
www.aging-us.com 2524 AGING 

INTRODUCTION 
 
Alzheimer’s disease (AD) is a chronic, neuro-
degenerative disorder and the most common cause of 
dementia, characterized by mental and functional 
impairment [1]. It is associated with accumulation of 
neuronal amyloid plaques and early lesions primarily in 
hippocampus. It is estimated that AD prevalence 

doubles every 5 years in individuals over the age of 65. 
The World Health Organization has stated that AD 
constitutes a growing universal public health issue with 
enormous consequences on both individuals and 
communities [2]. 
 
AD severely affects the life of the patient, causing 
dependency, disability and subsequent fatality [2, 3]. 
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ABSTRACT 
 
The Apolipoprotein E (APOE) genotype has been shown to be the strongest genetic risk factor for Alzheimer’s 
disease (AD). Moreover, both the lipolysis-stimulated lipoprotein receptor (LSR) and the vascular endothelial 
growth factor A (VEGF-A) are involved in the development of AD. The aim of the study was to develop a prediction 
model for AD including single nucleotide polymorphisms (SNP) of APOE, LSR and VEGF-A-related variants. 
The population consisted of 323 individuals (143 AD cases and 180 controls). Genotyping was performed for: 
the APOE common polymorphism (rs429358 and rs7412), two LSR variants (rs34259399 and rs916147) and 10 
VEGF-A-related SNPs (rs6921438, rs7043199, rs6993770, rs2375981, rs34528081, rs4782371, rs2639990, 
rs10761741, rs114694170, rs1740073), previously identified as genetic determinants of VEGF-A levels in GWAS 
studies. The prediction model included direct and epistatic interaction effects, age and sex and was developed 
using the elastic net machine learning methodology. 
An optimal model including the direct effect of the APOE e4 allele, age and eight epistatic interactions between 
APOE and LSR, APOE and VEGF-A-related variants was developed with an accuracy of 72%. Two epistatic 
interactions (rs7043199*rs6993770 and rs2375981*rs34528081) were the strongest protective factors against 
AD together with the absence of ε4 APOE allele. Based on pathway analysis, the involved variants and related 
genes are implicated in neurological diseases. 
In conclusion, this study demonstrated links between APOE, LSR and VEGF-A-related variants and the development 
of AD and proposed a model of nine genetic variants which appears to strongly influence the risk for AD. 
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There are two basic types of AD: a) familial or early 
onset AD which is responsible for more than 5% of the 
disease incidence and; b) sporadic or late onset AD that 
accounts for 79% of the disease burden. Late onset AD 
is highly heritable and it is etiologically heterogeneous 
originating from a mixture of multiple genetic and 
environmental risk factors. 
 
Some of the genes that have been associated with the 
risk of sporadic AD include the ABCA7, APOE, BIN1, 
CD2AP, CD33, CLU, CR1, EPHA1, MS4A4A/ 
MS4A4E/MS4A6E, PICALM, and SORL1 genes [4]. 
More than 40 genes/loci have been associated with the 
risk of AD through the last 10 years, based on genome-
wide association studies (GWAS) [5]. 
 
The most important genetic factor for AD is the 
Apolipoprotein E gene (APOE). The APOE gene codes 
for a 35 kDa glycoprotein, the apolipoprotein E (ApoE), 
which is strongly expressed in the brain [6]. There are 
three most common allelic variants in the APOE gene 
that alter the protein sequence leading to the formation 
of three different APOE isoforms: APOE2 (cys112, 
cys158), APOE3 (cys112, arg158), and APOE4 (arg112, 
arg158) [6, 7] arising from 3 alleles, respectively, ε2, ε3 
and ε4. These alleles are associated with different ApoE 
roles [7]. The ε4 allele is the strongest risk factor for 
late-onset AD [8, 9], due to its association with 
increased amyloid deposition and is a known risk factor 
for cardiovascular disease (CVD) [10]. Individuals with 
one ε4 allele have a 2 to 3-fold elevated risk of 
developing AD, while those with two ε4 alleles have 
about 12-fold increased risk compared to individuals 
who do not have the ε4 allele. On the other hand, the ε2 
allele of the APOE gene appears to display a protective 
role, as it is associated with reduced risk for AD [7], but 
remains a risk factor for Type III hyperlipidemia [11]. 
Thus, this common polymorphism is an excellent 
candidate to study in the development of genetic risk 
prediction models for AD. 
 
