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ABSTRACT
Background: Type 2 diabetes (T2D) is a prevalent chronic disease associated with several comorbidities.
Objectives: This study investigated whether the risk of T2D varied with genetically predicted insulin (INS), insulin receptor (INS-R), or insulin-like
growth factor 1 receptor (IGF-1R) using genetic variants in a Mendelian randomization (MR) study.
Methods: A 2-sample MR study was conducted using summary statistics from 2 genome-wide association studies (GWASs). Genetic predictors of
the exposures (INS, INS-R, and IGF-1R) were obtained from a publicly available proteomics GWAS of the INTERVAL randomized controlled trial of
blood donation in the United Kingdom. For T2D, the study leveraged the DIAbetes Meta-ANalysis of Trans-Ethnic association studies (DIAMANTE)
consortium. The estimated associations of INS, INS-R, and IGF-1R proteins with T2D were based on independent single nucleotide polymorphisms
(SNPs) strongly (P < 5 × 10–6) predicting each exposure. These SNPs were applied to publicly available genetic associations with T2D from the
DIAMANTE case (n = 74,124) and control (n = 824,006) study of people of European descent. SNP-specific Wald estimates were meta-analyzed
using inverse variance weighting with multiplicative random effects. Sensitivity analysis was conducted using the weighted median (WM) and
MR-Egger.
Results: INS-R (based on 13 SNPs) was associated with a lower risk of T2D (OR: 0.95 per effect size; 95% CI: 0.92, 0.98; P = 0.001), with similar
estimates from the WM and MR-Egger. Insulin (8 SNPs) and IGF-1R (10 SNPs) were not associated with T2D. However, 1 of the SNPs for INS-R was
from the ABO blood group gene.
Conclusions: This study is consistent with a causally protective association of the INS-R with T2D. INS-R in RBCs regulates glycolysis and thus may
affect their functionality and integrity. However, a pleiotropic effect via the blood group ABO gene cannot be excluded. The INS-R may be a target
for intervention by repurposing existing therapeutics or otherwise to reduce the risk of T2D. Curr Dev Nutr 2022;6:nzac044.

Keywords: Insulin receptor (INS-R), insulin (INS), insulin-like growth factor-1 receptor (IGF-1R), genome-wide association studies (GWAS), inverse
variance weighted (IVW), single nucleotide polymorphism (SNP), weighted median (WM), type 2 diabetes (T2D), mean corpuscular hemoglobin
concentration (MCHC)
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Introduction

Diabetes mellitus is one of the most prevalent chronic diseases globally
and in the United States. According to the CDC, in 2017, the cost of
diagnosed diabetes in the United States was $327 billion (1, 2). In 2018, it
was estimated that 34.2 million people in the United States had diabetes
(10.5% of the population), mainly type 2 diabetes (T2D), in parallel with
obesity-related comorbidities (3). In addition, it is estimated that 33.9%

of US adults have prediabetes or are insulin resistant. Thus, there is an
urgent need for new prevention strategies, early detection, diagnosis,
and T2D interventions.

T2D is a complex disease with multiple risk factors and possi-
bly gene–environment interactions. However, while both the obeso-
genic environment and other genetic components play a role in T2D
pathogenesis, the exact causes of disease onset remain elusive. T2D is
characterized by hyperglycemia due to 2 metabolic defects: increased
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resistance to insulin action in target tissues (muscle, adipose tissue,
and liver) and decreased insulin secretion by pancreatic β cells (4).
Insulin resistance is characterized by a defect in insulin-mediated
glucose control in peripheral tissues. Insulin binds to the insulin re-
ceptor (INS-R) to initiate the insulin pathway signaling cascade via in-
sulin receptor substrate (IRS) and phosphatidylinositol-3-kinase and
serine/threonine protein kinase B (PKB/AKT), which is phosphory-
lated at serine 473 by the mechanistic target of rapamycin complex
(mTORC) 2 (mTORC2), and activates an array of downstream tar-
gets including mTORC1 to initiate protein synthesis (5–11). In concert,
mTORC1 integrates inputs from the insulin receptor and nutrient and
growth factors and coordinates cellular growth and metabolism (12–
14). Aberrant mTOR complexes signaling has been reported in T2D
(15–22). For example, hyperactivity of mTORC1 driven by insulin and
excess glucose may lead to insulin resistance (17). Furthermore, the
inactivation of mTORC1 was reported to ameliorate the T2D pheno-
type in animal models (18, 20) and humans (19, 23, 24). mTORC2 also
plays a role in glucose uptake in skeletal muscles in T2D animal mod-
els and thereby may regulate insulin resistance (22). As such, the in-
sulin receptor impact on T2D could be transmitted and amplified via
mTORC1 and mTORC2 (25–31). In addition, glucose-transporter pro-
tein (GLUT4) increases glucose uptake. It also inhibits glycogen syn-
thase kinase-3 (GSK3) to increase glycogen synthesis as well as adeno-
sine monophosphate-activated protein kinase (AMPK) and acetyl CoA
carboxylase (ACC) to increase lipid synthesis and decrease lipolysis
(4).

