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Abstract
We have investigated the size-dependent adsorption performance of ZnO nanoclusters (NCs) as drug delivery carriers for 
the first time. Our results show that the adsorption energy of the favipiravir drug on the ZnO NCs is predicted in the range 
of − 26.69 and − 34.27 kcal/mol. The adsorption energy (− 34.27 kcal/mol) between (ZnO)18 NC and the favipiravir is ener-
getically desirable and more favorable than the other interactions. The size of ZnO NCs and the position of the favipiravir on 
the ZnO NCs cause a decrease in the energy gap, which makes the charge-transfer process easier. The bonds between O–Zn, 
N–Zn, and F–Zn atoms exhibit dual covalent and ionic natures. The non-covalent interaction analysis shows that the strong-
est H-bonds are observed near NH2 within the favipiravir molecule. Finally, the acquired results show that the interaction of 
ZnO NCs with the favipiravir anticancer drug can have the potential as drug delivery carriers.
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Introduction

The bulk zinc oxide (ZnO) and its different forms as nano-
structure (nanoparticles, nanowires, nanotubes, etc.) have 
attracted great scrutiny in many areas including solar cells, 
light-emitting/detecting diodes, and gas sensors [1–9]. 
ZnO nanoparticles (NPs)/quantum dots (QDs), more spe-
cifically, have been significant attention because of their 
desirable properties such as strong adsorption capability 
and easily tunable surface used in important areas such as 
photosensors [10], electronics [11], and biomedical appli-
cations [12]. The use of ZnO NPs in biomedicine enables 

the treatment of different diseases such as bacterial, viral, 
and carcinogenic due to their remarkable properties such 
as biocompatibilities, their low cost, biosafety, low toxic-
ity, and heat resistivity in comparison to other metal oxide 
NPs, which make them suitable for drug delivery systems 
[13, 14]. Also, ZnO NPs can display inherent anticancer and 
antimicrobial activities which make them more excellent 
than other commonly used drug carriers, such as lipid and 
polymeric NPs [15]. Several reports address the interac-
tion and adsorption behavior of ZnO NPs and nanoclusters  
(NCs) with different systems [16–21]. The interactions of  
Zn12O12 NC with 6-thioguanine anticancer drug show  
that Zn12O12 NC can have the potential as drug delivery 
carriers [22].

Many treatments including oral and injection medicines 
can adversely affect healthy cells and cause side and toxic 
effects [23]. In some cases, furthermore, it can be possi-
ble to use higher doses of a drug to get rid of the effect of 
the disease [24]. Recent studies show that nanotechnology 
plays a significant role as drug delivery carrier [25] and has 
always made it easy to control drug release characteristics 
of time course and/or location in the body [26, 27]. Most 
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importantly, drug delivery systems can deliver a rather high 
amount of drug molecules and reduce possible severe side 
effects without producing a toxic effect [28].

Favipiravir has shown efficacy against many RNA viruses 
[29], but the reported side effects [30] arising during favi-
piravir treatment have an important place for patients. In 
this context, it is significant to reduce adverse side and 
toxic effects of treatment to healthy cells, so ZnO NCs are 
designed as drug delivery systems for favipiravir treatment. 
The literature survey showed that ZnO NC has a potential 
in drug-carrying systems [31].

In this context, the main objective of this study was to 
clarify the potential mechanism of possible interaction 
between ZnO NCs with different sizes and favipiravir anti-
cancer drug and to figure out the potential use of ZnO NCs 
as a drug carrier. Herein, the electronic and energetic proper-
ties such as the adsorption energy, binding energy, density 
of states, and UV–vis spectra were performed using density 
functional theory (DFT) and time-dependent DFT.