The human APOE gene is situated on the long arm of 
chromosome 19q13.1, an AD-associated zone as 
reported by GWAS [5]. The lipolysis-stimulated 
lipoprotein receptor (LSR) gene is also located in the 
same region and encodes the lipolysis-stimulated 
lipoprotein receptor (LSR) which recognizes ApoE as 
ligand [12]. As an ApoE receptor, LSR is involved in 
the process of managing and maintaining lipid balance 
in the peripheral and central nervous system [13, 14] 
Recently, our team identified significant epistatic 
interactions between two LSR gene single nucleotide 
polymorphisms (SNPs) and APOE in AD patients [12], 
namely the rs34259399 and the rs916147 SNPs. The 
former is located on exon 6 and the latter is located in a 
splicing junction between intron 5 and exon 6. Both 

these SNPs have been studied by our group and 
preliminary results indicate a functionality in terms of 
gene expression modification, while the rs916147 was 
also associated with lipids in a population of obese 
individuals (Yen et al., unpublished results). 
 
The vascular endothelial growth factor A (VEGF-A) is 
also considered as a risk factor for chronic diseases, 
including AD. The VEGF family plays important roles 
in angiogenic regulation, neurogenesis and neuronal 
survival [15]. Although an inverse relationship has also 
been demonstrated [16], decreased levels of VEGF-A in 
serum and cerebrospinal fluid have been linked with 
increased risk for AD and cognitive impairment [17, 18]. 
 
Our group has focused on the study of VEGF-A for 
many years and has been involved in two GWAS by 
which ten genetic variants have been identified 
explaining more than 50% of the individual variability 
of VEGF-A levels [19, 20]. This exceptionally high 
percentage of variability explained by these variants 
makes them optimal target SNPs to be used in the 
candidate genes association studies as determinants of 
VEGF-A levels. In several previous studies we have 
demonstrated associations of these polymorphisms with 
intermediate phenotypes of CVD and other chronic 
diseases, such as autoimmune thyroid disease and 
depression [21–25], where VEGF-A is involved in 
several of their pathophysiology pathways. We have 
initiated and we are coordinating the Vascular 
Endothelial growth factor European Genomic 
Federation Consortium - VEGF Consortium (Sophie 
Visvikis-Siest coordinator, http://www.vegfconsortium. 
org) for the study of VEGF-A in chronic diseases and 
personalized medicine [26]. 
 
The precise detection of individuals at high risk for AD 
is very critical for early diagnosis and appropriate 
management enabling closer monitoring, enhanced care, 
as well as closer supervision of targeted risk factors-
based interventions [27]. Even though late-onset AD is 
known to be a multifactorial disease with a strong 
genetic component, the use of common genetic 
variations identified in GWAS in disease prediction 
modelling has been of limited value so far, given that 
such polymorphisms explain a small relative risk and 
proportion of the underlying genetic contribution. Thus, 
it has been proposed that the predictive ability of 
models would be improved with the inclusion of true 
functional variants, the incorporation of epistatic effects 
and the combination with nongenetic biomarkers [28]. 
 
In the present study, a machine-learning predictive 
model for AD risk was developed, using a case-control 
population of late-onset AD patients and combining 
novel variants on candidate molecules for AD that have 
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Table 1. Populations’ characteristics. 

 Age Sex (male) 

 Mean SD n % 
Controls (n = 182) 74.59 8.39 68 37.36 
Patients (n = 145) 69.94 8.66 69 47.58 

Abbreviation: SD: standard deviation. 
 
Table 2. Characteristics of the genotyped polymorphisms. 

