sample and perform a simulation study that demonstrates scenarios where snowball sampling can
answer these questions more efficiently than other sampling schemes. We hope such study designs can be
applied to provide valuable information to slow the present pandemic as it enters its next stage and in early
stages of future pandemics.

asymptomatic infection; contact tracing; coronavirus disease 2019; design effect; SARS-CoV-2; serosurvey

sampling; transmission chain

Abbreviations: COVID-19, coronavirus disease 2019; ICC, intracluster correlation coefficient; SARS-CoV-2, severe acute respi-

ratory syndrome coronavirus 2.

There is great interest in the results of serosurveys based
on antibodies against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), to indicate the true num-
bers of people infected so far in the coronavirus disease
2019 (COVID-19) pandemic, the proportion that might be
immune in future waves of infection, and the proportion
of people infected who experience mild or no symptoms.
These and many other parameters important for the COVID-
19 public health response were difficult to estimate early in
the pandemic. In addition, while people with asymptomatic
or presymptomatic cases are known to be capable of trans-
mission, the proportion of infections caused by such cases
is not clear. While it appears that SARS-CoV-2 transmission
displays overdispersion, a high variance in secondary cases
per index case around the population mean basic reproduc-
tion number (Rp), we do not yet know what characteristics
are associated with superspreading events (1-3).

In addition to estimating population immunity levels, se-
rosurveys can be used to determine the proportion of infec-
tions that might have been undetected because they either
were minimally symptomatic or exhibited symptoms that
did not lead to testing. While random testing is common
for such surveys, the cumulative incidence will vary greatly
depending on the stage of the pandemic, and a very large
sample may be necessary to obtain enough cases to capture
less common disease presentations. An alternative study
design based on “snowball sampling” offers a route for
collecting data on the spectrum of clinical severity and trans-
missibility. This sampling approach is a form of survey sam-
ple enrichment for hard-to-reach populations (4, 5). While
enriched sampling might typically focus on a marginalized
or underrepresented community, snowball sampling in this
context enriches for the presence of seropositivity. Simi-
lar enrichment can occur in studies focused on high-risk
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populations (e.g., health-care workers (6)) or by studying
family members of infected persons (7), but these are not as
representative of the population and possible transmission
routes in a more general setting.

Snowball sampling, or “chain referral sampling,” has a
rich history, especially in the sociology research literature
(8-10). The general research method involves identifying
index individuals and, along with collecting information on
them, asking them to refer other persons suitable for the
study (8, 10). These named individuals are then recruited
into the study. This process may end there or continue for
further stages (9). The method is often used for qualitative
studies of “hidden” populations, where subjects are difficult
to reach or a sufficient sample is unlikely to be obtained
from random sampling (5, 10, 11). It has more recently been
used in infectious disease settings as a cost-effective way
to recruit people into care and into studies (12—14). One
study of human immunodeficiency virus infection found
it to be a more cost-effective approach and to generate a
more representative sample of the spectrum of disease than
standard recruitment methods (14). The generalizability of
results from snowball sampling has been criticized because
the sample is not a true probability sample (11, 15, 16). This
can be mitigated, however, by ensuring a random or repre-
sentative selection of index individuals and by accounting
for clustering in the analysis (15-18).

By taking people who are known to have been infected
and tracing their contacts in order to identify possible trans-
mission events, we are able to both estimate how many
secondary cases were infected by an index case and obtain
a larger data set of persons who have been infected, as well
as persons who were contacts of the same index individual
but not infected. The goal of snowball sampling, as we
propose it, is not to determine the amount of population-
level immunity, which is best addressed by conventional
serosurveys, but to obtain a large number of persons who
have been exposed in order to estimate the range of clinical
presentations and their relation to transmission. We propose
that investigators consider a snowball sampling approach
based on contact tracing in order to more fully answer impor-
tant questions about the clinical presentations of disease and
factors associated with transmission in a cost-effective way.

