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Imaging the dynamics of free-electron
Landau states
P. Schattschneider1,2,3, Th. Schachinger1, M. Stöger-Pollach3, S. Löffler3, A. Steiger-Thirsfeld3,

K.Y. Bliokh4,5 & Franco Nori5,6

Landau levels and states of electrons in a magnetic field are fundamental quantum entities

underlying the quantum Hall and related effects in condensed matter physics. However, the

real-space properties and observation of Landau wave functions remain elusive. Here we

report the real-space observation of Landau states and the internal rotational dynamics of

free electrons. States with different quantum numbers are produced using nanometre-sized

electron vortex beams, with a radius chosen to match the waist of the Landau states, in a

quasi-uniform magnetic field. Scanning the beams along the propagation direction, we

reconstruct the rotational dynamics of the Landau wave functions with angular frequency

B100 GHz. We observe that Landau modes with different azimuthal quantum numbers

belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron

frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of

classical electrons, and in perfect agreement with recent theoretical predictions.
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C
lassical electrons in a uniform magnetic field propagate
freely along the field and form confined circular orbits in
the plane perpendicular to the field. The angular velocity

of such orbiting is constant and is known as the cyclotron
frequency. Accordingly, quantum-mechanical eigenstates of a
scalar electron in a uniform magnetic field are localized in the
transverse plane and are characterized by two quantum numbers.
Excluding the longitudinal motion of the electron (as, for
example, in two-dimensional (2D) condensed-matter systems),
this leads to the quantization of the energy levels, which are
degenerate and are characterized by a single quantum number.
Quantum electron states and their corresponding energy levels in
a magnetic field were described by Fock1, Landau2 and Darwin3

in the early days of quantum theory, and are commonly referred
to as Landau states and Landau levels.

Landau eigenstates play a key role in various solid-state
phenomena, such as the diamagnetism of metals, as well as
quantum Hall, Shubnikov–De Haas and De Haas–van Alphen
effects4–6. Landau energy levels reveal themselves in quantum-
Hall conductance plateaus6; they are measured spectroscopically7;
and recently they attracted enormous attention in relation
to graphene systems8–12. However, Landau levels are highly
degenerate and do not provide information about the actual state
and spatial distribution of the electron. Moreover, the drift of the
states in an external random potential blurs the picture in
condensed-matter systems13,14, and it is impossible to observe the
fast rotational dynamics of electrons in such systems. Although
considerable progress was achieved recently in Fourier analysis of
Landau modes15 (based on a single radial quantum number),
their real-space properties remain elusive. Thus, the observation
of spatially resolved Landau eigenstates and their internal
dynamics remains a challenging problem.

Landau states can appear not only in condensed-matter
systems but also for free electrons in a uniform magnetic field.
Recently, we argued16 that, allowing free propagation along the
magnetic field, the Landau states represent non-diffracting

versions of the so-called electron vortex beams17–20.
Furthermore, both the radial and azimuthal (vortex) quantum
numbers of Landau modes crucially determine their properties
and evolution. Electron vortex beams were predicted17 and
recently generated using transmission electron microscopes
(TEM)18–24, and they promise applications in various areas of
both fundamental and applied physics24–34 (for a review, see
ref. 35). Here we report the real-space observation of individual
Landau eigenstates, which are formed by free-electron vortex
beams in a uniform magnetic field inside a TEM. We measure the
fast rotational dynamics of electrons within different states and
reveal their unusual non-classical behaviour. Instead of cyclotron
orbiting, we observe that Landau electrons rotate with three
different angular velocities, determined by the vortex quantum
number.

Results
Rotational dynamics of electrons in quantum Landau states.
The Landau states of an electron in a z-directed homogeneous
magnetic field B40 and uniform gauge with azimuthal vector
potential Aj¼Br/2 are described by cylindrical vortex wave
functions1,3,16
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Here (r, j, z) are cylindrical coordinates, m¼ 0, ±1, ±2, ... and
n¼ 0, 1, 2, ... are the azimuthal and radial quantum numbers,
respectively, wB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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is the magnetic length parameter,

