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Abstract

Magnetic resonance imaging (MRI) studies of fetal alcohol spectrum disorder (FASD)

have shown reductions of brain volume associated with prenatal exposure to alcohol.

Previous studies consider regional brain volumes independently but ignore potential

relationships across numerous structures. This study aims to (a) identify a multivariate

model based on regional brain volume that discriminates children/adolescents with

FASD versus healthy controls, and (b) determine if FASD classification performance

can be increased by building classification models separately for each sex. Three-

dimensional T1-weighted MRI from two independent childhood/adolescent datasets

were used for training (79 FASD, aged 5.7–18.9 years, 35 males; 81 controls, aged

5.8–18.5 years, 32 males) and testing (67 FASD, aged 6.0–19.6 years, 38 males;

74 controls, aged 5.2–19.5 years, 42 males) a classification model. Using FreeSurfer,

87 regional brain volumes were extracted for each subject and were used as input

into a support vector machine generating a classification model from the training

data. The model performed moderately well on the test data with accuracy 77%, sen-

sitivity 64%, and specificity 88%. Regions that contributed heavily to prediction in

this model included temporal lobe and subcortical gray matter. Further investigation

of two separate models for males and females showed slightly decreased accuracy

compared to the model including all subjects (male accuracy 70%; female accuracy

67%), but had different regional contributions suggesting sex differences. This work

demonstrates the potential of multivariate analysis of brain volumes for discriminat-

ing children/adolescents with FASD and provides indication of the most affected

regions.
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1 | INTRODUCTION

A diagnosis of fetal alcohol spectrum disorder (FASD) relies on the

identification of physical, cognitive, and behavioral impairments

related to prenatal alcohol exposure (PAE; Popova et al., 2016). Quan-

titative structural magnetic resonance imaging (MRI) studies have con-

sistently reported reductions of total brain, white matter, and gray

matter volumes in individuals with prenatal exposure to alcohol who

are often diagnosed with FASD (for reviews, see Donald et al., 2015;

Lebel, Roussotte, & Sowell, 2011). Some structures may be dispropor-

tionately affected in FASD with larger proportional reductions in spe-

cific deep gray matter structures such as the caudate and putamen

(Nardelli, Lebel, Rasmussen, Andrew, & Beaulieu, 2011; Roussotte

et al., 2012). These brain volume reductions have also been reported
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in infants and neonates with PAE for the corpus callosum (Jacobson

et al., 2017) and gray matter (Donald et al., 2016). In addition, larger

volume reductions have been observed in males with FASD

suggesting sex differences (Chen, Coles, Lynch, & Hu, 2012; Dudek,

Skocic, Sheard, & Rovet, 2014; Treit et al., 2017). However, most of

these studies analyze each brain region separately (i.e., univariate

analysis) and volumes have considerable overlap between groups

making them unsuitable for individual FASD diagnosis.

Machine learning classification takes multiple variables as input to

build a multivariate classification model capable of separating groups

based on the provided input. In short, a multivariate classification

model is a mathematical equation that describes a multidimensional

boundary (e.g., a plane) where data points located on opposite sides

of the boundary are classified into different groups (i.e., FASD

vs. control). Machine learning classification of neuroimaging features

has shown promise to discriminate individuals with brain disorders

from healthy controls (Arbabshirani, Plis, Sui, & Calhoun, 2017). These

techniques have been applied in pediatric populations to identify neu-

rodevelopment disorders such as attention deficit hyperactivity disor-

der (ADHD) and autism (Levman & Takahashi, 2015). Multivariate

classification studies with neuroimaging data typically rely on a large

number of samples to achieve stable models (Nieuwenhuis et al.,

2012) and to date ADHD classification studies have been performed

most often on the same cohort of children and adolescents collected

as part of the ADHD-200 consortium (Milham, Fair, Mennes, &

Mostofsky, 2012). Classification models on the ADHD-200 data have

achieved accuracies ranging from 55% using structural brain features

(Colby et al., 2012) to 81% using resting-state functional connectivity

features (Fair et al., 2013) in classifying children/adolescents with

ADHD. Similar accuracies have been achieved in studies of large

cohorts (>100 participants) of children/adolescents with autism

reporting classification accuracies of between 70% using a combina-

tion of regional brain volume and functional connectivity features

(Zhou, Yu, & Duong, 2014) to 91% using functional connectivity fea-

tures alone (Chen et al., 2015). To our knowledge, only one study

focusing on eye tracking and psychometric data has attempted FASD

classification using neuroimaging-based features. This study extracted

features from diffusion MRI of the corpus callosum, and achieved an

accuracy of 65–70% in classifying children/adolescents with FASD

(41 individuals with FASD, 35 controls) (Zhang et al., 2019) that was a

subset of the larger cohort used in the current study. However, to

date, no study has investigated the utility of multivariate classification

models using regional brain volumes (notably the most consistent

finding across FASD MRI studies) in FASD. Additionally, classification

studies of neurodevelopmental disorders typically use a linear regres-

sion to reduce sex-related variation of input features; however, in

cases where there are group by sex interactions (e.g., those observed

in FASD) this would be suboptimal.

This study had two key aims to: (a) identify a multivariate model

based on regional brain volume capable of discriminating children/

adolescents with FASD and (b) determine if FASD classification per-

formance can be increased by building classification models separately

for each sex given the known volume differences between males and

females as a group (Cahill, 2006; Cosgrove, Mazure, & Staley, 2007).

The brain volume model was developed and then tested on indepen-

dent FASD/un-exposed control cohorts from two studies—a four-site

pan-Canadian “NeuroDevNet” cohort (79 FASD, 81 controls) and a

local single-site “Canadian Institutes of Health Research (CIHR)”

cohort (67 FASD, 74 controls).