PROPOSED APPLICATION OF SNOWBALL SAMPLING
FOR SARS-COV-2 SEROLOGICAL SURVEYS

We propose to apply the snowball sampling method to
enrich survey samples in outbreaks for seropositive individ-
uals. This relies on contact tracing, which is primarily used
for outbreak mitigation and to identify linkages between
transmission chains (19). Assuming that a serological assay
with high specificity and sensitivity for previous SARS-
CoV-2 infection is available, the method begins with a
sample of persons who were infected. We then proceed
to test the reported contacts of these cases, both those to
whom the primary case is known to have transmitted and
other potential contacts who may not have been previously
identified. Backward tracing, which incorporates potential
infectors of the index case, may also be used. If feasible,
virological testing can be used as well to identify contacts
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with active infection who may not yet be seropositive. The
sample can be enlarged either by adding more index cases
and their contacts or by adding additional layers (contacts
of contacts who test positive). Enlargement continues until
the sample is estimated to have sufficient statistical power
to answer the question(s) of interest. A history of symptoms
relevant to the question of interest, covering the time period
from the earliest possible infection date to the latest possible
date yielding seropositivity, is collected for each identified
case and contact.

POTENTIAL APPLICATIONS AND QUESTIONS OF
INTEREST

Several types of scientific questions of interest may be
answered through the use of this design. For example, using
only sampled persons who test positive, one can:

1. Identify the range of clinical presentations for an indi-
vidual with a positive serology test (seropositive indi-
vidual).

2. Identify the probability of a given course of disease for
a seropositive individual.

3. Identify the association between a contact’s character-
istics of interest (e.g., types of contact or personal char-
acteristics) and their course of disease. For instance,
some people may be more likely to experience mini-
mally symptomatic infections.

With information on both seropositive and seronegative con-
tacts, researchers can also answer questions about transmis-
sion, such as:

4. Identify the association between some characteristics
of interest (of either the contact or index individual)
and seropositivity among contacts of index individu-
als to determine which are associated with increased
likelihood of transmission.

For example, cases who are asymptomatic (and were unde-
tected by initial contact tracing) may be more likely to
transmit because they are unaware of their status.

Table 1 provides examples of these 4 types of questions
that are relevant for outbreaks of infectious diseases such as
COVID-19, along with analysis methods that are appropriate
for the snowball sampling design.

Other questions of interest may focus on the network
structure itself, that is, the number of seropositive contacts
of each index individual. Much of the snowball sampling
literature focuses on these types of questions, and we refer
readers there for appropriate analysis methods (8, 9, 15).

STATISTICAL ANALYSIS

The primary difference in analysis between random sam-
pling (as in standard serosurveys) and snowball sampling is
that, in snowball sampling, estimation and inference must
account for the clustered nature of the data. The contacts
of an individual have a potentially shared exposure (and
perhaps other latent shared characteristics) and thus can be
viewed as a cluster (20, 21). We will assume for now that
index individuals are a random sample of all possible index
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Table 1. Examples of Scientific Questions of Interest in Early Disease Outbreaks That Can Be Answered Using Snowball Sample Serosurveys

Question Class

Example Question
of Interest

Analysis Methods for
Snowball Sampling

Sample Size
Considerations

References for
Analysis and
Sample Size

Methods

1. Identify the range of Do people infected with Identify any such Clustering of clinical 20-22
clinical presentations COVID-19 experience presentations among presentations by
in seropositive severe joint pain? identified index infector
persons. individuals and

contacts.

2. Identify the probability What proportion of people 1-stage cluster sampling Adjust binomial proportion 20-25, 35
of a given course of infected with COVID-19 ratio estimation using a estimation methods by
disease in experience anosmia? hierarchical model appropriate design
seropositive effect based on
persons. hypothesized ICC.