Computational details

The DFT simulations were implemented to understand the 
interaction mechanisms of the favipiravir drug molecule 
with ZnO NCs (with different sizes) along with B3LYP 
functional with the 6-31G(d) basis set [32] and Grimme’s 
three-parameter which is an empirical dispersion correc-
tion [33]. Here, the main reason to use the B3LYP is that it 
agrees perfectly with the experimental values for the ZnO 
NCs [34, 35], so the B3LYP was used to study electronic 
structure of the studied system in this study. To get the pos-
sible interactions of the favipiravir drug molecule with ZnO 
NCs, the favipiravir and ZnO NCs, firstly, were optimized, 
and later, the structures with the lowest total energy 

(

ET

)

 
were considered. All calculations were carried out using 
Gaussian 09 [36]. To calculate the adsorption energy 

(

Ead

)

 
of favipiravir drug and ZnO NCs interactions, the following 
expression is used:

where E(NC + Drug) is the total energy ( ET ) of the inter-
acting systems. E(NC) and E(Drug) are the ET of isolated 
NCs and favipiravir, respectively. E(BSSE) is known as the 
“basis set superposition error,” which is calculated by the 
counterpoise method to obtain highly accurate energy pre-
diction [37].

(1)Ead = E(NC + Drug) − E(NC) − E(Drug) + E(BSSE)

On the other hand, the vertical ionization potential 
(VIP) and vertical electron affinity (VEA) are performed 
using [ VIP = Ecation − Eneutral ] and [ VEA = Eneutral − Eanion] 
where the VIP is the energy difference between the ground 
state (GS) of the cation 

(

Ecation
)

 and the GS of the neutral 
(

Eneutral
)

 at the geometry of the neutral. VEA is the energy 
difference between the GS of the neutral and the GS of the 
anion 

(

Eanion
)

 at the geometry of the neutral. Moreover, the 
Wiberg bond index (WBI), Fuzzy bond orders (FBO), and 
Mayer bond order (MBO) are performed using the Multiwfn 
program [38]. The TD-DFT calculations based on CAM-
B3LYP functional [39] with 6-31G(d) basis set are applied 
for guessing UV–vis spectra.

Fig. 1   (Color online) The optimized structures, electronic states, and 
point group symmetries of pure a (ZnO)12, b (ZnO)15, c (ZnO)18, d 
(ZnO)20, e (ZnO)22, and f (ZnO)24 NCs (Gray: Zn, Red: O)
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Results and discussions

The structures, electronic states, and point group symme-
tries of pure (ZnO)12, (ZnO)15, (ZnO)18, (ZnO)20, (ZnO)22, 
and (ZnO)24 NCs are optimized and represented in Fig. 1. 
The (ZnO)12 and (ZnO)18 NCs are found to be the poten-
tial energy surface (PES) of the 1AG state, and the (ZnO)15 
NC is the ground 1A′ singlet PES. The (ZnO)20, (ZnO)22, 
and (ZnO)24 NCs are found to be the PES of the 1A state. 
The point group symmetries of (ZnO)12, (ZnO)15, (ZnO)18, 
(ZnO)20, (ZnO)22, and (ZnO)24 NCs are Th, C3h, S6, C4h, C3, 
and S8, respectively. From the harmonic vibrational frequen-
cies, the studied ZnO NC models corresponded to energetic 
minimum which means the transition state at a saddle point 
on the PES.

All possible interactions of the (ZnO)12, (ZnO)15, 
(ZnO)18, (ZnO)20, (ZnO)22, and (ZnO)24 NCs with favipiravir 
drug were carried out, and among them, relaxed structures 
with the lowest energy are demonstrated in Fig. 2. The bind-
ing energy per atom 

(

Eb

)

 of pure ZnO NCs and adsorption 
energy 

(

Ead

)

 of theoretically calculated geometries of the 

favipiravir adsorbed ZnO NCs are depicted in Fig. 3. The 
Eb of the ZnO NCs shifts from 5.04 to 5.16 eV, depending 
on the increase in the size. These results indicate that an 
increase in the size of the NCs also enhances the stability. 