The rationale for this study is that recent evidence supports the no-
tion that causes of insulin resistance are heterogeneous and may involve
gene–environment interactions (4). Several factors contribute to the
pathogenesis of T2D, including genetic susceptibility, lifestyle, and the
environmental exposome (32–34). Nonmodifiable risk encompasses ge-
netic variants, family history, and age. The environmental exposome
refers to the totality of exposures across the lifespan and their health
effects (35). As such, the external exposome embodies the built environ-
ment, social and physico-chemical environment, and food and lifestyle
environments, and they all can play a role in diabetes development. To-
gether, all of these factors contribute to the complexity of T2D patho-
genesis.

Several functions of insulin and insulin-like growth factor (IGF) 1
receptors overlap, leading to a built-in redundancy between both path-
ways (36–39). However, the insulin and IGF-1 receptors are also tissue
specific, which adds to the complexity of insulin-mediated regulation
of glucose metabolism and T2D (40–43). Thus, we sought to determine
whether the insulin and/or IGF-1 receptors play a causal role in the de-
velopment of T2D. We hypothesized that the insulin receptor but not
IGF receptor or insulin hormone has a protective effect on T2D. Un-
like other observational studies, the Mendelian randomization (MR)
approach allows us to determine causality and thereby can differenti-
ate between components of the insulin signaling pathway. To investigate
further, we used a 2-sample MR study because, by taking advantage of
existing genome-wide association studies (GWASs), it can provide un-
confounded estimates even when no study including both exposure and
outcome exists. Previous MR studies have suggested that IGF-binding
protein 2 may play a protective role in diabetes (44), while IGF is posi-
tively associated with diabetes (45). Therefore, we investigated whether
the risk of T2D varied with genetically predicted insulin (INS), insulin

receptor (INS-R), or IGF-1 receptor (IGF-1R) protein concentrations
using an MR study.

Methods

MR takes advantage of the random allocation of genetic material at con-
ception to obtain less confounded estimates without conducting costly
randomized clinical trials (RCTs) that could have unanticipated side
effects. An MR study is an instrumental variable analysis that utilizes
genetic proxies of exposure from the wealth of GWASs (46). As such,
MR can inform the susceptibility to and etiology of T2D, as shown
in Figure 1. As an instrumental variable analysis with a genetic instru-
ment, MR must fulfill the 3 assumptions of instrumental variable analy-
sis: 1) relevance, 2) independence, and 3) exclusion restriction. To meet
the assumption of relevance, we only used single nucleotide polymor-
phisms (SNPs) as instruments that were independently (r2 < 0.05) asso-
ciated with the exposures at P values <5 × 10–6. To meet the exclusion-
restriction assumption, we assessed whether the selected SNPs could
affect the outcomes directly by identifying possible pleiotropic asso-
ciations from a comprehensive, curated genotype-to-phenotype cross-
references PhenoScanner (47, 48).

Study design and MR assumptions
This is a 2-sample MR study using summary statistics from 2 separate
GWASs. First, we obtained genetic predictors of the exposures (INS,
INS-R, and IGF-1R) from a publicly available proteomics GWAS of
the INTERVAL RCT of blood donation in the United Kingdom (49).
A total of 3301 individuals were included in the final study, with a
mean age of 44 y; 51% were men. Participants were generally in good
health because blood donation criteria excluded people with a history of
major diseases. Proteins were measured using a multiplexed, aptamer-
based approach. Genotyping used 1000 genomes with phase 3 impu-
tation and gave 87 million variants. Genetic associations with proteins
were adjusted for age, sex, blood draw to processing time, and the first
3 ancestry components. For T2D health outcomes, we leveraged the
DIAbetes Meta-Analysis of TransEthnic study (DIAMANTE) GWAS
available at https://kp4cd.org/node/169 (50). The European DIA-
MANTE study compiled GWAS data from approximately 900,000 in-
dividuals of European descent. The DIAMANTE investigators meta-
analyzed estimates from 32 studies to generate genetic associations with
T2D. We used estimates that were not adjusted for BMI. These GWASs
included participants from the UK Biobank, Framingham Heart Study,
Finland-United States Investigation of NIDDM, the Health Profession-
als Follow-Up Study, and the Nurses’ Health Study, as shown in the
flow diagram in Figure 2. For replication, we also used FINNGEN
(E4_DM2_STRICT).