Ljmjn are the generalized Laguerre polynomials and kz is the wave
number of the free longitudinal electron motion. The transverse
energy of the electron is quantized according to Landau
levels1,3,16
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Figure 1 | Landau states with different azimuthal indices and electron Bohmian trajectories. Grey-scale plots show the transverse probability

distributions |c|2 of the states (1) with radial quantum number n¼0 and azimuthal numbers m¼ � 1, 0, 1 (which correspond to the Landau levels (2)

with N¼0, 0, 1). Three-dimensional streamlines of the probability current in equation (3) (that is, Bohmian trajectories) inside these states are shown

for three different radii r/wB¼0.6, 1, 1.4, in the truncated azimuthal range j|z¼0A(0, p), and for the Larmor propagation distance zA(0, v/O) (v is the

electron velocity). Different trajectories are marked by different colours for the sake of convenience. The spiralling of the Bohmian trajectories at the

maximal-intensity radii r¼wB

ffiffiffiffiffiffiffi
mj j

p
(indicated by the orange lines in the bottom planes) corresponds to the m-dependent internal rotational dynamics with

frequencies /oS of equation (4).
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is the principal Landau quantum number and O¼ |e|B/2me is the
Larmor frequency corresponding to the electron charge e¼ � |e|
and mass me. Although the classical electron dynamics is
determined by the cyclotron frequency oc¼ 2O, it is the
Larmor frequency that is fundamental in the quantum
evolution of electrons16,36.

The Landau states (1) resemble z-propagating free-space vortex
beams17–20, which are characterized by the phase factor
exp(imj), circulating m-dependent azimuthal current and
kinetic orbital angular momentum Lz¼ ‘m per electron.
However, the kinetic orbital angular momentum of the Landau
states differs significantly from that of free-space beams and is
determined by the principal quantum number: Lz¼
E>/O¼ ‘ (2Nþ 1)40 (ref. 16). It is this positive angular
momentum and the corresponding negative magnetic moment
Mz¼ (e/2me)Lzo0 that are responsible for the diamagnetism of
electrons predicted by Landau2,3. The nontrivial angular momentum
of the Landau states appears because the gauge-invariant probability
current is modified by the presence of the vector potential A
(ref. 37): j ¼ m� 1

e ‘ Im c�rcð Þ� eA cj j2
� �

. According to this,
the current in the Landau states (1) becomes16
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where �w and �z are the unit vectors of the corresponding coordinate
axes. Here the m-dependent azimuthal term originates from the
free-space vortex current, whereas the second azimuthal term
describes the contribution from the vector potential Aj¼Br/2.

Equation (3) describes the spiralling of the Landau electron
about the magnetic-field direction in the sense of Bohmian

trajectories, that is, streamlines of the probability current38–41. The
expectation value of the electron’s angular velocity, o(r)¼ vj(r)/r
(where v¼ j/|c|2 is the local Bohmian velocity), can be obtained
from equations (1) and (3):

/oS ¼
0 for mo0
O for m ¼ 0
2O for m40
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B = mj j, for ma0. Equation (4) represents a highly surprising
result. It shows that the rotation of electrons in a magnetic field in
the quantum picture is drastically different from the uniform
classical orbiting. Instead of rotation with a single cyclotron
frequency oc¼ 2O, states with negative, zero and positive
azimuthal indices rotate with zero, Larmor and cyclotron rates,
respectively. This result is independent of the radial index n and is
also valid for any superposition of modes with different n and the
same m as long as /r� 2S ¼ w� 2

B = jmj. The probability-density
distributions and internal Bohmian trajectories in the Landau
states (1) with n¼ 0 and m¼ � 1, 0, 1 (which correspond to the
degenerate Landau levels (2) with N¼ 0, 0, 1) are shown in Fig. 1.
One can see that in the m¼ 0 mode the trajectory rotation is
uniform and corresponds to the Larmor frequency O. At the
same time, the rotations inside the ma0 modes depend on the
radius r and coincide with the averaged values /oS (equation (4))
at the maximal-intensity radii r ¼ wB

ffiffiffiffiffiffiffi
mj j

p
. As was recently

demonstrated for photons40,41, Bohmian trajectories can be
measured experimentally using statistical averaging over many
identical single-particle events without interparticle interactions.
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Figure 2 | Schematics of the experiment and the beam parameters. (a) A holographic fork mask generates a row of vortex beams with different

azimuthal indices m¼ ..., � 5, � 3, � 1, 0, 1, 3, 5, ... (refs 19,20). These beams are focused by a magnetic lens and are studied in the region of maximal

quasi-uniform magnetic field. The focal plane is shifted few Rayleigh ranges below the observation plane z¼0 to reduce the Gouy-phase rotation46,47.