Fig. 2   (Color online) Relaxed 
structures for favipiravir 
adsorbed a (ZnO)12, b (ZnO)15, 
c (ZnO)18, d (ZnO)20, e 
(ZnO)22, and f (ZnO)24 NCs

Fig. 3   (Color online) Binding energy per atom 
(

Eb

)

 of pure ZnO clus-
ters and adsorption energy 

(

Ead

)

 for favipiravir adsorbed ZnO NCs
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Fig. 4   (Color online) Density of 
states (DOS) for pure and favi-
piravir adsorbed a (ZnO)12, b 
(ZnO)15, c (ZnO)18, d (ZnO)20, 
e (ZnO)22, and f (ZnO)24 NCs

Table 1   The calculated binding energy per atom (Eb), adsorption 
energy (Ead), vertical ionization potential (VIP), vertical electron 
affinity (VEA), HOMO and LUMO energies, band gap energy (Eg), 

and reactivity parameters for pure and favipiravir adsorbed ZnO NCs. 
Ead in kcal/mol. Electronic properties are described in eV

* ΔEg (%) denotes the changes after adsorption

(ZnO)12 (ZnO)15 (ZnO)18 (ZnO)20 (ZnO)22 (ZnO)24

Pure Ads Pure Ads Pure Ads Pure Ads Pure Ads Pure Ads

Eb 5.04 - 5.08 - 5.11 - 5.13 - 5.15 - 5.16 -
Ead -  − 29.36 -  − 29.50 -  − 34.27 -  − 27.14 -  − 31.04 -  − 26.69
VIP 8.40 7.46 8.13 7.29 8.03 7.53 7.99 7.31 7.80 7.25 7.84 7.25
VEA 1.64 1.57 1.79 1.67 1.90 1.95 1.87 1.76 2.01 1.86 1.97 1.85
LUMO  − 2.86  − 3.27  − 2.92  − 3.28  − 2.96  − 3.47  − 2.90  − 3.25  − 3.01  − 3.22  − 2.92  − 3.27
HOMO  − 7.00  − 6.12  − 6.85  − 6.05  − 6.87  − 6.38  − 6.84  − 6.19  − 6.65  − 6.19  − 6.80  − 6.20
Eg 4.14 2.85 3.93 2.77 3.91 2.91 3.94 2.94 3.64 2.97 3.88 2.93
ΔEg (%)* - 31.16 - 29.52 - 25.58 - 25.38 - 18.41 - 24.48
η 2.07 1.43 1.97 1.39 1.96 1.46 1.97 1.47 1.82 1.49 1.94 1.47
ΔNtot 2.38 3.29 2.49 3.37 2.51 3.38 2.47 3.21 2.65 3.17 2.51 3.23
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The Ead of the ZnO NCs is predicted in the range of − 26.69 
and − 34.27 kcal/mol where N–Zn and F–Zn atoms inter-
act between the N and F atoms of favipiravir drug and Zn 
atoms of the ZnO NCs. The negative Ead means that the 
adsorption of the favipiravir drug on ZnO NCs is exother-
mic and energetically favorable. The size of ZnO NC has a 
significant effect on the Ead between the favipiravir and ZnO 
NCs. It is important to note that the Ead (− 34.27 kcal/mol) 
of between (ZnO)18 NC and the favipiravir is more desir-
able than the other interactions (ZnO)24 (− 26.69 kcal/mol), 
(ZnO)20 (− 27.14 kcal/mol), (ZnO)12 (− 29.36 kcal/mol), 
(ZnO)15 (− 29.50 kcal/mol), and (ZnO)22 (− 31.04 kcal/mol) 
NCs with the favipiravir, which means that ZnO NCs can be 
used as drug delivery vehicle.