3. Identify the Is diabetes associated with Logistic or multinomial Sample size calculations 20-26, 31,
association between an increased risk of logistic regression for mixed-effects 39-41
personal hospitalization among model, adjusted for models or generalized
characteristics and people infected with clustering by index estimating equations
course of disease COVID-19? individual using a fits, using a
among seropositive hierarchical hypothesized ICC
contacts. mixed-effects model or

fitted with generalized
estimating equations

4. Identify association Is the age of the index Cochran-Mantel-Haenszel Matched case-control 18, 25, 27-30,
between individual associated analysis and conditional study sample size 33, 34

with an increased risk
of transmission to
identified contacts?

characteristics of the
index individual or
contacts and
seropositivity among
contacts.

logistic regression as
used for analysis of
matched case-control
studies

methods

Abbreviations: COVID-19, coronavirus disease 2019; ICC, intracluster correlation coefficient.

individuals from some larger population of interest (e.g., all
persons with confirmed infection in a given time range at
a given geographic location, workplace, etc.). This could
occur if the index individuals are identified through random
surveys of the population or routine surveillance with a
very sensitive test. This allows inference to proceed, treating
the sample as a cluster sample from a larger population of
clusters (22).

For questions 1 and 2, analysis can account for this poten-
tial correlation by using a hierarchical model, where the
probability of a given clinical presentation differs depending
on the index individual. A common assumption is that the
cluster-specific probabilities are independent and identically
distributed according to some distribution with mean m and
variance o> (23, 24). This is often parameterized using the

intracluster correlation coefficient (ICC), p = #ﬁn) Details
of this approach are given in the Web Appendix (available at
https://doi.org/10.1093/aje/kwab098).

For question 3, we can use logistic or multinomial logistic
regression approaches that account for the clustering of the
data (22). Two common approaches are using mixed-effects
models and fitting regression models using generalized esti-
mating equations (20, 21, 25). Both approaches allow for
the specification of either individual-level (i.e., character-

istics of the contact or the test used) or cluster-level (i.e.,
characteristics of the index case) covariates of interest in the
model. Generalized estimating equations have the advantage
of being robust to misspecification of the correlation model
(21)—for example, if some of the persons identified by an
index individual were actually infected by someone else.
For mixed-effects modeling approaches, clustering param-
eters may not be interpretable if contacts include directly
infected persons, persons infected by another source, and
potential infectors of the index individual. However, this is
equivalent to misspecifying the random-effects distribution,
which in general has a minimal effect on estimation and
inference (26). Additional details can be found in the Web
Appendix.

Finally, for question 4, we are using not only the char-
acteristics of the seropositive contacts but also those of
the seronegative contacts. This mimics a case-control study
design matched by index individual and thus can be ana-
lyzed similarly to other matched case-control studies; meth-
ods include Cochran-Mantel-Haenszel analysis stratified by
index individual and conditional logistic regression models
(25, 27-30). In a study on drug abuse, use of a snowball
sample as the basis for a matched case-control study was
shown to perform well and avoid selection bias (18).
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The above methods use only data from the contacts. For
questions 1-3, however, they can be easily extended to
include the index individuals themselves and second-order
contacts (i.e., contacts of contacts of index individuals). In
these cases, multiple random-effects terms or more complex
correlation structures may need to be specified. Depending
on the question of interest, using more waves in snowball
sampling can ensure greater sample diversity (17) but may
introduce more difficulty for valid statistical inference (15).

We have so far assumed that the index individuals are
a random sample of persons infected with SARS-CoV-2.
If, however, the index individuals over- or underrepresent
people with certain clinical presentations (e.g., if index
individuals are selected among persons with symptomatic
COVID-19) and the clinical presentation of an index case is
related to the clinical presentation of their infected contact,
the methods presented here will not represent the full popu-
lation (5, 16). To account for this, one can use a systematic
sample of index individuals that represents all clinical pre-
sentations or factors associated with them, ensuring diversity
of index cases (17). We can adjust the methods appropriately
by using stratified analyses based on the factors used in
sampling the index individuals (21, 22, 31).