2 | METHODS

2.1 | FASD/typically developing subjects training and
testing datasets

Two previously collected independent MRI datasets were used to

generate and validate a predictive model. The training data were col-

lected at four different sites across Canada as part of the Neu-

roDevNet project on FASD (Reynolds et al., 2011) and was selected

as the training dataset so that outputted models were generalizable to

different centers or scanners. One hundred and eighty-one child-

hood/adolescent healthy and FASD participants underwent brain MRI

at four sites, but 21 subjects (11 FASD, 10 controls) were excluded

for poor structural imaging quality. The remaining 160 subjects

included 79 children with FASD (12.7 ± 3.2 years, 35 males) and

81 healthy unexposed controls (11.9 ± 3.4 years, 32 males). Group

analysis of brain volumes has been reported elsewhere for the healthy

controls and FASD groups in this cohort (Zhou et al., 2017). FASD

participants were recruited from six clinics across Canada and had an

alcohol-related disorder in accordance with the Canadian Guidelines

for diagnosis of FASD (Chudley et al., 2005) or had confirmed PAE.

The FASD participants in the training data included seven fetal alcohol

syndrome (FAS), 13 partial FAS (pFAS), 38 alcohol-related neu-

rodevelopmental disorder (ARND), and 21 confirmed PAE. In this

study, subtypes were combined into two diagnostic groups, either

20 FASD with sentinel facial features (FAS or pFAS) or 38 FASD with-

out sentinel facial features (ARND) in-line with updated diagnostic

guidelines (Cook et al., 2016). PAE subjects remained in a single group

as the diagnostic guidelines characterize this group as “at risk of neu-

rodevelopmental disorder and FASD.” All FASD subtypes were labeled

as a single group for machine learning classification.

The testing data for model validation was collected under a CIHR

project on brain development. Participants with brain MRI included

67 participants with FASD (12.1 ± 3.3 years, 38 males) and 74 controls

(11.5 ± 3.5 years, 42 males). Notably, 57 FASD and 66 control partici-

pants were included in our previous study on volumes/DTI/cortical

thickness (Treit et al., 2017). The other 10 FASD participants were

included in a much earlier diffusion MRI study (Lebel et al., 2008), and

were the participants that did not overlap the FASD participants from

(Treit et al., 2017). An additional eight controls were randomly

selected males from a typical development cohort (Narvacan, Treit,

Camicioli, Martin, & Beaulieu, 2017) and were added to provide a sim-

ilar ratio of males and females in the control and FASD groups. All

three studies combined for the test data used the same three-

dimensional (3D) MPRAGE protocol on the same scanner at the Uni-

versity of Alberta. Participants from the FASD group were recruited
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primarily through an FASD diagnostic clinic at the Glenrose Rehabili-

tation Hospital in Edmonton, AB, and were diagnosed based on Cana-

dian guidelines (Chudley et al., 2005) and the 4-digit diagnostic code

(Astley, 2004). The FASD participants in the testing data included

10 FAS, four pFAS, two ARND, one fetal alcohol effect (FAE), seven

neurobehavioral disorder alcohol exposed (NBD:AE), nine static

TABLE 1 Participant characteristics and demographics for training “NeuroDevNet” data

Control FASD p-Valuea

Participant characteristics n = 81 n = 79

Age (years) 11.9 ± 3.4 (5.8–18.5) 12.7 ± 3.2 (5.7–18.9) .138

Males (%) 32 (40%) 35 (44%) .540

FASD subtype (%)

FASD with sentinel facial features 0 (0%) 20 (25%) <.001*

FASD without sentinel facial features 0 (0%) 38 (48%) <.001*

Confirmed PAE 0 (0%) 21 (27%) <.001*

Ethnicity (%)

Indigenous 1 (1%) 41 (52%) <.001*

Caucasian 74 (91%) 24 (30%) <.001*

Other 5 (6%) 14 (18%) .024*

Unknown 1 (1%) 0 (0%) .323

Medication (%)

Stimulants 1 (1%) 12 (15%) .001*

Antidepressants 0 (0%) 3 (4%) .078

Antipsychotics 0 (0%) 3 (4%) .078

Stimulants and antipsychotics 0 (0%) 8 (10%) .003*

Stimulants, antipsychotics, and antidepressants 0 (0%) 2 (3%) .151

Other 7 (9%) 24 (30%) <.001*

No medication 73 (90%) 38 (48%) <.001*

Comorbidities (%)

ADHD 1 (1%) 40 (50%) <.001*

Anxiety 0 (0%) 10 (13%) .001*

Depression 0 (0%) 4 (5%) .041*

Bipolar 0 (0%) 2 (3%) .151

Oppositional defiant disorder 0 (0%) 6 (8%) .012*

Conduct disorder 0 (0%) 2 (3%) .151

Autism 0 (0%) 1 (1%) .311

Other disorder 0 (0%) 23 (29%) <.001*

Site (%)

University of Alberta 42 (52%) 34 (43%) .266

Queens University 18 (22%) 22 (28%) .413

University of Manitoba 8 (10%) 10 (13%) .579

University of British Columbia 13 (16%) 13 (16%) .945

Cognitive test (age standardized score)

Woodcock Johnson Quantitative Concepts 18A&B mathematics n = 80/81 n = 78/79

105 ± 12 (69–129) 83 ± 19 (37–129) <.001*

WRMT-R-Word Identification n = 80/81 n = 78/79

106 ± 13 (71–134) 91 ± 14 (52–126) <.001*

Abbreviations: CHIR, Canadian Institutes of Health Research; FASD, fetal alcohol spectrum disorder; PAE, prenatal alcohol exposure; WRMT-R, Woodcock

Reading Mastery Tests-Revised.
aGroup differences of categorical variables (e.g., sex) assessed with Mann–Whitney U test; continuous variable (e.g., age) assessed with independent

samples t test (*p < .05).
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encephalopathy alcohol exposed (SE:AE), 16 “FASD” without further

specification, and 18 with no FASD diagnosis but confirmed PAE. As

in the training data, subtypes were combined into two diagnostic

groups, either 14 FASD with sentinel facial features (FAS or pFAS) or

35 FASD without sentinel facial features (ARND, FAE, NBD:AE, SE:

AE, or FASD) consistent with updated diagnostic guidelines (Cook

et al., 2016). All FASD subtypes were labeled as a single group for the

testing of the machine learning classification model. Further demo-

graphic information for training and testing datasets was collected via

questionnaire including ethnicity and current medication and is sum-

marized for the training and testing cohorts in Tables 1 and 2,

respectively.