The HOMO and LUMO energy levels are important 
parameters to understand perfectly the charge transfer 
interaction within interacting systems [40]. In this regard, 
the energy levels using the density of states (DOS) con-
structed by GaussSum [41] (Fig. 4) and the energy gap 
(

Eg

)

 that is obtained from HOMO and LUMO energy dif-
ferences are performed to figure out the stability chemi-
cal reaction of the studied systems. The size of ZnO NCs 
causes changes over valence and conduction levels to 
shift to higher and lower energies both pure and interact-
ing systems, leading to a shift in the studied systems. Our 
DFT calculations reveal that the Eg of (ZnO)12, (ZnO)15, 
(ZnO)18, (ZnO)20, (ZnO)22, and (ZnO)24 NCs  is found  
to be 4.14, 3.93, 3.91, 3.94, 3.64, and 3.88 eV, respectively 
(Table 1). Compared to studies available in the literature, 

the Eg of (ZnO)12 was predicted as 4.04 eV [21] wide, 
i.e., about 0.10 eV smaller than the calculated Eg value in 
the considered ZnO NC in this study. To the best of our 
knowledge, the other structures (for n = 15, 18, 20, 22, 
and 24) studied in the literature are cage structures [42, 
43], but they are not symmetric as in our study, so these 
structures did not compare with our structures, just cited 
in References [21] and [42].

The value of the HOMO and LUMO energy levels is 
found to be about − 6.05 and − 3.28 eV, respectively, and the 
corresponding Eg is found as 2.77 eV for (ZnO)15 NC and 
the favipiravir interaction which is the smallest value among 
the studied models. Moreover, the HOMO and LUMO 
energy levels for (ZnO)12 NC and the favipiravir interaction 
are predicted as − 6.19 and − 3.25 eV, respectively. The cor-
responding Eg is found to be 2.94 eV, which is greater than 
the other ZnO NC, and the favipiravir interactions change 

Fig. 5   (Color online) The HOMO–LUMO energy gap 
(

Eg

)

 and the 
percentage value 

(

ΔEg

)

 of the difference in the Eg energies for pure 
and favipiravir adsorbed ZnO NCs

Fig. 6   (Color online) a VIP and b VEA for pure and favipiravir 
adsorbed ZnO NCs
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in the range of 2.85–3.94 eV. It is important to note that 
charge transfer can take place easier between HOMO and 
LUMO energy levels of (ZnO)15 NC which has the small-
est Eg value and the favipiravir interaction, which means a 
shift in the biological activity of the favipiravir and ZnO 
NC interaction as shown in Fig. 5. That is, the change in 
the size of the ZnO NCs and the position of the favipiravir 
on the ZnO NCs cause a desirable shift in the HOMO and 
LUMO energy levels due to a decrease in the Eg , which fur-
ther contributes to the charge-transfer process [44–46]. The 
percentage value 

(

ΔEg

)

 of the difference in the Eg energies 
for favipiravir adsorbed ZnO NCs is also given in Fig. 5. 
When compared to pure ZnO NCs, the greatest change in 
the ΔEg is predicted between (ZnO)12 NC and favipiravir 
(31.16%), whereas the lowest change in the ΔEg is predicted 
between (ZnO)22 NC and favipiravir (18.41%). The values 
show that the size of ZnO NCs has an important effect on the 

Eg of interactions. The ZnO NCs are semi-conducting with 
the Eg in the range of 2.77–2.97 eV.

The vertical ionization potential (VIP) and vertical elec-
tron affinity (VEA) , which are defined in computational 
part, are carried out to explore the changes of the reactiv-
ity properties of pure ZnO NCs and ZnO NCs with favip-
iravir drug based on the size of ZnO NCs, as indicated in 
Fig. 6a, b. The greater VIP value of pure (ZnO)12 NC is 
8.40 eV, which decreases to 7.84 eV for (ZnO)24 NC due to 
the increase in HOMO and LUMO energy levels in terms of 
the electron-donating ability of the favipiravir towards ZnO 
NCs. Similarly, the greater VIP value of (ZnO)18 NC with 
favipiravir drug is 7.53 eV, which decreases to 7.25 eV for 
(ZnO)22 and (ZnO)24 NCs with favipiravir drug as shown 
in Fig. 6a. It is important to note that pure (ZnO)12 NC and 
(ZnO)18 NC with favipiravir drug are more stable than that 
of the others, so it is difficult to eject the electron from them. 