Variants Genes 
All Controls Patients 

MAF HW p-value MAF HW p-value MAF HW p-value 
rs10761741 JMJD1C 0.45 0.77 0.47 0.77 0.44 0.77 

rs6921438 LOC100132354 and 
C6orf223 0.42 0.43 0.41 0.43 0.42 0.43 

rs7043199 VLDLR-AS1 0.24 0.90 0.26 0.90 0.23 0.90 
rs6993770 ZFPM2 0.33 0.71 0.33 0.71 0.34 0.71 
rs114694170 MEF2C 0.45 0.00 0.47 0.00 0.44 0.00 
rs1740073 POLR1C 0.38 0.33 0.38 0.33 0.38 0.33 
rs2375981 KCNV2 and VLDLR 0.47 0.26 0.44 0.26 0.49 0.26 
rs34528081 VEGF-A 0.39 0.93 0.41 0.93 0.36 0.93 
rs916147 LSR 0.37 0.29 0.38 0.29 0.36 0.29 
rs34259399 LSR 0.14 0.76 0.12 0.76 0.15 0.76 
rs4782371 ZFPM1 0.30 0.96 0.34 0.96 0.26 0.96 
rs2639990 ZADH2 0.09 0.94 0.12 0.94 0.07 0.94 
rs429358 APOE 0.22 0.77 0.22 0.77 0.22 0.77 
rs7412 APOE 0.06 0.43 0.06 0.43 0.06 0.43 

Abbreviations: MAF: Minor allele frequency; HW: Hardy-Weinberg. 
 
not been assessed before (VEGF-A related variants), as 
well as their epistatic interactions with known 
functional polymorphisms (APOE and LSR). 
 
RESULTS 
 
The characteristics of the final population used in the 
analysis are presented in Table 1. The mean age of 
participants was 74.59 and 69.94 years old in patients 
and non-patients, respectively. Men constituted 37.36% 
of the control population, whereas they contributed to 
almost half in the cases group (i.e., 47.58%). 
 
The SNPs included in the analysis, their minor allele 
frequencies and their annotation on the genome are 
presented in Table 2. Since the rs114694170 SNP did 
not abide by the Hardy-Weinberg equilibrium law, it 
was removed from the analysis. 
 
After applying the EN method to the data, the model 
with the highest accuracy included the variables 

presented in Figure 1. As expected, the presence of 2 
ε4 alleles (homozygotes e4/e4) was the first variable to 
be linked with increased risk for AD, while the 
absence of ε4 allele was shown to be associated with 
decreased risk. 
 
The epistatic interaction of ε4 allele heterozygotes with 
the rs916147 variant of LSR gene was also associated 
with higher risk for AD, followed by age as the third 
risk factor for AD (Table 3). 
 
The model included five epistatic interactions between 
VEGF-A-related variants, one APOE*LSR 
(rs34259399) interaction and one APOE*VEGF-A-
related polymorphism interaction (for the rs6993770 
SNP), associated with decreased risk for AD (Table 3). 
The strongest predictive factor of the model appears to 
be the interaction rs7043199*rs6993770, which 
decreases the risk of AD, thus playing a protective role, 
followed by the absence of the e4 APOE allele and the 
interaction rs2375981*rs34528081. 
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Table 3. Coefficients of the prediction model. 

  Coefficient 
Risk factor variants APOE_ε4/ε4 0.24 
 APOE_ε4/non ε4*rs916147 0.13 
 Age 0.03 
Protective factor variants rs7043199*rs6993770 −0.66 
 APOE_non ε4 −0.59 
 rs2375981*rs34528081 −0.58 
 rs6921438*rs2639990 −0.18 
 rs2375981*rs2639990 −0.17 
 APOE_non ε4*rs34259399 −0.09 
 rs6993770*rs34528081 −0.04 
 APOE_non ε4*rs6993770 −0.02 

 
The accuracy of the model is 72% with a confidence 
interval CI = (0.6, 0.8) for 95%. The above accuracy has 
been calculated under a model with P-value: 0.009. The 
area under the curve (AUC) of the model is 81%, which 
indicates the detection of true positives (true cases 
predicted as cases) versus false positives (true controls 
predictive as cases). 

Based on the annotation of the identified 
polymorphisms of the prediction model, we identified 
the following list of genes involved in AD risk: VLDLR-
AS1, APOE, KCNV2, ZADH2, C6orf223, LSR, ZFPM2, 
and VEGF-A. After uploading the list to the IPA tool, 
the top five diseases found to be associated with the 
aforementioned were CVD, ophthalmic diseases, 

 

 
 

Figure 1. The coefficient plot of the EN model with the highest accuracy. 
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organismal injury and abnormalities, neurological 
diseases, and cancer. 
 