SAMPLE SIZE AND POWER CALCULATIONS

Making the assumptions described in the Statistical Anal-
ysis section, we can calculate the required sample size ac-
cording to the analysis method for various questions.

For question 1, we can calculate the required sample size
(given an estimate of the number of seropositive contacts per
index individual) by finding the number of index individuals
that gives a specific probability of observing at least 1 con-
tact with the clinical presentation, assuming a true under-
lying probability for that presentation. Clustering can be
accounted for by specifying the ICC p. For questions 2 and
3, we must inflate the variance (and thus the required sample
size) of a standard analysis by an appropriate design effect.
This design effect can be estimated by DE = 1 + (m — 1)p,
where m is the average number of seropositive contacts per
index individual (21, 22, 32). More details can be found in
the Web Appendix.

Note that for questions 1-3, the outcome of interest is not
seropositivity but rather the clinical presentation itself. This
probably has a lower ICC than seropositivity. In addition,
some infected persons will have been infected by someone
other than the index individual, so the hierarchical model
may not be correctly specified. Sample size calculations are
thus likely to be conservative, as the true correlation will be
lower than the hypothesized correlation. For analyses with
an individual-level covariate, precise methods for sample
size estimation are not available, but the design effect using
an appropriately adjusted ICC may be a reasonable approx-
imation (21, 24, 31). More complex sample size formulae
can be used if the analysis has multiple levels of clustering
or stratification (21, 22, 31).

We can use these formulae to compare the required sample
size for a snowball sample with that for a simple random
sample. The inflated variance of the design is counterbal-
anced by the higher percentage of tested individuals who
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are seropositive due to the enriched sample from this design.
The effective sample size of a snowball sample is the number
of identified seropositives divided by the design effect. This
can be compared with the number of identified seroposi-
tives from a random serosurvey to determine the relative
efficiency of the 2 designs. An example of this calculation is
given in the Web Appendix.

For question 4, sample size and power calculation meth-
ods are available for matched case-control studies (33, 34).
No simple comparison exists for the relative efficiency of
these matched approaches and approaches based on a ran-
dom sample.

EXAMPLE: SIMULATED STUDY

To illustrate the use of this study design, consider a study
that aims to identify a certain symptom of the disease and
estimate the percentage of infected persons who experience
that symptom (akin to questions 1 and 2 above). One design
would be a random-sample serosurvey where investigators
ask people who test positive whether they have experienced
this symptom. The seropositive persons form the sample,
and the proportion of these who experienced that symptom
can be used as an estimate of the symptom rate. Inference can
proceed using standard methods for binomial proportions.

Using snowball sampling, instead, a small number of
index individuals who were known to be infected are asked
to identify contacts during their potentially infectious period.
These contacts are tested and asked whether they have expe-
rienced the symptom. The seropositive contacts form the
sample. The proportion of these persons who experienced
that symptom, corrected to account for clustering, can be
used as an estimate of the symptom rate. Inference can
proceed using clustered survey sample methods for binomial
proportions (22, 35).

To illustrate the potential benefits of snowball sampling, we
present results from a simulation study using a susceptible-
exposed-infectious-recovered model in a population of
10,000 persons. Each individual in the population has a
set of daily contacts, with an average of 20. A basic re-
production number of 2.5 is used with a dispersion parameter
k = 0.1. Both the number of contacts an individual has
and their “infectiousness” contribute to the overdispersion
of transmission. For simplicity, infected individuals are
assumed to be infectious for 8 days beginning with the
second day after infection, with an equal probability of
infecting a contact on each of those days. On average,
5% of individuals experience the symptom of interest, with
additional variation due to a risk factor. The parameters used
are described in Web Table 1.