A knife-edge stop is placed at zko0, where it blocks half of each of the beams. Varying the position zk of the knife edge, we observe spatial rotational

dynamics of the cut beams propagating to the observation plane (see Fig. 1). (b) Intensity distribution in the |m|¼ 1 beams. The radius w of the

focused beams varies slowly with z. In the highlighted range zA(�80, � 30) mm, the beam radius approaches the magnetic radius, w(z)CwB, and the

beams acquire the Landau-state properties (see Figs 3 and 4).
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The same conditions are realized in electron-optical measurements
in electron microscopy42.

Experimental measurements. The main goal of our experiment
is twofold: first, the creation of free-electron Landau states
(equation (1)) and, second, the observation of their extraordinary
internal rotational dynamics (equation (4)). To produce the free-
electron Landau states, we use the fact that they represent non-
diffracting versions of the free-space Laguerre–Gaussian vortex
beams16,17. Such electron vortex beams are generated in a TEM
using a holographic fork mask (a diffraction grating with a
dislocation)19,20. The mask shown in Fig. 2a has a bar/slit ratio of
1, and it produces beams with different azimuthal indices m¼ 0,
±1, ±3, ±5, ... for different diffraction orders19. (For other
bar/slit ratios, even values of m can also be produced20.) The
vortex beams are then focused with a magnetic lens, which has a
region of a quasi-uniform z-directed strong magnetic field.
Figure 2 shows a schematic diagram of our experimental set-up
with the converging vortex beams. We tune the parameters of the
system, such that in the z-region of a quasi-uniform magnetic
field the beam radius w(z) comes close to the magnetic radius
wB

ffiffiffiffiffiffiffi
mj j

p
(Fig. 2b). Thus, the vortex beams approximate Landau

states (1) with n¼ 0 and different azimuthal indices m. Then, the
observation of the peculiar rotational dynamics described by
equation (4) would verify that the beams indeed acquire

properties of the Landau modes. The more the beam
radius deviates from wB

ffiffiffiffiffiffiffi
mj j

p
, the more /r� 2S deviates from

w� 2
B = mj j, changing the electron angular velocity given by

equation (4).
To observe the internal rotational dynamics of equation (4)

and spiralling Bohmian trajectories (Fig. 1) inside the cylindri-
cally symmetric beams, we borrow a technique successfully
employed in optics43–45 and also recently demonstrated for
electrons46. Namely, we obstruct half of the beam with an opaque
knife edge stop and trace the spatial rotation of the visible part of
the beam when the knife edge is moved along the z axis (Fig. 2a).
Although such truncation of the beam breaks the cylindrical
symmetry of the initial vortex state, it does not perturb
significantly the probability currents in the visible part of the
beam, so that the truncated beam approximately follows the
internal Bohmian trajectories of the initial cylindrical state. Note
that in condensed-matter systems the Larmor rotation of
electrons is fast and cannot be observed as compared with the
slow motion of the centre of mass in an external potential13–15.
In contrast, for paraxial electrons in a TEM, the
transverse Larmor dynamics is slow as compared with the
relativistic longitudinal velocity of electrons: OwBoovBc. This
allows mapping of the internal dynamics on the z axis with
extremely high resolution (in our experiment, the Larmor time
scale O� 1C8 ps corresponded to the propagation distance
zL¼ v/OC1.7 mm (ref. 16)).
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Figure 3 | Experimental images of the cut vortex beams and their m-dependent rotations with the propagation distance. (a) Experimental images of the

row of the cut vortex beams with different m at different positions of the knife edge, zk (Fig. 2). The scale bar is 50 nm. The opposite inclination of the

opposite-m states is because of the residual Gouy-phase diffraction effect46,47. At the same time, one can see a slow rotation of the m40 modes with zk,

while the mo0 states remain motionless. A quantitative analysis of these m-dependent rotations is depicted in b. The azimuthal orientations of the cut

modes j (with respect to the extrapolated reference azimuth jjzk¼0¼ j0) are plotted versus zk and the corresponding timescale tk¼ zk/v (on the top).