Genetic instruments for the exposures
We obtained independent SNPs that were strongly (P < 5 × 10–6) and
independently (r2 < 0.05) associated with each exposure, giving insulin
(8 SNPs), INS-R (13 SNPs), and IGF-1R (10 SNPs). We calculated the
F-statistics for instrument strength using an established approxima-
tion (51, 52); an F-statistic >10 is usually taken as indicating adequate
strength.
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FIGURE 1 MR assumptions for unbiased causal associations. MR is an instrumental variable (IV) approach using genetic variants single
nucleotide polymorphism (SNPs) as instrumental variables. The SNPs serve as a proxy of the exposure.To fulfill the MR assumptions, the
SNPs must be associated only with the exposure but not the confounders. As an instrumental variable analysis with a genetic instrument,
MR must fulfill the 3 assumptions: 1) relevance, 2) independence, and 3) exclusion restriction. CV, confounding variables; INS-R, insulin
receptor; MR, Mendelian randomization; SNP, single nucleotide polymorphism; T2D, type 2 diabetes.

Health outcomes
We used publicly available summary genetic associations with di-
abetes from the DIAMANTE T2D GWAS (cases, n = 74,124;
controls, n = 824,006) (http://diagram-consortium.org/http:
//www.type2diabetesgenetics.org/). The mean age was 57.4 y, cases

comprised 41.7% women and controls comprised 53% women.
In addition, to validate the findings in other populations, we
also used genetic summary statistics for T2D from another study
of European ancestry, FINNGEN (cases = 11,006, controls =
82,655).

n n

FIGURE 2 Flowchart of the MR study design. The 2-sample MR study used summary statistics from 2 separate GWASs. Genetic
predictors of the exposures (INS, INS-R, and IGF-1R) were from a publicly available proteomics GWAS of the INTERVAL randomized
controlled trial of blood donation in the United Kingdom (49). For T2D health outcomes, the DIAMANTE GWAS (50) was utilized. This
GWAS included participants from the UK Biobank, Framingham Heart Study, Finland–United States Investigation of NIDDM, the Health
Professionals Follow-Up Study, and the Nurses’ Health Study, as shown in the flow diagram. The exposure and health outcome T2D data
were harmonized. The independent SNPs for insulin were 8 SNPs; for INS-R, 13 SNPs; and for IGF-1R, were 10 SNPs. GWAS,
genome-wide association study; IGF-1R, insulin-like growth factor 1 receptor; INS, insulin; INS-R, insulin receptor; MR, Mendelian
randomization; SNP, single nucleotide polymorphism; T2D, type 2 diabetes.

CURRENT DEVELOPMENTS IN NUTRITION

http://diagram-consortium.org/http://www.type2diabetesgenetics.org/


4 Soliman and Schooling

TABLE 1 MR estimates for the association of INS-R (based on 13 independent SNPs with a P value of 5 × 10–6), insulin (based on
8 independent SNPs with a P value of 5 × 10–6), and IGF-R (based on 10 independent SNPs with a P value of 5 × 10–6) with type 2
diabetes1

Exposure MR method OR 95% CI P

Cochran’s Q
statistic
(P value)

MR-Egger
intercept
P value I2

Insulin Effect Size Inverse variance weighted 1.01 0.97, 1.05 0.58 5.15 (0.64) — —
Weighted median 1.01 0.96, 1.06 0.82 — — —
MR-Egger 1.01 0.92, 1.10 0.89 5.13 (0.52) 0.92 0.0%

INS-R Effect Size Inverse variance weighted 0.95 0.92, 0.98 0.001 26.2 (0.01) — —
Weighted median 0.92 0.89, 0.94 2 × 10–9 — — —
MR-Egger 0.91 0.87, 0.96 0.0004 20.3 (0.04) 0.075 93.72%

IGF-1R Effect Size Inverse variance weighted 0.97 0.89, 1.05 0.47 59.7 (0.0) — —
Weighted median 0.97 0.89, 1.05 0.47 — — —
MR-Egger 0.95 0.72, 1.24 0.70 59.5 (0.0) 0.048 0.0%

1The data source for exposure is the human plasma proteomics–GWAS interval study participants (n = 3301) from publicly available aggregate summary data (49).
The source for diabetes health outcomes is DIAMANTE. DIAbetes Meta-ANalysis of Trans-Ethnic association studies (DIAMANTE) consortium; GWAS, genome-wide
association study; IGF-R, insulin-like growth factor receptor; IGF-1R, insulin-like growth factor 1 receptor; INS-R, insulin receptor; MR, Mendelian randomization; SNP,
single nucleotide polymorphism.