We conduct 250 simulations per parameter combination,
varying both the sampling time and the ICC of symptoms
among infector and infectee. Note that by “sampling time”
here, we are referring to the last time at which an individual
could become infected and test positive on the serological
assay. So the actual time at which testing occurred may be
weeks later; incorporating virological testing as well would
reduce the need for this wait time.

In each simulated outbreak, at the designated sampling
time, we sample and test 600 persons at random for the
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“regular sampling” approach and 30 index individuals, who
were infected at least 10 days (i.e., the maximum generation
interval) prior to the sampling time, for the “snowball sam-
pling” approach. All of the contacts of the index individuals
are then tested, for an average of 600 tested contacts. We
also construct a “snowball, error” sample, where each index
individual misses 2 of their true contacts and identifies 2
false contacts. For each sample, we estimate the symptom
rate and construct a 95% confidence interval using a logit
transformation approach, appropriately adjusted for cluster-
ing by index individual for the snowball samples (35). For
simplicity, we conservatively exclude anyone who is iden-
tified as a contact by multiple index individuals, although
methods for overlapping clusters could be used instead. R
code for replicating this simulation study or applying the
sampling methodology to a more specific simulation setting
is available on GitHub (36).

First, to see how well the methods identify this symptom,
we can compare the percentages of each simulation with at
least 1 symptomatic individual in the sample. At the earliest
sampling time, when the population prevalence is around
5%, only 77% of the regular samples included at least 1
symptomatic individual, while over 97% of the snowball
samples did. Incorporating contact recall error in the snow-
ball samples reduced this percentage by less than 1%.

To compare performance on question 2, estimation of
the symptom rate among infected persons, Figure 1 dis-
plays the number of infections identified in each sample
(Figures 1A and 1B), the median and interquartile range of
the estimated symptom rate (Figures 1C and 1D), and the
root mean squared error of estimation (Figures | and 1F)
across all simulations for each method, by sampling time
and ICC. All methods provide unbiased estimation of the
true symptom percentage at the sampling time. However,
the snowball samples, with or without contact error, iden-
tify more infections and thus have a smaller interquartile
range and a lower root mean squared error than the regular
samples. Figure 2 shows the 95% confidence interval width
(Figures 2A and 2B) and empirical coverage (Figures 2C
and 2D) across all simulations for each method by sampling
time and ICC. All methods achieve nominal coverage, but
the snowball sample estimates have narrower confidence
intervals, indicating higher precision. The differences are
less pronounced at later sampling times (where the back-
ground prevalence is higher) and when the ICC is higher
(where the clustered analysis lowers precision). The highest
ICC considered, 0.10, is shown in Figure 3. Simulations
with less overdispersion of transmission demonstrate similar
results (see Web Figures 1-6).

This simulation demonstrates the potential value of snow-
ball sampling in increasing the precision of the estimated
symptom rate among infected persons by enriching the
sample for infected individuals. It also demonstrates that
minor violations of assumptions, such as some incorrect
contact identification, do not negate the benefit of snowball
sampling. The approach described here is agnostic to the
true infector of a contact, so, for the ICCs studied here, the
method is robust to whether the index individual includes
their infector as a contract and to whether there are alterna-
tive sources of infection for the identified contacts.

This simulation study is limited by its simplicity; more
complex models for parameters of interest, contact matrices,
and transmission parameters can be incorporated to assess
the benefits of snowball sampling in a specific setting, for
COVID-19 or another disease. It also does not account for
imperfect testing sensitivity and specificity and delays in
seroconversion, although these would affect both the regular
and snowball samples.

DISCUSSION

This study design has a number of advantages, since its
contact-based testing method enriches the sample for cases
of infection. This allows us to more rapidly and efficiently
determine the range of clinical presentations, including those
among hard-to-reach individuals who may not have had con-
tact with health-care providers (14). In a sample of sufficient
size, we would also be able to compare the numbers of
onward infections associated with different clinical presen-
tations. More data on the role of asymptomatic and less
severe clinical presentations in onward transmission is crit-
ical to designing appropriate responses, as existing studies
may reflect changing contact patterns due to public aware-
ness of the disease rather than biological patterns of infec-
tiousness (37). This sampling approach could also inform
estimates of the secondary attack rate of symptomatic and
asymptomatic cases, improving future modeling studies and
providing context for tailored public health interventions. As
in all studies of secondary attack rates, appropriate definition
of contacts is crucial to obtaining unbiased estimates (38).