Subsequently, a network linking most of these genes 
and other mediators was developed using IPA tool 
(Figure 2). The genes and mediators of this network 
have functions that correspond to cancer, 
dermatological diseases and conditions, organismal 
injury and abnormalities. 
 
The network displayed in Figure 2 shows the multiple 
associations identified from the analyses, with the 
VEGF-A gene located at the center of many of the 
observed relationships involved in several metabolic 
pathways connected to cancer and inflammation. In this 
context, VEGF-A appears to interact with the EPO, 
AKT, ERK, TGFB1 genes and the PI3K complex, 
indicating a potential effect in cellular activities, such as 
proliferation and apoptosis, where the AKT, PI3K, ERK 

and TGFB1 cascades and pathways play a significant 
role. The identified network further enhances the 
aforementioned notions, by highlighting respective 
relationships between the ERK, AKT, PI3K, TGFB1, 
APP and the APOE gene. In addition, IPA analysis 
shows direct association between APP and the VEGF-A 
gene, among other associations including the TGFB1, 
MPV17L, ZADH2, NPL, VASH2, GTDC1, EPB41L4A, 
LRRTM3, TRIM25, and ARHGAP27 genes. 
 
DISCUSSION 
 
Early detection of AD is important for the prognosis of 
patients, especially to initiate treatments during its pre-
symptomatic phase and before the pathological amyloid 
and tau protein accumulation and the extensive brain 
damage, which can significantly decrease patient 
autonomy. Multiple approaches have been used for the 
early identification of AD-linked parameters including 

 

 
 

Figure 2. The network that links most of the identified genes that predict AD as generated by IPA tool. 
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medical assessment, as well as cognitive evaluations 
and imaging analyses that exploit multimodal biological 
and molecular features present in AD. Moreover, 
studies that use regression analyses have demonstrated 
the relation between AD and variables including clinical 
examination and cognitive test scores [27]. More 
recently, artificial intelligence approaches have been 
used, including supervised predictive analytics tools 
such as support vector machines, random forests, and 
artificial neural networks to distinguish AD cases from 
controls, and for identifying individuals with higher risk 
of AD in a given period of time [27]. In the present 
study, we used EN [29], a supervised machine learning 
method, to assess the role of genetic variants of 
common AD biomarkers on the prediction of AD risk. 
 
The EN revealed one model with an adequate accuracy 
of 72% that mostly included epistatic interactions 
between the assessed variants as predictors of AD risk. 
The first and strongest genetic predictor was the APOE 
e4 allele, which is in agreement with a large volume of 
scientific results that support this finding [9, 28]. 
Despite this, the precise processes by which ApoE 
affects AD remains unclear. AD is characterized by two 
main features encompassing the existence of 
extracellular deposition of Aβ generating amyloid 
plaques, and intracellular occurrence of neurofibrillary 
tangles (NFT) consisting of clusters of hyper-
phosphorylated tau protein. ApoE may be associated 
with AD through its direct synergism with Aβ proteins. 
Indeed, the ApoE has been found in Aβ plaques of AD 
brains [30], and knock-out studies of APOE gene in 
mice have revealed that ApoE is critical for the 
initiation and retention of Aβ plaques. Furthermore, the 
direct synergistic link between ApoE and tau protein 
may also contribute to the association of ApoE and AD. 
Previously, the existence of ApoE was detected in Tau-
NFT mediated deposits [31]. In addition, up-regulation 
of APOE4 in neuronal cells of genetically engineered 
mice triggered a rise in tau hyper-phosphorylation 
induced by Erk stimulation [6]. 
 