Fig. 7   (Color online) UV–vis 
spectra for pure and favip-
iravir adsorbed a (ZnO)12, b 
(ZnO)15, c (ZnO)18, d (ZnO)20, 
e (ZnO)22, and f (ZnO)24 NCs
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This result agrees also with the energy levels of HOMO and 
LUMO (Table 1). The VIP of the (ZnO)15, (ZnO)18, and 
(ZnO)20 NCs with favipiravir drug is predicted as 7.29, 7.53, 
and 7.31 eV. The value of VEA of pure (ZnO)20 is 2.01 eV, 
which decreases to 1.64 eV for pure (ZnO)20 as shown in 
Fig. 6b. Similarly, the greater VEA value of (ZnO)18 NC with 
favipiravir drug is 1.95 eV, which decreases to 1.57 eV for 
(ZnO)12 NC with favipiravir drug as shown in Fig. 6b. There 
is not a smooth change for the VEA with increase in the size 
of ZnO NC where the value of VEA increases for (ZnO)12, 
(ZnO)15, and (ZnO)18 with the favipiravir drug from 1.64 to 
1.95 eV, and then fluctuations are observed from (ZnO)20 to 
(ZnO)24 with the favipiravir drug.

Ultraviolet–visible (UV–vis) absorption spectra of inter-
acting pure and favipiravir adsorbed (ZnO)12, (ZnO)15, 
(ZnO)18, (ZnO)20, (ZnO)22, (ZnO)24 NCs are performed with 
TD-DFT, and the obtained results are piloted in Fig. 7. An 
excitation wavelength (electron-transfer wavelength) in the 
visible region is preferred because ultraviolet light is harm-
ful to living organisms [47]. Our results show that maxi-
mum absorption wavelength between 250 and 265 nm was 
obtained for interacting ZnO NCs and favipiravir systems, 

which corresponds to the near UV region and the closest 
visible light.

The bond order analysis of ZnO NCs with different 
sizes and favipiravir interactions was studied using WBO, 
MBO, and FBO methods. The values of WBI, FBO, and 
MBO for the favipiravir on the (ZnO)22 NC were calcu-
lated about 0.432, 0.762, and 0.402, respectively, which 
are greater than other configurations (Table 2, Fig. 8, and 
Fig. S1 in the Supporting information). WBI, FBO, and 

Table 2   Bond orders (Wiberg bond index (WBI), Fuzzy bond order 
(FBO), Mayer bond order (MBO)) and Mulliken charges based on 
interactions between O–Zn, N–Zn, and F–Zn atoms (The O, N, and 
F atoms indicate favipiravir; the Zn is the closest neighbors to these 
atoms; see Supporting information Fig. S1 for detail)

Configurations Interactions WBI FBO MBO Charge

Drug–(ZnO)12 27O–19Zn 0.414 0.732 0.363 0.321
35 N–19Zn 0.189 0.369 0.115 0.072
34F–6Zn 0.056 0.105 0.072 0.064

Drug–(ZnO)15 33O–30Zn 0.415 0.732 0.365 0.325
41 N–30Zn 0.195 0.378 0.117 0.074
40F–7Zn 0.031 0.041 0.042 0.039

Drug–(ZnO)18 39O–25Zn 0.370 0.675 0.334 0.304
47 N–9Zn 0.373 0.636 0.259 0.241
46F–9Zn 0.042 0.079 0.087 0.085

Drug–(ZnO)20 43O–19Zn 0.426 0.750 0.409 0.358
51 N–19Zn 0.089 0.167 0.061 0.061
50F–16Zn 0.145 0.312 0.187 0.169