Compared with other enriched designs, this approach is
not limited to certain segments of the population and thus
provides a more representative sample of clinical presenta-
tions and demographic factors. It also provides a larger and
more representative sample per index individual than only
sampling household members, allowing better statistical
power to answer a wider range of questions of interest.

There are settings where the snowball sampling design
is not feasible, however, or where it has minimal benefits
compared with random sampling. First, it is not suited to
estimation of overall population seroprevalence. Second, it is
less beneficial in a more mature epidemic, where the higher
overall prevalence reduces the efficiency of the snowball
sample enrichment. In a later epidemic, nonpharmaceutical
interventions may have also reduced the reproduction num-
ber, thus reducing the number of seropositive persons per
index case. These interventions (e.g., social distancing) may
also reduce contacts, however, thus preserving the relative
benefit of snowball sampling. Third, if there is substantial
misclassification of close contacts or bias in recall by index
individuals, this can limit the benefits of the design and
even lead to bias. In particular, if index individuals are
more likely to recall contacts who did experience symptoms,
this approach may lead to overestimation of the rates of
severe clinical presentations. Finally, a high proportion of
superspreading events will lead to high variance in cluster
sizes, reducing the effective size of the snowball sample.

From the practical side, there is a cost of identifying
and reaching index individuals and their close contacts
above that of identifying and reaching randomly sampled
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A) B)
Day and Sampling Method Median (IQR) Day and Sampling Method Median (IQR)
Day 25 Day 25
Regular sampling 36 (22-50) Regular sampling 31 (23-46)
Snowball sampling 99 (82-121) Snowball sampling 98 (82-117)
Snowball, error 93 (76-116) Snowball, error 91 (76-110)

Day 35
Regular sampling
Snowball sampling
Snowball, error
Day 45
Regular sampling
Snowball sampling
Snowball, error

-
2 gl
2 4|

164 (118-216)
234 (190-273)
230 (182-267)

@1 408 (356-450)
@ 441 (393-471)
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Median Infections/Sample

Day 35
Regular sampling
Snowball sampling
Snowball, error
Day 45
Regular sampling
Snowball sampling
Snowball, error

152 (117-201)
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216 (180-261)

398 (354-442)

@l 434 (394-464)
@ 428 (391-464)

I 1 1 1 1 1
0 100 200 300 400 500
Median Infections/Sample

C) D)
Day and Sampling Method Median (IQR) Day and Sampling Method Median (IQR)
Day 25 Day 25
Regular sampling 0.050 (0.022—-0.077) Regular sampling 0.048 (0.023-0.080)
Snowball sampling 0.047 (0.030-0.067) Snowball sampling 0.046 (0.032-0.066)
Snowball, error 0.047 (0.030-0.069) Snowball, error 0.047 (0.030-0.070)
Day 35 Day 35
Regular sampling 0.047 (0.034-0.065) Regular sampling 0.048 (0.034-0.065)
Snowball sampling 0.047 (0.035-0.065) Snowball sampling 0.046 (0.034-0.063)
Snowball, error 0.047 (0.035-0.065) Snowball, error 0.046 (0.035-0.063)
Day 45 Day 45
Regular sampling 0.046 (0.039-0.060) Regular sampling 0.045 (0.038-0.059)
Snowball sampling 0.047 (0.039-0.063) Snowball sampling 0.044 (0.036-0.057)
Snowball, error 0.048 (0.039-0.061) Snowball, error 0.045 (0.037-0.058)
0 0.04 0.08 0 0.04 0.08
Median Symptom Rate Median Symptom Rate
E) F)
Day and Sampling Method RMSE Day and Sampling Method RMSE
Day 25 Day 25
Regular sampling [ ] 0.0368 Regular sampling @® 0.0460
Snowball sampling [ J 0.0193 Snowball sampling [ J 0.0193
Snowball, error [ ] 0.0203 Snowball, error [ ) 0.0202
Day 35 Day 35
Regular sampling [ ] 0.0171 Regular sampling [ J 0.0193
Snowball sampling [ ) 0.0142 Snowball sampling [ ) 0.0156
Snowball, error [ ) 0.0144 Snowball, error [ ) 0.0157
Day 45 Day 45
Regular sampling [ ] 0.0107 Regular sampling [ J 0.0107
Snowball sampling [ ] 0.0114 Snowball sampling [ J 0.0106
Snowball, error [ ) 0.0114 Snowball, error [ ) 0.0109
I 1 1 I 1 1
0 0.025 0.05 0 0.025 0.05