Three lines correspond to the zero, Larmor and cyclotron rotations predicted for the Landau states in equation (4). Error bars include the uncertainty in

reading, knife-edge roughness and stage positioning.
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The experiment was performed according to the above
approach in a FEI TECNAI F20 TEM at 200 kV acceleration
voltage (vC0.7c). The focusing lens produced the maximal
longitudinal field BC1.9T, which corresponds to the Larmor
frequency OC120 GHz (using the relativistic mass me¼ gme0)
and the magnetic radius wBC26 nm. Choosing z¼ 0 as the
observation plane, the region of interest was zA(� 80, � 30) mm
(Fig. 2). In this region the magnetic field was uniform up
to negligible variations B10� 2B in the longitudinal
component and B10� 6B in the radial component. The knife
edge was made from a Si crystal. Its position zk was varied in the
region of interest (that is, the propagation distance to the
observation plane was varied by DzC50 mm) to measure the
rotations of the images of the cut beam (the corresponding
Larmor angle is Dj¼Dz/zLC30 mrad, see Fig. 3). Note that the
focal plane of the beams was set at zC8 mm, that is, few Rayleigh
ranges below the observation plane, in order to reduce the
diffractive Gouy-phase rotation of the images46,47 and to
improve the accuracy of the measurements using sufficiently
large vortex radii (Fig. 2a).

Figures 3 and 4 show the results of the experimental
measurements of the cut vortex modes at different positions zk

of the knife edge. In Fig. 3a the images of the modes with
m¼ � 5, � 3, � 1, 0, 1, 3, 5 are shown for three values of zk.
Note that the cut edges of the beams with opposite m have
opposite inclination with respect to the line joining the beams.
This is the residual Gouy-phase rotation46,47 visible at the
observation plane. At the same time, a slow rotation of the m40
states as a function of zk can be detected visually, while the mo0
modes do not experience visible rotation. A quantitative analysis
of the differential rotations of modes with different m is depicted
in Fig. 3b. One can clearly see three different rates of rotations for
modes with mo0, m¼ 0 and m40, in precise agreement with
the prediction of equation (4) and in sharp contrast to the
classical cyclotron orbiting. This confirms that electron vortices
form Landau states and acquire their peculiar properties in the
region of interest. We repeated measurements of the mode
rotations with zk with slightly different defocus values and
holographic masks (including those producing m¼±2 modes).
For each of such experiments we determined the average value of
the rotational velocities /oS¼ v/dj/dzkS for different m. The
results are shown in Fig. 4. One can clearly see that rotational
frequencies in different measurements fluctuate around the
theoretical values of equation (4), and their averages over all
measurements are in very good agreements with the theoretical
Landau-state behaviour. Note that variations of the rotational
frequencies in the ma0 modes and robustness of such
frequencies for the m¼ 0 mode can be related to the radial
dependence (independence) of the rotation in the ma0 (m¼ 0)
Landau states (see Fig. 1).

Discussion
To summarize, the extraordinary m-dependent rotational
dynamics, which is impossible in classical electron propagation,
reveals the peculiar behaviour of quantum Landau states.
Although it is commonly believed that the cyclotron rotation of
electrons underpins Landau states, we have shown that electrons
can also rotate in the quantum Bohmian picture with either zero
or Larmor frequencies. (It is worth remarking that the observed
m-dependent rotation of electrons can be related to the
Aharonov–Bohm effect48. Indeed, it is the asymmetry of the
azimuthal currents in the m40 and mo0 modes, caused by
the presence of the vector potential, that is responsible for the
Aharonov–Bohm phenomenon16,48.) We emphasize several
striking features and the fundamental importance of these

results. First, we demonstrated the appearance of quantum
Landau states within free-electron optics, rather than in a
condensed-matter system. Second, in contrast to condensed-
matter experiments and analyses, we separated modes with
different azimuthal quantum numbers m (some of which
correspond to the same Landau levels) and showed that this
index is crucially important for the electron rotation in a
magnetic field. Third, while the observation of the fast Larmor
dynamics is currently impossible in condensed-matter systems,
this rotation becomes measurable for free relativistic electrons. In
our set-up, this allowed the detection of rotations with frequency
OB100 GHz, corresponding to the energy difference
‘OB100 meV. Thus, our results provide new insights into the
fundamental properties of Landau states and pave the way
towards detailed investigations of their otherwise hidden
characteristics.
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