This study was approved by the Human Research Ethics Boards at

Queens's University, University of Alberta, Children's Hospital of East-

ern Ontario, University of Manitoba, and the University of British

Columbia. Written informed consent was obtained from parent or

legal guardian of children/adolescents. Assent was obtained from

each child/adolescent before study participation.

2.2 | Cognitive testing

Cognitive assessments were performed on the day of the MRI scan at

all four sites by research assistants trained by the same neuropsychol-

ogist for between site consistency. Research assistants were not

blinded to FASD diagnosis and participants took their medication as

usual on the days of behavioral testing. The cognitive batteries per-

formed for both the training and testing datasets were different but

included evaluations of core functions affected in PAE such as math,

reading, executive function, memory, and inhibition. For a full sum-

mary of the behavioral tests, see previously published work for train-

ing data (Zhou et al., 2017) and testing data (Treit et al., 2017). Only

behavioral tests that were conducted in the majority of participants in

both the training/testing cohorts were included for analysis in the cur-

rent study: the Woodcock Johnson III Tests of Achievement evaluated

mathematic and quantitative reasoning skills (Woodcock, McGrew, &

Mather, 2001) and the Woodcock Reading Mastery Tests-Revised

(WRMT-R) provided a comprehensive assessment of reading ability

(Woodcock, 1998). Results for behavioral tests for the participants/

cognitive tests in the current study are presented for both the training

and testing groups in Tables 1 and 2, respectively.

2.3 | Image acquisition

The training “NeuroDevNet” MRI data were acquired at four MR

imaging centers: University of Alberta (1.5 T Siemens Sonata), Queen's

University (3 T Siemens Trio), University of Manitoba (3 T Siemens

Trio), and University of British Columbia (3 T Philips Intera). 3D

T1-weighted images were acquired with high-resolution

(1 × 1 × 1 mm3) MPRAGE using 160 axial slices, TI = 1,100 ms, and

flip angle = 15�, but repetition (TR) and spin echo (TE) times were set

individually per site given variations in scanner performance resulting

in slightly different acquisition times: University of Alberta—

TE = 4.38 ms, TR = 2,180 ms, scan time 5:41 min; Queens

University—TE = 3.45 ms, TR = 2,180 ms, scan time 5:15 min; Univer-

sity of Manitoba—TE = 3.45 ms, TR = 2,180 ms, scan time 5:15 min;

University of British Columbia—TE = 3.6 ms, TR = 1,858 ms, scan time

6:23 min. The testing “CIHR” data included 3D T1-weighted images

exclusively acquired at the University of Alberta (1.5 T Siemens

Sonata) site using an MPRAGE sequence (1 × 1 × 1 mm3) with

TE = 4.38 ms, TR = 1,870 ms, TI = 1,100 ms, flip angle = 15�, scan

TABLE 2 Participant characteristics and demographics for testing
“CIHR” data

Control FASD p-Valuea

Participant

characteristics

n = 74 n = 67

Age (years) 11.5 ± 3.5

(5.2–19.5)
12.1 ± 3.3

(6.0–19.6)
.26

Males (%) 42 (57%) 38 (57%) .99

FASD subtype (%)

FASD with sentinel

facial features

0 (0%) 14 (21%) <.001*

FASD without

sentinel facial features

0 (0%) 35 (52%) <.001*

Confirmed PAE 0 (0%) 18 (27%) <.001*

Ethnicity (%)

Indigenous 1 (1%) 19 (28%) <.001*

Caucasian 55 (74%) 15 (22%) <.001*

Other 8 (11%) 5 (7%) <.001*

Unknown 10 (14%) 28 (42%) <.001*

Medication (%)

Stimulants 0 (0%) 19 (28%) <.001*

Atypical antipsychotics 0 (0%) 22 (33%) <.001*

Antidepressants 0 (0%) 10 (15%) <.001*

Other 0 (0%) 9 (13%) <.001*

Comorbidities (%)

ADHD 0 (0%) 33 (49%) <.001*

Anxiety 2 (3%) 12 (18%) <.001*

Reactive attachment

disorder

0 (0%) 8 (12%) <.001*

Other disorder 0 (0%) 17 (25%) <.001*

Cognitive test (age standardized score)

Woodcock Johnson

Quantitative

Concepts 18A&B

mathematics

n = 66/74 n = 52/67

107 ± 13

(77–135)
82 ± 13

(53–118)
<.001*

WRMT-R-Word

Identification

n = 66/74 n = 52/67

107 ± 13

(81–147)
89 ± 14

(52–134)
<.001*

Abbreviations: CHIR, Canadian Institutes of Health Research; FASD, fetal

alcohol spectrum disorder; PAE, prenatal alcohol exposure; WRMT-R,

Woodcock Reading Mastery Tests-Revised.
aGroup differences of categorical variables (e.g., sex) assessed with

Mann–Whitney U test; continuous variable (e.g., age) assessed with

independent samples t test (*p < .05).
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time 4:29 min. Other images were also acquired over 25 min included

T2-weighted, fluid-attenuated inversion recovery, resting-state func-

tional (for NeuroDevNet), and DTI; however, none of these are the

focus of the current report on brain volumes.

2.4 | Automated brain segmentation

In this study, only regional brain volumes rather than other imaging

metrics were used as predictors for classification because reductions

in regional brain volumes have been the most commonly reported dif-

ferences in FASD populations relative to controls (Donald et al., 2015;

Lebel et al., 2011). Regional brain volumes were extracted from

T1-weighted structural images using the automated segmentation

pipeline FreeSurfer version 5.3 (Fischl, 2012). Volumetric loss relating

to FASD has been observed in numerous brain regions (Donald et al.,

2015) with some regions being consistently reported including:

regions of subcortical gray matter, total white matter, corpus cal-

losum, and regions of the cortex. Hence, volumes of 87 regions were

selected for classification analysis including subcortical gray matter

(12–6 regions for left and right), left/right total white matter (two left

and right), corpus callosum segmentations (five regions), and cortical

parcellations (68–34 regions for left and right). Note that left and right

segmentations were kept separate for analysis. Notably, ventricular

segmentations were excluded based on limited reports of volumetric

differences in FASD, right/left nucleus accumbens were excluded

based on the low scan-rescan reliability of FreeSurfer segmentations

(Morey et al., 2010), and cerebellum/brain stem were excluded due to

partial coverage in many participants. Each included volume was then

standardized across training and test datasets (i.e., mean centered to

zero and scaled to unit variance over entire training/testing datasets)

as this is a requirement of the support vector learning algorithm used

to build a classification model.