Root Mean Squared Error Root Mean Squared Error

Figure 1. Accuracy and variability of the estimation of the proportion of infected individuals with symptoms from simple random samples,
snowball samples, and snowball samples with error in contact identification. The median number of infections per sample (¢) and its interquartile
range (IQR; bars) (panels A and B), the median estimated symptom rate (proportion of infected individuals who experience symptoms) (¢) and
its IQR (bars) (panels C and D), and the root mean squared error (RMSE) of the estimated symptom rate (panels E and F) are compared by
sampling time (days 25, 35, and 45), the intracluster correlation coefficient (ICC) of infector and infectee symptom status (ICC = 0 in panels A,C,
and E and ICC = 0.05 in panels B, D, and F), and sampling method, with the default dispersion parameter k = 0.1. The underlying probability
of being symptomatic given infection is 5% (vertical line in panels C and D). All symptom rates were estimated using the logit transformation;
estimates for the 2 snowball samples were adjusted for clustering by the index individual, with contacts named by 2 or more index individuals
removed. Results are from 250 simulations per parameter combination.
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A) B)
Day and Sampling Method Median (IQR) Day and Sampling Method Median (IQR)

Day 25 Day 25
Regular sampling o— 0.205 (0.147-0.327) Regular sampling -e— 0.223 (0.160-0.359)
Snowball sampling s 0.091 (0.075-0.115) Snowball sampling (] 0.091 (0.076-0.112)
Snowball, error e 0.094 (0.078-0.119) Snowball, error 8l 0.095 (0.080-0.118)

Day 35 Day 35
Regular sampling o 0.071 (0.057—-0.086) Regular sampling (] 0.072 (0.059-0.088)
Snowball sampling ® 0.057 (0.047-0.069) Snowball sampling ) 0.058 (0.048-0.070)
Snowball, error ) 0.058 (0.046-0.070) Snowball, error ® 0.060 (0.049-0.071)

Day 45 Day 45
Regular sampling ¢ 0.042 (0.039-0.050) Regular sampling ¢ 0.043 (0.038-0.050)
Snowball sampling ¢ 0.042 (0.037-0.048) Snowball sampling ¢ 0.040 (0.035-0.047)
Snowball, error () 0.042 (0.036-0.048) Snowball, error [ ) 0.040 (0.035-0.046)

T T T | s e e |
0 0.10.20.30.40.5 0 0.10.20.30.40.5
Median 95% CI Width Median 95% CI| Width
C) D)
Day and Sampling Method Coverage, % Day and Sampling Method Coverage, %