Drug–(ZnO)22 47O–33Zn 0.432 0.762 0.402 0.360
55 N–33Zn 0.067 0.119 0.029 0.033
54F–25Zn 0.175 0.371 0.229 0.199

Drug–(ZnO)24 51O–16Zn 0.405 0.725 0.370 0.338
59 N–16Zn 0.172 0.338 0.092 0.053
58F–22Zn 0.041 0.060 0.045 0.040

Fig. 8   (Color online) Wiberg bond index (WBO), Mayer bond order 
(MBO), and Fuzzy bond order (FBO) and Mulliken charges based on 
interactions between a O–Zn, b N–Zn, and c F–Zn atoms for favipira-
vir adsorbed ZnO NCs (O, N, and F atoms indicate favipiravir and Zn 
indicates ZnO NCs; according to Supporting information Fig. S1 for 
detail)
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MBO values also vary considerably based on the NC size 
and binding points of favipiravir molecule. Bond order 
values below 1.0 reflect the fact that bonds between O–Zn, 
N–Zn, and F–Zn atoms exhibit dual covalent and ionic 
natures. Besides, the presence of metal ions bonded to 
oxygen atoms means that the O–Zn bonds are kind of 
polarized covalent bonds. The Mulliken charge distribu-
tion of the atoms in the ZnO NCs with different sizes and 
favipiravir interactions is also tabulated in Table 2 and 
shown in Fig. S1 (in the Supporting information). As can 
be seen from Table 2, the charges on the O–Zn interac-
tions have been calculated between 0.304 and 0.360 |e|, 
which are significantly bigger than that of N–Zn and F–Zn 
interactions.

To get an insight into the non-covalent interactions 
(NCI) within the studied systems, the NCI isosurfaces for 
favipiravir adsorbed (ZnO)12, (ZnO)15, (ZnO)18, (ZnO)20, 
(ZnO)22, and (ZnO)24 NCs are investigated, and plots for 
studied systems are shown in Fig. 9. As can be seen, disk-
shaped blocks that indicate non-covalent interactions and the 
strongest H-bonds are observed near NH2 within the favip-
iravir molecule. Furthermore, the reduced density gradient 
(RDG) scatter plots for favipiravir adsorbed ZnO NCs were 

presented in Fig. 10. RDG scattered points indicate H-bond-
ing interactions on the negative scale (blue color), indicating 
the dominance of the effect of strong attractive interactions. 
The green region in the range of ρ = 0.00 and ρ =  − 0.02 also 
shows the dominance of the effect of Van der Waals forces 
between binding atoms. Red areas indicate strong repulsive/
steric interactions in a range of 0.01 and 0.05.

Conclusions

In this study, the adsorption behavior and electronic and 
structural properties of the interacting favipiravir drug and 
ZnO NCs with different sizes were determined using the DFT 
method. Our results show the size of ZnO NCs, and bind-
ing points have an important effect on the interactions. For 
example, the adsorption energy between (ZnO)18 NC and the 
favipiravir (− 34.27 kcal/mol) is energetically more favorable 
than the other interactions. The size of the ZnO NCs causes a 
decrease in the energy gap, which further contributes to the 
charge-transfer process. The bonds between O–Zn, N–Zn, 
and F–Zn atoms exhibit dual covalent and ionic natures. 

Fig. 9   (Color online) The non-
covalent interaction (NCI) iso-
surfaces for favipiravir adsorbed 
a (ZnO)12, b (ZnO)15, c 
(ZnO)18, d (ZnO)20, e (ZnO)22, 
and f (ZnO)24 NCs
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From the non-covalent interaction analysis, the strongest 
H-bonds are observed near NH2 within the favipiravir. The 
maximum absorption peaks are predicted in the near UV 
region and the closest visible light. We can conclude that the 
ZnO NCs can have potential as drug delivery carriers.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s11224-​022-​02063-2.
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