2.5 | Predictive model training

Using the brain volumes from the training data as input, a linear sup-

port vector machine (SVM) was trained to predict FASD or control

using the scikit-learn machine learning toolbox version 0.18.1

(Pedregosa et al., 2011). This SVM algorithm was selected based on

accurate performance in other neurological and psychiatric disease

classification studies (Orrù, Pettersson-Yeo, Marquand, Sartori, &

Mechelli, 2012) and a linear kernel was used to allow for the identifi-

cation of highly contributing brain regions to the model. The multisite

data were selected for training so that the classification model gener-

ated by the SVM was robust to between site variation of regional

brain volume measurements, and would perform consistently across

different sites. A single classification model was generated by fitting

the SVM hyperparameter “C” based on the training data using a com-

bination of leave-one-out cross-validation with internal 10-fold valida-

tion for parameter selection. For each internal fold, the soft margin

constant “C” was selected from a list of possible values (10−4, 10−3,

10−2, 1, 10, 100) as the parameter with the highest average accuracy

over the 10-fold internal validation. A single value of “C” for the

training data was then chosen as the mode of all selected parameters

from the leave-one-out folds and a single classification model was fit

to the entire training data. This model was then used to predict FASD

or control for each subject in the test data.

2.6 | Model evaluation/interpretation

Three measures of model performance were calculated on both the

leave-one-out cross-validation training results and the test dataset

predictions, namely, accuracy, sensitivity, and specificity. In addition,

normalized feature weights (decision boundary weight divided by

maximum weight in model) of the trained model were investigated to

identify brain regions that contributed the most to FASD prediction.

To compare the performance of the multivariate prediction model to

more conventional univariate analysis, the same training/testing pro-

cedure was performed on each of the 87 individual brain volumes

separately. Both cross-validation training and test set accuracies were

compared between the multivariate model and all other univariate

models. Permutation tests were performed on multivariate and uni-

variate test accuracies by calculating the accuracy of the trained

models on 2,000 permutations of test data labels (FASD/Control).

Note that because of the number of evaluations performed, only mul-

tivariate/univariate models that performed higher than a multiple

comparison corrected p-value (p < .0005 = .05/88 tests) on the testing

data permutation tests are presented.

2.7 | Sensitivity of model to participant
demographics

To test for sensitivity of the classifier to FASD subgroup, the number

of true positives (TPs) and false negatives (FNs) was compared

between the three subtypes (FASD with sentinel facial features, FASD

without sentinel facial features, and confirmed PAE without official

FASD diagnosis). Next, the distance from support vector decision

boundary was calculated for each subject in the test data as a measure

of how closely a subject matched the FASD prediction model. A posi-

tive boundary distance value indicates the subject was predicted

“control,” whereas a negative value indicates the subject was

predicted “FASD.” For comparison between models, distance values

were scaled by the maximum absolute distance of the test samples.

Regional brain volumes are known to differ between males and

females (Cahill, 2006; Cosgrove et al., 2007) and change throughout

childhood/adolescence with regionally specific developmental trajec-

tories (Giedd et al., 1999; Narvacan et al., 2017). Boundary distances

were used to test for systematic classification errors related to sex

(t test), age (linear regression), and age-by-sex interaction (linear

regression). To test for sensitivity of the classifier to a specific cogni-

tive phenotype, linear regression was performed between boundary

distance and two separate behavioral tests which were Woodcock

Johnson Quantitative Concepts (mathematics) and Woodcock John-

son Word Identification (reading), notably these were the only tests

performed in a majority of individuals from both the training and test-

ing cohorts. All statistical tests were performed separately for FASD
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and control groups and corrected for multiple comparisons

(Bonferroni correction: five tests by two groups, 10 comparisons,

effective p < .005).

2.8 | Sex specific modeling

Following these primary analyses, two approaches were taken to

address sex-related differences in model performance. Approach 1:

The addition of sex as a control variable in a linear regression is a com-

mon approach for addressing sex-related variation in classification

studies (some examples; Fair et al., 2013; Nielsen et al., 2013). In this

study, the entire modeling procedure was repeated with brain vol-

umes adjusted for sex using a linear regression prior to model training.

Approach 2: The same modeling procedure was performed on raw

brain volumes for males (n = 35 FASD, n = 32 controls) and females

(n = 44 FASD, n = 49 controls) separately in the training cohort and

then applied to the males (n = 38 FASD, n = 42 controls) and females

(n = 29 FASD, n = 32 controls) in the test cohort. Both correction

techniques were compared to the original model (which did not

account for sex-related variation) using measures of accuracy, sensi-

tivity, and specificity separately for males and females in the test

cohort.

3 | RESULTS

3.1 | FASD classification model/performance

A binary classification model based on brain volumes was created to

discriminate between typically developing individuals and those with

FASD. The 10 most heavily weighted brain regions in the model

included three subcortical gray matter regions (left globus pallidus, left

and right caudate), three cortical gray matter regions located in the

temporal lobe (right superior temporal gyrus, bank of the right supe-

rior temporal gyrus, and left inferior temporal gyrus), two cortical

regions located in the frontal lobe (left and right pars triangularis), and

two along the cingulate gyrus (right posterior cingulate and right isth-

mus of the cingulate). A visualization of all model weights for each

segmented brain region is shown in Figure 1.

The model showed moderate performance on the training data

(NeuroDevNet) with accuracy 71%, sensitivity 58%, and specificity

84%, and achieved similar results on the independent test data (CIHR)

with accuracy 77% (p-value = .0005), sensitivity 64%, and specificity

88%. Notably, the multivariate classification model outperformed all

univariate classification models for accuracy in the test data (77%

compared to the next highest 72% for the left caudate model), and in

the training data (71% compared to 67% for the left caudate model).