Statistical analysis
We aligned the SNPs on the same effect allele for both exposure
and outcome; palindromic SNPs were aligned on the effect allele or
dropped if they could not be unambiguously aligned. We meta-analyzed
SNP-specific Wald estimates (SNP on outcome divided by SNP on
exposure) using inverse variance weighting (IVW) with fixed effects
for 3 or fewer SNPs and multiplicative random effects for 4 or more
SNPs. As a sensitivity analysis, we repeated the analysis using methods
with different assumptions. First, the weighted median (WM) estimate
is valid as long as >50% of the weight comes from valid instruments.
Second, MR-Egger detects unknown genetic pleiotropy as long as the
instrument strength independent of the direct effect assumption is sat-
isfied (51, 53–55). To minimize pleiotropy, we also excluded SNPs with
known potential pleiotropic effects.

Data management
We used R 4.1.2 and the Mendelian Randomization package (version
0.3.6) to conduct MR analysis using summary genetic associations from
publicly available published data (56, 57). Both R and Mendelian Ran-
domization packages are released under General Public Licenses (GPL-
2, GPL-3).

Ethical considerations
We conducted secondary analysis from publicly available aggregate
summary data with no involvement of the participants in the primary
studies. No original data were generated from this manuscript. Ethical
approval of each of the studies used is available in the original publi-
cations. There is no required Institutional Review Board approval for
the secondary analysis of summary data. This study follows the ethical
guidelines of the Declaration of Helsinki 1975.

Results

Of the 9 SNPs selected to predict INS, 8 SNPs were available for T2D
in DIAMANTE, and of the 15 SNPs for INS-R, 13 were available, and
all 10 SNPs were available for IGF-1R. The F-statistics were all greater
than 10 (INS, based on 8 SNPs: mean F-statistic = 23.6; INS-R, based

on 13 SNPs: mean F-statistic = 51.4; IGF-1R, based on 10 SNPs: mean
F-statistic = 26.0). The independent SNPs for each exposure and out-
come, including the chromosome number and position, β and SE for
exposure, effect allele and the other allele, the P value, and Wald esti-
mators are summarized in Table 1.

INS-R was associated with a lower risk of T2D (OR: 0.95 per ef-
fect size; 95% CI: 0.92, 0.98; P = 0.001), with similar estimates from
the WM and MR-Egger (Table 1), and similarly using UK Biobank and
FINNGEN (OR: 0.94; 95% CI: 0.89, 0.99; P = 0.03). A summary of the
harmonized merged SNPs for exposure and outcome files is shown in
Table 2.

Sensitivity analysis did not indicate pleiotropic effects. INS was not
associated with T2D using IVW (OR: 1.01 per effect size; 95% CI: 0.97,
1.05; P = 0.58); sensitivity analysis gave similar estimates. IGF-1R was
not associated with T2D using IVW (OR: 0.97; 95% CI: 0.89, 1.05;
P = 0.47); sensitivity analysis gave similar estimates. Replication using
FINNGEN gave a similar interpretation (data not shown). Potentially
pleiotropic effects obtained from PhenoScanner are shown in Supple-
mental Table 1.

Although sensitivity analysis did not indicate pleiotropic effects, 1
of the selected SNPs for INS-R (rs507666) is in the pleiotropic ABO
blood group gene. Figure 3 shows the leave-one-out analysis for each
exposure, excluding that SNP gave a null estimate (IVW OR: 0.98;
95% CI: 0.96, 1.02). Similarly, replication using FINNGEN, but exclud-
ing rs507666, gave a null association. To determine the causal link of
blood groups with INS-R, we investigated the association of INS-R
with the RBC attributes [mean corpuscular hemoglobin concentration
(MCHC)] because it might affect glycosylated hemoglobin (HbA1c),
and hence the diagnosis of T2D. We found that INS-R was associ-
ated with higher MCHC using an IVW estimate in the UK Biobank
(http://www.nealelab.is/uk-biobank; β = 0.012; 95% CI: 0.003, 0.021;
P = 0.01) (Figure 4).