Using the EN model, we observed the significant role of 
the interactions between APOE e4 allele polymorphism 
and the 2 SNPs of the LSR gene which we have 
identified in a previous study [12]. LSR is present in the 
central nervous system [13] and the lsr+/− mice display 
increased memory deficits following 
intracerebroventricular injection of the oligomeric 
soluble form of the β-amyloid peptide [32]. Animal 
studies have shown the presence of LSR gene transcripts 
in endothelial cells (ECs) of the blood-brain barrier 
(BBB) [33]. In lsr−/− knockout mice, the BBB does not 
appear to seal during embryogenesis [34], highlighting 
LSR’s critical role in maintaining BBB integrity. 
Furthermore, given its role as an ApoE receptor, LSR is 

involved in lipid metabolism in the brain [13]; Herzine 
et al, manuscript in preparation) and could, therefore, 
play a role in AD development, with the present genetic 
associations further supporting this hypothesis. 
 
The novel results of the present model include five 
epistatic interactions between VEGF-A-related variants 
and one APOE*VEGF-A-related polymorphism 
interaction (rs6993770) associated with decreased risk 
for AD. 
 
VEGF-A has been proposed as a promising novel 
therapeutic approach for AD [35]. Transplantation of 
mesenchymal stem cells into the double transgenic AD 
mouse model (APPswe/PS1dE9 mutations) leads to 
improvement of cognitive function [36]. Furthermore, 
higher VEGF-A concentration in the cerebrospinal fluid 
has been associated with slower cognitive decline in 
patients with AD risk [17]. Thus, VEGF-A could be 
considered as a protective factor for individuals having 
high risk of AD. 
 
Concerning the interactions between APOE and 
VEGF-A, this is consistent with studies showing that 
VEGF-A exerts a neuroprotective effect in humanized 
APOE ε4 mice, where treatment with VEGF-A leads to 
improvements of behavioral deficits [37]. A recent 
study also demonstrated that APOE ε4 interacts with 
VEGF-A gene expression in the brain to affect 
cognitive performance [38]. Therefore, VEGF-A alone 
or in interaction with ApoE, seems to play an 
important role in AD risk, consistent with the results 
of this study. 
 
The polymorphism rs6993770 is involved in 2 epistatic 
interactions with other VEGF-A-related SNPs and one 
interaction with APOE ε4 allele. This constitutes an 
intronic variant of the ZFPM2 (zinc finger protein, FOG 
family member 2) gene. The latter codes for the FOG 
family member 2, which is linked with repression of 
GATA mediated transcriptional activation [39, 40] and 
thus with hematopoiesis. The T minor allele has been 
associated with decreased VEGF-A levels [19, 20]. In 
the present model, this allele interacted with the non-ε4 
alleles of APOE gene to decrease the risk for AD. Also, 
the TA genotype of rs6993770 interacted with the AA 
genotype of rs7043199 to decrease the risk for AD. The 
rs7043199 SNP in an intronic variant of VLDLR-AS1 
gene and is located close to the VLDLR gene and its A 
allele has been associated with decreased VEGF-A 
levels [19, 20]. The VLDL receptor is a member of the 
low-density lipoprotein receptor family and binds 
ApoE. It is involved in pathways essential for the 
development of laminated structures and for the 
synaptic plasticity of the brain and is, thus, considered 
as a receptor that could be involved in the development 
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of AD [41]. It is important to note that this interaction 
presented the highest coefficient, thus is the strongest 
predictive factor of the model, with a protective role 
against AD higher than that of the absence of e4 APOE 
allele. Our team was among the first to identify the 
allele 4 of the APOE gene as the strongest genetic risk 
factor for AD [8] and in this investigation we are 
proposing the rs7043199*rs6993770 interaction as a 
strong protective factor against AD. Finally, the A 
major allele of the rs6993770 (AA genotype) interacted 
with the deletion genotype of the rs34528081, which is 
an intergenic SNP close to VEGF-A gene, with the 
overall result of decreasing the risk for AD. Both alleles 
of these 2 SNPs have been associated with increased 
levels of VEGF-A [19, 20]. Thus, this interaction could 
be linked with further increase in VEGF-A levels that 
have been shown to have a protective effect against AD 
[17, 18]. The same deletion genotype of rs34528081 
also interacted with the GG genotype of rs2375981, 
which is an intergenic SNP between KCNV2 and 
VLDLR gene and whose G allele has been associated 
with decreased levels of VEGF-A [19, 20]. This 
interaction that is associated with decreased risk of AD 
could either be explained by a modification of VEGF-A 
levels or through an effect on the VLDLR gene. It has a 
very high coefficient in the model, similar to the 
absence of APOE ε4 allele, and thus has a strong 
protective effect. Furthermore, the GC genotype of 
rs2375981 interacted with the CT genotype of 
rs2639990 to decrease the risk of AD. This is an 
intronic variant of ZADH2 gene and the T allele has 
been associated with increased levels of VEGF-A [19, 
20]. Hypomethylation of differentially methylated 
positions located on ZADH2 has been observed in AD 
patients and have been associated with memory 
performance and cerebrospinal fluid levels of Aβ and 
tau [42], thus indicating a role of this gene on AD. Also, 
the same genotype of this SNP interacted with the GA 
genotype of rs6921438 to decrease the risk of AD. The 
rs6921438 is an intergenic SNP located between 
LOC100132354 (lnc-RNA) and the C6orf223 gene 
(encoding an uncharacterized protein) and is near the 
VEGF-A gene. The A allele is associated with decreased 
levels of VEGF-A [19, 20] and explains the highest 
percentage of VEGF-A levels variability (41.19%). This 
SNP (A allele) has also been associated with decreased 
HDL and increased LDL [22, 43]. It is thus a marker 
linked with both VEGF-A levels and lipid metabolism, 
which could mediate its relationship with AD. 
 