Accuracies for the multivariate and univariate classification models

F IGURE 1 Visualization of model generated from brain volumes from the training dataset. All regions are displayed as 3D renderings, with
the exception of left/right white matter segmentations displayed as a transparent overlay on an axial image from the FreeSurfer average
template. For visualization purposes, globus pallidus renderings are displayed on a separate axial image. All regions of the brain are color coded by
normalized support vector classifier weightings (weight divided by maximum absolute value weight in model). The 10 most heavily weighted
regions are listed in order with corresponding colors. Model weightings were strongest for left/right regions of the temporal lobes, subcortical
regions (left/right caudate and left globus pallidus), bilateral frontal lobe regions (left/right pars triangularis), and two regions in the cingulate of
the right hemisphere
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are presented in Figure 2. The multivariate classification model was

more specific (88%) compared to all other univariate models that

achieved higher than chance classification accuracy (58% right

hippocampus–85% right putamen), whereas sensitivity of the multi-

variate model (64%) was within range of the above chance univariate

models (right putamen 46%–79% left thalamus). Boundary distance,

accuracy, sensitivity, and specificity for the multivariate classification

model are presented alongside the left caudate univariate model in

Figure 3. Notably in both the univariate left caudate volume and mul-

tivariate model distance measurements, there was a significant pro-

portion of FASD participants minimally overlapping the controls. In

total, 17 FASD participants (10 females; age 12.22 ± 3.43 years;

seven FASD with sentinel facial features, four without sentinel facial

features, and six prenatally exposed without official diagnosis) had a

left caudate volume smaller than ~3.1 cm3 whereas only one control

had a left caudate volume below that threshold. No controls and eight

FASD participants had a left caudate volume lower than ~2.7 cm3.

Similarly, the multivariate model had 20 FASD participants (nine

females; age 12.23 ± 3.27 years; seven FASD with sentinel facial fea-

tures, six FASD without sentinel facial features, and seven prenatally

exposed without official diagnosis) with no overlapping controls

below a distance from decision boundary value of −0.38 (the lowest

control value). Of these, 20 FASD participants that did not overlap

controls in the multivariate model, five had a caudate volume larger

than 3.1 cm3 demonstrating that the multivariate and univariate

models are discriminating different individuals.

3.2 | Diagnostic, demographic, and cognitive
associations to FASD classification model

When separating classification performance in the FASD group by the

three diagnostic subtypes, differences were observed between the

proportions of TPs to FNs between subtypes. Notably, almost all the

FASD subjects with sentinel facial features were correctly classified

(11 TPs, 3 FNs), whereas the other two subtypes, FASD without senti-

nel facial features (21 TPs, 14 FNs) and PAE (11 TPs, 7 FNs), had a

lower proportion of TP relative to FN.

T tests revealed a systematic difference in classification boundary

distance between control males and females (t-statistic −3.67, p-

value = .0005) indicating more false positives for females compared to

males which may be a result of lower brain volumes observed in typi-

cal females relative to typical males, as a group. Linear regression

results relating classification boundary distance to four demographic

variables of interest, namely, age, age by sex, WRMT-R Word Identifi-

cation (reading), and Woodcock Johnson Quantitative Concepts

(mathematics) were not significant in the FASD or control groups.

3.3 | Sex specific models

To further investigate the effect of sex on model performance, the

original classification model was evaluated separately for males and

females. The classification accuracies of the entire training set were

similar for males (76%, p = .0005) and females (77%, p = .0005), but

sensitivity was lower and specificity was greater for males (sensitivity

53%, specificity 98%) compared to females (sensitivity 79%, specific-

ity 75%). In other words, 1/42 male controls were misclassified as

FASD, whereas 8/32 female controls were misclassified as FASD. A

larger difference in classification accuracy was observed in the FASD

groups where 17/38 male FASD were misclassified as controls

whereas only 6/29 female FASD were misclassified.

The first approach for reducing sex-related bias in sensitivity/

specificity was to fit a model based on sex adjusted volumes. This

approach performed moderately well on the test data; however, sensi-

tivity remained low for males relative to females: male accuracy 72%

(p-value = .0005), sensitivity 58%, specificity 86%; female accuracy

74% (p-value = .0005), sensitivity 72%, specificity 75%. The second

approach for reducing sex-related bias in FASD prediction was to cre-

ate separate models for males and females. Both models performed

moderately well on the test data and had similar sensitivity and speci-

ficity betweenmales and females: male accuracy 70% (p-value = .0005),

sensitivity 68%, and specificity 71%; female accuracy 67% (p-

F IGURE 2 Performance of the multivariate brain volume
prediction model (solid red line) compared to models generated using
each brain region volume separately (dashed lines). Both the accuracy
of the models on the test data and leave-one-out cross-validation
accuracy on the training data are shown. Models are listed from
highest to lowest accuracy and are presented if they performed
significantly greater than chance (permutation test, p < .0005) in the
test cohort. The multivariate model outperformed all univariate
models in both the training and testing data. Notably, 8 of these
13 regions are deep gray matter structures including bilateral caudate
and bilateral thalamus
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value = .01), sensitivity 62%, and specificity 72%. Notably, sensitiv-

ity in the male FASD group was increased by creating separate

models for males and females at the cost of decreased specificity

and overall accuracy. Classification performance and classifier

boundary distance separated by sex and group is presented in

Figure 4 for the original model, the model adjusted for sex and the

models created separately for each sex.

In general, the predictive models created separately for males and

females had primary contributions from volumes of different brain

regions. Of the five most heavily weighted regions in the male model,

four were subcortical gray matter regions (left globus pallidus, left/

right caudate, right hippocampus), and one was the right superior pari-

etal region of the cortex. In contrast, of the 5 most heavily weighted

regions in the female model, only one was subcortical gray matter

(right amygdala), three were cortical regions (left superior parietal,

right bank of the superior temporal gyrus, and right pars orbitalis), and

one was the posterior part of the corpus callosum. The model weights

for the male and female models are visualized in Figure 5.