Day 25 Day 25
Regular sampling o 98.4 Regular sampling 95.2
Snowball sampling o 96.0 Snowball sampling 96.4
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Figure 2. Confidence interval (Cl) width and coverage for estimation of the proportion of infected individuals with symptoms from simple
random samples, snowball samples, and snowball samples with error in contact identification. The median 95% CI width (¢) and its interquartile
range (IQR; bars) (panels A and B) and the empirical coverage of the 95% Cls for the symptom rate among infected persons (panels C and
D) are compared by sampling time (days 25, 35, and 45), the intracluster correlation coefficient (ICC) of infector and infectee symptom status
(ICC=0inpanels A and C and ICC = 0.05 in panels B and D), and sampling method, with the default dispersion parameter k = 0.1. The nominal
Cl coverage is 95% (vertical line in panels C and D). Results are from 250 simulations per parameter combination.

individuals. This may reduce the number of people who can
be sampled. This is particularly the case if a true random
sample of index individuals is desired so that the results are
generalizable, rather than use of a convenience sample of
index individuals (5). The use of preexisting contact tracing
information from public health authorities will reduce the
contact tracing labor required and thus the cost of snowball
sampling. It will also reduce contact recall bias by shortening
the time delay. In further work, researchers should consider
whether contact tracing efforts with virological testing
provide enough information to be used as de facto snowball
samples for retrospective analysis.

As in all serological surveys, the results depend on the
sensitivity and specificity of the assay used. Low sensitivity
will lead to the exclusion of cases, reducing the sample
size achieved and potentially reducing the representative-
ness of clinical presentations. Low specificity will lead to
the inclusion of noninfected persons as index individuals,
resulting in wasted resources, and could also lead to bias
in determining the association between characteristics and

the likelihood of infection among contacts. By enriching
the sample through snowball sampling, resources that might
otherwise be applied to sampling of individuals could be
directed toward the use of a more accurate test, mitigating
some of these problems. If these test characteristics are
known, then analysis methods can be adjusted to account for
them.

Since directionality is important in identifying transmis-
sion risk factors but cannot be fully established in general in
such surveys, evaluations of factors that predict transmission
should be interpreted with caution (37). In some cases,
limiting the analysis to cases where temporal ordering of
infection can be established may be warranted.

Finally, the symptom or risk factor being accurately
recalled by the close contacts is also important for obtaining
unbiased results. This will depend upon the elapsed time
between their possible infection and the conduct of the
survey, as well as the specificity of the symptom under
investigation. For many of these factors, surveys carried
out early in the epidemic will perform better than those
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Figure 3. Accuracy, variability, and 95% confidence interval (Cl) width and coverage for estimation of the proportion of infected individuals
with symptoms from simple random samples, snowball samples, and snowball samples with error in contact identification, for an intracluster
correlation coefficient (ICC) of 0.10. The median number of infections per sample (¢) and its interquartile range (IQR; bars) (A), the median
estimated symptom rate (proportion of infected individuals who experience symptoms) (¢) and its IQR (bars) (B), the root mean squared error
(RMSE) of the estimated symptom rate (C), the median 95% CI width and its IQR (bars) (D), and the empirical coverage of the 95% Cls for the
symptom rate (E) are compared by sampling time (days 25, 35, and 45) and sampling method, with the default dispersion parameter k = 0.1
and with ICC = 0.10. The underlying probability of being symptomatic given infection is 5% (vertical line in panel B), and the nominal Cl width
is 95% (vertical line in panel E). All symptom rates were estimated using the logit transformation; estimates for the 2 snowball samples were
adjusted for clustering by the index individual, with contacts named by 2 or more index individuals removed. Results are from 250 simulations

per parameter combination.
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done later in the epidemic, so snowball sampling might be
an effective approach to ensuring adequate power.

The snowball sampling survey design can collect samples
in a more rapid and efficient manner than conventional
serosurveys, especially in the early stage of an epidemic.
Studies using this design can then provide vital information
on important parameters, including the range and likelihood
of clinical disease severity among infected persons. It should
be considered for use in locations that are still in the early
stage of the COVID-19 pandemic, and its properties should
be further studied so the method can be improved and used
in future infectious disease outbreaks.
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