The strengths of the present study include the use of 
the EN method in the development of the prediction 
model, which is a machine learning approach more 
powerful than classical statistics methodologies. 
Furthermore, the identified model showed a sufficient 
accuracy of 72% and an AUC of 81%. The accuracy of 

the model is comparable to other tools [44–46] and 
this is very important as our model uses genetic 
factors. In fact, in other studies, the addition of a 
genetic score led to a small improvement of prediction 
of the classical variables model [47]. In a recent 
review, 61 papers describing dementia risk models 
were identified and most of them had moderate-to-
high predictive ability (AUC > 0.70). The highest 
AUC value was 0.932 [48] and our AUC is 81%. All 
these data highlight the satisfactory accuracy of the 
identified prediction model. 
 
A few limitations of the study, however, include the 
relatively small sample size and the lack of VEGF-A 
levels’ measurements in the studied populations. 
 
In summary, the prediction model proposed in the 
present study consists of 8 epistatic interactions that, in 
combination with the APOE ε4 allele, directly affect the 
risk for AD. These interactions involve 9 polymorphisms 
in 8 genes: VLDLR-AS1, APOE, KCNV2, ZADH2, 
C6orf223, LSR, ZFPM2, and VEGF-A. 
 
IPA analysis highlighted relationships between the 
identified genes and neurological diseases, within the 
first top five disorders associated with said genes, 
including CVD and cancer. This finding indicates that 
the genetic determinants of the selected biomarkers 
(VEGF-A, LSR and APOE) could act as common links 
between important chronic diseases. In fact, most of 
these genes are shown to be linked in the context of an 
enlarged common network, the functions of which 
correspond to cancer, dermatological diseases and 
conditions, organismal injury and abnormalities. 
 
In conclusion, these novel epistatic interactions between 
APOE, LSR and VEGF-A related polymorphisms allow 
for prediction of AD risk, constituting not only a useful 
prediction model, but also providing new insights about 
molecular mechanisms that can be involved in AD 
development which could be useful as biomarkers 
and/or treatment targets. We are also proposing two 
epistatic interactions (rs7043199*rs6993770 and the 
rs2375981*rs34528081) between VEGF-A-related 
polymorphisms as strong protective factors against AD. 
 