4 | DISCUSSION

4.1 | FASD classification

This study reports a multivariate classification model based on brain

volume that showed moderate accuracy (77% in test cohort) in identi-

fying individuals with FASD from control participants. Notably, this

classification accuracy is comparable to that reported in neuroimaging

classification studies of other neurodevelopmental disorders such as

ADHD (81% accuracy using resting state functional MRI measure-

ments, Fair et al., 2013) and Autism (70% accuracy using brain volume

and resting state functional MRI measurements, Zhou et al., 2014). To

our knowledge, only one other study that primarily focused on eye

tracking/psychometric data has attempted classification of FASD par-

ticipants from controls using imaging data. In that study, an accuracy

of 67% was achieved using features extracted from diffusion MRI of

the corpus callosum on a relatively small sample (training: 19 controls,

11 FASD, testing: 22 controls, 24 FASD) of children/adolescents that

partly overlapped the training cohort from the current study (also

from NeuroDevNet) (Zhang et al., 2019). Notably, the accuracy using

diffusion MRI features extracted from the corpus callosum was lower

than the accuracy reported from the current study using brain vol-

umes (77%); however, the same study reported highest accuracies

using features derived from other physiological/behavioral measure-

ments (e.g., eye tracking data 76% and psychometric data 78%).

Other studies have classified FASD participants based on other

modalities such as epigenetic DNA methylation features where a pre-

dictive model trained on an overlapping cohort from the training

dataset in the current study achieved 83% accuracy in predicting

FASD (Lussier et al., 2018). Additionally, features extracted from 3D

facial laser scans achieved ~80–90% accuracy identifying individuals

with FAS (Fang et al., 2008), a subtype of FASD that exhibits sentinel

facial features, the same subtype of FASD that had a high classifica-

tion accuracy with multivariate brain volumes in the current study

(11/14 FASD participants with sentinel facial features correctly classi-

fied in the test cohort). In a three-way classification task of FASD,

ADHD and control participants, a 77% classification accuracy was

achieved using features extracted from eye tracking data collected

while participants attended to videos (Tseng et al., 2013).

Taken together, these studies suggest that there may be value in

combining multiple types of diagnostic and clinical features in future

classification models to improve accuracy, including other modalities

of MR imaging such as diffusion MRI and resting state functional MRI

F IGURE 3 Distance from
classification boundary for multivariate
classification model (a) and raw volume
for the top performing univariate model
(b, left caudate) are presented for all
subjects in the test “Canadian Institutes
of Health Research” (CIHR) cohort
separated by group (fetal alcohol
spectrum disorder [FASD]/control).
Values above the support vector machine
(SVM) decision boundary (black line) were
classified as the control group whereas
values below the decision boundary were
classified as FASD. A large proportion of
FASD participants had a distance from
decision boundary that did not overlap
any of the controls (20 FASD with
boundary distance <−0.38), and similarly
a large proportion of FASD had minimal
overlap with controls below a left
caudate volume of ~3.1 cm3 (1 control,
17 FASD)
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which were not part of this current analysis on brain volumes. Multi-

modal classification of FASD has been performed using features

derived from psychometric and eye tracking data achieving 83% accu-

racy (Zhang et al., 2019), but showed no additional accuracy when

including diffusion MRI; however, the sample size was limited in that

study (22 controls, 24 FASD).

Changes in total brain volume as well as unique regional trajecto-

ries of subcortical and cortical gray matter development during child-

hood/adolescence (Giedd et al., 1999; Narvacan et al., 2017) may

impact classifier performance. In a supplementary analysis of classifi-

cation performance (data not shown), no difference in age was

observed between incorrectly/correctly classified controls or between

incorrectly/correctly classified individuals with FASD in the test

cohort, suggesting that classification performance was not con-

founded by age.

4.2 | Relating multivariate and univariate analysis of
FASD regional brain volumes

In this study, the multivariate FASD classification model outperformed

all univariate models that were based on separate brain region vol-

umes by ~5% in both the test and training cohorts. This result

F IGURE 4 Distance from classification boundary is presented here for each subject in the test data separated by group (control, circle/fetal
alcohol spectrum disorder [FASD], diamond) and sex (male, blue/female, red) for the unadjusted multivariate model (a), the multivariate model
using regional brain volumes adjusted for sex (b), and creating separate classification models for males and females (c). Positive values indicate the
subject was classified to the control group while negative values indicate the subject was classified to the FASD group. The most
misclassifications in the unadjusted model were male FASD participants labeled as controls (18/38 misclassified) and a notable number of female
controls were incorrectly labeled FASD (8/32 misclassified). Adjusting brain volumes for sex improved imbalance in specificity between males
compared to females, whereas creating separate models improved the sex-related imbalance in both specificity and sensitivity
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suggests that there is a pattern of volume change involving multiple

brain structures that are more discriminative of children/adolescents

with FASD relative to any one brain region independently. Of the uni-

variate models with above chance accuracy, regions are consistent

with previous studies reporting volume loss associated with FASD

(Donald et al., 2015). Above chance univariate models consisted of

eight subcortical gray matter structures (left/right caudate, left/right

thalamus, right putamen, right hippocampus, right amygdala, left

globus pallidus), both left/right white matter volumes, and three corti-

cal gray matter regions (right inferior parietal, left rostral middle fron-

tal gyrus, left bank of the superior temporal sulcus). On the other

hand, multivariate model weights indicated fewer subcortical regions

as heavily contributing to prediction (left/right caudate and left globus

pallidus in the top 10), whereas cortical regions in the temporal lobe

(left inferior temporal, bank of the right superior temporal sulcus, right

superior temporal sulcus) and other subdivisions of the cortex (right

posterior cingulate, right isthmus cingulate, right/ left pars triangularis)

were more prominent. Taken together, univariate and multivariate

results suggest that the increased accuracy of the multivariate model

(relative to univariate models) may be a result of the inclusion of corti-

cal regions.

In the current study, a model trained using only the left caudate

had a test accuracy only 5% lower than the model generated from all

brain regions together. Notably, the caudate was one of the first

reported brain structures with differences associated with PAE

(Mattson et al., 1996). Since then, the caudate has been reported in

animal models to be one of the more vulnerable regions to ethanol-

induced apoptosis (Young & Olney, 2006) which may underlie the

observed volume reductions associated with prenatal exposure to

alcohol in children and adolescents (Astley et al., 2009; Cortese et al.,

2006; Riikonen et al., 2005). Additionally, caudate volume has also

been associated with deficits in both cognitive control and verbal

learning/recall in children/adolescents with FASD (Fryer et al., 2012).

In the current study, the classification model based solely on left cau-

date volume outperformed (72% test accuracy) the models based on

other basal ganglia structures (e.g., left globus pallidus [64% accuracy],

left putamen [63% accuracy], right putamen [67% accuracy], right cau-

date [67%]). The caudate takes input from the frontal eye fields and

F IGURE 5 Visualization of prediction models generated on the training data for males (32 controls, 35 fetal alcohol spectrum disorder
[FASD]) and females (49 controls, 44 FASD) separately. All regions are displayed as 3D renderings, with the exception of left/right white matter
segmentations displayed as a transparent overlay on an axial image. All regions of the brain are color coded by support vector classifier
weightings (feature importance). The five most heavily weighted regions in each model are listed in order with corresponding colors. Four of the
five most heavily weighted regions in the male model are subcortical structures whereas four of the five most heavily weighted regions in the
female model are cortical or corpus callosum regions
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the frontal/parietal lobes, and has efferent pathways to the prefrontal

cortex. Other basal ganglia structures such as the putamen and globus

pallidus are implicated in neural pathways related to motor function.

Hence, a larger effect of PAE on the caudate relative to other basal

ganglia structures may reflect larger deficits in FASD to higher order

cognitive functions (e.g., executive function, problem solving) com-

pared to motor functions. Additionally, a more recent study has dem-

onstrated that shape-based features of caudate asymmetry can be

combined with facial morphology features to better discriminate con-

trols from those with FAS (Suttie et al., 2018). Taken together, these

findings suggest that the caudate is one of the most heavily impacted

brain structures post-PAE. In this study, a left caudate volume deci-

sion boundary of ~3.6 cm3 (larger size indicating control) was gener-

ated from the training data and performed adequately (accuracy 72%;

sensitivity 70%; specificity 74%) on the test data. Notably, a large pro-

portion of FASD participants (17/67) had left caudate volumes lower

than all but one control at a threshold of 3.1 cm3 and suggests that a

volume threshold could be used as a highly specific indicator of FASD.

Similarly, distance from the decision boundary of the multivariate

model is highly specific at values lower than −0.38 with 20/67 FASD

participants and no controls having values below this threshold. Inter-

estingly, at these lower values both left caudate volume and distance

from the multivariate decision boundary were not sensitive to a par-

ticular sex or FASD diagnostic subtype, suggesting that both these

measures may provide added value for further subdividing the FASD

diagnosis based on brain structure alone. Importantly, the FASD

model performed more accurately in the subtype of FASD with senti-

nel facial features relative to the other participants that did not display

these features, suggesting a pattern of FASD brain volume change

that is also likely to be associated with other structural changes in an

individual. This finding is consistent with other univariate studies

showing that facial dysmorphic features are related to more severe

volumetric reductions in FASD (Astley et al., 2009; Roussotte et al.,

2012), and may reflect the timing of ethanol exposure between 3 and

4 weeks postgestation in humans when the brain and face are early in

their development (Godin et al., 2010; Godin, Dehart, Parnell,

O'Leary-Moore, & Sulik, 2011). Notably, more extensive volumetric

reductions in the dysmorphic FASD participants could also be related

to a higher level of prenatal ethanol exposure (although this was

unavailable in our study) complicating the face–brain interpretation.

Along with ADHD, the participants in this study had a wide range

of comorbid diagnoses (e.g., ADHD, oppositional defiant disorder,

etc.). Importantly, to be of clear clinical use, a classification model

would be able to discriminate individuals with FASD from those with

other neurodevelopmental disorders. Results from this study demon-

strate that individuals with FASD can be discriminated from controls

using regional brain volumes. However, it is unknown whether

regional brain volumes or the same classification model could be used

to discriminate individuals with FASD from those with other neu-

rodevelopmental disorders.

The investigation of model weights can also aid in identifying

regions that may be affected in FASD but that are not detected by

univariate analysis alone. In this study, both the left and right pars

triangularis of the frontal lobe heavily contributed to the model. Nota-

bly, the volume of the bilateral pars triangularis has been associated

with reading disorders such as dyslexia (Eckert et al., 2003) and defi-

cits in language have been repeatedly observed in complex language

tasks in participants with FASD (Becker, Warr-Leeper, & Leeper,

1990; Mattson, Riley, Gramling, Delis, & Jones, 1998). Although the

frontal lobe has shown volume loss in children/adolescents prenatally

exposed to alcohol, to our knowledge pars triangularis volume has not

been associated with FASD. Given that the pars triangularis regions

were absent from the univariate models that performed higher than

chance, this result implies that in the context of other FASD-related

regional volume change a multivariate model can extract additional

information about structural change that is undetectable by univariate

analysis alone.