METHODS 
 
Population and data collection 
 
The study population consisted of 1078 (602 controls 
and 476 cases) unrelated adults of European origin, 
recruited during the period 1996–1998. The study was 
approved by the related ethics committees and all 
participants provided written consent prior to their 
enrollment in the study. 



www.aging-us.com 2531 AGING 

The recruitment and data collection procedures of the 
present population have been previously extensively 
described [9]. The clinical diagnosis of AD was based 
on 5 criteria: the National Institute of Neurological and 
Communicative Disorders and Stroke and the AD and 
Related Disorders Association classification of 
probable AD [28]; the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition [28]; the 
International Classification of Diseases and Related 
Health Problems, 10th Edition [28]; the Mini Mental 
State Examination score equal to or less than 23 (Mini 
Mental State Examination >23 for controls) [28]; and, 
lastly the modified ischemic scale less than three [28]. 
Secondary causes of dementia were excluded by 
computerized tomography scan of the brain. 
Individuals with other chronic or neurological 
diseases, such as cancer and Parkinson's diseases, 
respectively, were excluded from the study. 
Participants serving as controls followed similar 
assessment and interviews as cases, except for the 
computerized tomography scan. All controls presented 
a Mini Mental State Examination >23 and were free of 
dementia. 
 
Genotyping data were available in a subsample of the 
population. The final sample size after quality control 
for genotyping and outliers exclusion was 323 
individuals (143 AD cases and 180 controls). 
 
Genotyping analyses 
 
DNA was extracted from peripheral blood [49] and all 
samples were stored in biobanks of the BRC IGE-PCV 
(Biological Resources Center ‘Interactions Gène-
Environnement en Physiopathologie Cardio-Vasculaire’ 
BB-0033-00051). Two SNPs of the LSR gene 
(rs34259399 and rs916147) previously identified as 
candidate variants for AD were genotyped, along with 
the 10 VEGF-A-related polymorphisms (rs6921438, 
rs7043199, rs6993770, rs2375981, rs34528081, 
rs4782371, rs2639990, rs10761741, rs114694170, 
rs1740073) and the common APOE variants. The 
genotyping analyses were performed in LGC genomics 
(http://www.lgcgroup.com) using the competitive allele-
specific PCR (KASP) chemistry coupled with a Förster 
resonance energy transfer-based genotyping system 
(http://www.kbioscience.co.uk/reagents/KASP/KASP.ht
ml). Two of the APOE common polymorphisms 
rs429358 (Cys112Arg) and rs7412 (Arg158Cys) were 
genotyped as previously described [50]. 
 
Statistical analyses 
 
The agreement of the frequencies of genotypes with the 
Hardy-Weinberg equilibrium was tested using the chi-
squared test. 

For the purposes of developing the prediction model, a 
machine learning method was applied, entitled “Elastic 
Net” (EN) [29], with the aim of identifying the 
strongest predictors for the risk of AD combining all 
genotyping data (direct effects and epistatic 
interactions), as well as age and sex. In short, the 
method tests hundreds of logistic regression models 
and penalizes each of them, in order to reach the final, 
optimal one. The former constitutes an extensively 
used method, especially in the development of disease 
prediction models with special attention to the 
integration of omics data [51–54]. Furthermore, the 
method can allow accurate predictions with smaller 
sample sizes as it tolerates a big number of predictors 
[29] and it is also used in analyses entailing genetic 
data, as well as GWAS studies [55, 56] and it is 
considered to function better in cases where gene * 
environment interactions are involved in the prediction 
of a disease [57]. Comparison studies have shown that 
EN is a powerful tool, especially when additive gene 
effect is expected [58]. It has also been previously 
used in AD risk prediction with clinical factors, 
imaging and omics [59–61] but not to study the effect 
of candidate genes as predicting factors. 
 
In the context of the present analyses, APOE genotypes 
were divided into 3 groups according to the potential 
presence of ε4 allele (coded as 2 = ε4/4; 1 = ε2/4, ε3/4; 
and 0 = ε2/2, ε3/2, ε3/3). The complete dataset was split 
into two separate datasets, the “train” dataset that 
included the 80% of the whole population (AD patients 
+ controls) and the “test” dataset that included the 
remaining 20% of the whole population (AD patients + 
controls). This selection was random and was 
performed by the R command ‘createDataPartition’ that 
is specific to this. The EN analysis was performed using 
the R software. 
 
Pathway analysis 
 
All genes identified to participate in AD risk prediction 
were further assessed using the QIAGEN Ingenuity 
Pathway Analysis (IPA) tool, in order to examine 
potential relationships and identify causal links, with the 
overall aim of proposing mechanisms to explain the 
results deriving from the prediction model. 
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