4.3 | FASD classification with sex specific models

To date, the most common approach for dealing with sex-related vari-

ation in large classification studies of neurodevelopmental disorders is

to perform classification on volumes adjusted for sex resulting from a

multivariable linear regression with sex added as a covariate (some

examples being: Fair et al., 2013; Zhou et al., 2014). However, in neu-

rodevelopmental disorders such as FASD where reductions in regional

brain volumes appear to be larger for males relative to females (Chen

et al., 2012;Dudek et al., 2014 ; Treit et al., 2017) assuming the same

effect of sex on volume between controls and FASD will have the

effect of reducing but not eliminating between sex bias in sensitivity/

specificity. Results from the current study demonstrate experimentally

that when sex is not accounted for in FASD classification, sensitivity/

specificity can differ greatly for males (sensitivity 53%, specificity

98%) compared to females (sensitivity 79%, specificity 75%) but this

disparity can be reduced at the expense of accuracy by using sex

adjusted volumes (male accuracy 72%, sensitivity 58%, specificity

86%; female accuracy 74%, sensitivity 72%, specificity 75%). Further-

more, this study proposes building FASD classification models sepa-

rately for males and females which further reduced the imbalance in

sensitivity/specificity, albeit at a larger decrease in accuracy (male

accuracy 70%, sensitivity 68%, and specificity 71%; female accuracy

67%, sensitivity 62%, and specificity 72%). The observed decrease in

accuracy of separate male/female models may be a result of the lim-

ited sample size for males/females in the training data and would

likely be improved with the inclusion of more participants. An advan-

tage of this technique is the ability to investigate heavily contributing

regions that are useful for prediction of FASD in males and females

separately. Notably, subcortical regions heavily contributed to male

FASD prediction (left/right caudate, left globus pallidus, right hippo-

campus) whereas cortical regions primarily contributed to female

FASD prediction (left superior parietal cortex, right bank of the supe-

rior temporal gyrus, right pars triangularis), suggesting that patterns of

volume change differ between males and females. The higher subcorti-

cal weightings in the male classification model likely reflects the greater

relative volume reductions of subcortical gray matter regions in males

compared to females with FASD (Dudek et al., 2014; Treit et al., 2017).
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Several neurophysiological/neurochemical effects of PAE are reported to

be greater in males relative to females, including reductions in long-term

potentiation (Sickmann et al., 2014), increases in dopamine D1R binding

(Converse et al., 2014), and reduced sensitivity to testosterone (Lan, Hel-

lemans, Ellis, Viau, & Weinberg, 2009). More heavily weighted cortical

regions in the female model is surprising, given that previous studies have

reported no significant differences in the volume of cortical regions in

females with FASD (Chen et al., 2012) and less pronounced effects of PAE

on measures of cortical thickness relative to subcortical volume (Treit

et al., 2017). It seems here that a pattern (i.e., multivariate) of cortical vol-

ume reductionmaymore accurately discriminate females with FASD from

controls compared to PAE related volume change within individual

(i.e., univariate) cortical regions. Overall, results from this study suggest

that there is value in modeling FASD related regional brain volume change

separately for males and females. Notably, the classification differences

reported here between males/females could be confounded by sex by

group imbalances in demographics. However, no such group by sex inter-

action effectswere observed in the test cohort for any of the demographic

variables listed in Table 2 (data not shown), suggesting that demographic

imbalances are not driving the observed classification differences between

males and females. In the training cohort, a small difference in age was

observed between male control (age 11.3 ± 3.5 years) and male FASD

(age 13.3 ± 2.7 years) participants, potentially impacting the weightings of

the male FASD classification model. However, this male classification

model heavily weighs subcortical regions whose volumes have been

shown to changeminimally over childhood/adolescence in both longitudi-

nal and cross-sectional samples (Narvacan et al., 2017), suggesting that

age differences are not influencing the model weightings presented in this

study.

4.4 | Study limitations and future directions

There are several limitations in this study, primarily related to the imbal-

anced distribution in demographics/comorbidities in the training/testing

FASD groups relative to controls. The samples in this study consisted of

control groups primarily of Caucasian descent, whereas about half the

FASD participants self-identified as indigenous potentially confounding

classification results. However, in a follow-up analysis, sensitivity to

FASD classification differed minimally between the ethnic categories in

the testing cohort (indigenous: 63%; Caucasian 67%; other 60%;

unknown 64%) suggesting that ethnicity was not influencing classifica-

tion performance. ADHD is a common comorbid diagnosis within FASD

populations having an estimated prevalence of >70% (Burd, Klug,

Martsolf, & Kerbeshian, 2003) and was highly prevalent in the training/

testing cohorts included in the current study (training FASD: 50%; testing

FASD: 49%). Additionally, in this study, a large proportion of FASD par-

ticipants were on medication regimens that were highly discordant

between individuals, and those participants were not asked to refrain

from taking medication throughout the study. Such confounds in comor-

bid diagnosis and medications may impact reported cognitive scores and

classification results in the FASD group. Again, a secondary analysis was

conducted and showed minor differences between classification sensitiv-

ity between an ADHD-comorbid diagnosis (67% sensitivity) /no-ADHD

diagnosis (62% sensitivity), as well as classification of FASD participants

on different medications (stimulants 58%, atypical antipsychotics 59%,

antidepressants 60%, and other medication 67%). This equally distributed

sensitivity among demographic categories suggests that even though the

FASD classification model was generated from imbalanced control/FASD

training data, the model itself represents a discriminative pattern of brain

volume difference that is associated with PAE and does not reflect differ-

ences based on ethnicity, comorbid diagnosis or medication regimen.

The training and testing FASD cohorts of the current study con-

tained both individuals with a formal FASD diagnosis as well as those

with confirmed alcohol exposure but nondiagnosed. Importantly, the

classification results from the test cohort showed similar sensitivity

between the FASD participants without sentinel facial features (test

sensitivity 60%), and those in the PAE (nondiagnosed) group (test sen-

sitivity 61%), suggesting that regional brain volumes were similarly

affected in the diagnosed and undiagnosed individuals. In a secondary

analysis excluding the PAE group (data not shown), decreased accu-

racy and sensitivity was observed in the test cohort (accuracy 74%,

sensitivity 53%, specificity 88%) relative to when PAE (nondiagnosed)

were included (accuracy 77%, sensitivity 64%, and specificity 88%)

warranting the inclusion of the PAE group in the analysis.

5 | CONCLUSIONS

In this study, a multivariate classification model was generated for dis-

criminating children/adolescent controls from those with FASD. The

model performed better than univariate analysis in discriminating FASD

from controls and had predictive contributions from regions with known

volumetric reduction in FASD. Additionally, a large proportion of FASD

participants in the test data had little to no overlap with controls at nega-

tive distance from boundary values, and low left caudate volume values,

suggesting that these measures should be investigated as a potential

indicator of FASD. Classification accuracy of models generated sepa-

rately for males and females had lower accuracy than the model con-

taining all participants, but notably these models were more balanced in

sensitivity and specificity suggesting that sex should be taken into

account in brain volume-based classification of FASD. Overall, this study

shows the value in multivariate analysis of brain volume for the classifica-

tion of FASD and identification of brain regions affected in children and

adolescents prenatally exposed to alcohol.
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