Discussion

We found that the INS-R protein, but not insulin or IGF-1R protein,
was associated with a lower risk of T2D, consistent with the complex
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A Insulin Receptor (INS-R) B Insulin (INS) C IGF-1R

FIGURE 3 Leave one-out sensitivity test for the INS, INS-R, and IGF-1R exposures on T2D outcome. As a sensitivity analysis, we repeated
the analysis using methods with different assumptions. First, the weighted median, valid as long as >50% of the weight comes from valid
instruments. Second, MR-Egger detects unknown genetic pleiotropy as long as the instrument strength, independent of the direct effect
assumption, is satisfied (51, 53–55). Third, leave-one-out analysis was applied to determine if 1 SNP drove the effect. Finally, SNPs with
known potential pleiotropic effects were excluded to minimize pleiotropy. IGF-1R, insulin-like growth factor 1 receptor; INS, insulin; INS-R,
insulin receptor; IVW, inverse variance weighted; MR, Mendelian randomization; SNP, single nucleotide polymorphism; T2D, type 2
diabetes.

role of insulin in health (58). The association for INS-R was driven
by 1 SNP from the ABO gene. As such, the insulin receptor may me-
diate its effect via the ABO gene variant rs507666. Furthermore, in-
tracellular internalization of glucose by INS-R could prevent excess
blood glucose from glycosylating RBCs and thus decrease HbA1c. We
also found that INS-R increased MCHC (Figure 4), which measures
the RBCs’ oxygen-carrying capacity, possibly via rs507666 and other
genetic instruments. Thus, the ABO gene could mediate any protec-
tive effect on T2D via INS-R. Additionally, INS-R increases MCHC,
which could be protective as it elevates the oxygen-carrying capac-
ity of RBCs and thereby delivers more oxygen and nutrients to pe-
ripheral tissues such as adipose tissue and muscle, thereby reducing
the insulin resistance of such organs. However, the alternative ex-
planation of a pleiotropic effect of the ABO gene cannot be ruled
out.

Our findings support the concept that INS-R and its signaling path-
way internalize glucose via glucose transporters and thus reduce cir-
culating glucose available for RBC glycation and formation of HbA1C.
INS-R binds with high affinity to RBCs with thousands of insulin-
binding sites per erythrocyte (59). Genetic studies in mice showed that
deletion of the insulin receptor in the vascular smooth muscle cells
(VSMCs), but not IGF-1R, leads to decreased VSMC proliferation, indi-
cating that the insulin receptor mediates intimal hyperplasia and VSMC
proliferation after intimal injury in insulin resistance and T2D (60).
Myocardial infarction and cardiovascular diseases are major comor-
bidities associated with insulin resistance and T2D (61). The insulin

receptor could mediate its protective effect on T2D, at least partially,
via reducing RBC glycation. Given that the insulin receptor facilitates
glucose uptake in peripheral tissues such as adipose tissue and mus-
cle and activates the nutrient-sensing pathway mTORC1, the INS-R
causality findings are a gateway to precision nutrition interventions
by shedding light on the mechanisms of interindividual variability in
responses to food and carbohydrate intake. The results also have ap-
plications in developing and validating personalized nutrition algo-
rithms that predict what individuals might eat to promote optimal
health.

T2D is a heterogeneous multifactorial disease, which is also im-
pacted by gene–environment interplay (62). As such, a constella-
tion of factors within the insulin-signaling cascade, insulin resistance,
and environmental factors may be relevant to T2D. Current litera-
ture has downplayed a role for the proximal canonical insulin signal-
ing, which begins with the binding of insulin hormone to its mem-
brane INS-R, which becomes glycosylated, dimerizes, and creates a
tetramer composed of 2 extracellular α subunits and 2 transmem-
brane β subunits (α2β2) and phosphorylates insulin receptor sub-
strate in developing insulin resistance (63–67). Researchers have ar-
gued that the distal insulin components downstream of AKT are the
only key players in T2D pathophysiology and that phosphorylation of
these components at multiple sites leads to insulin resistance in adi-
pose tissue and muscles (4, 68). However, some investigators have dis-
puted the notion of sparing insulin receptors (69, 70). Our MR study
using SNPs as genetic instrumental variables found that genetically
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Exposure: INS-R on Outcome: MCHC

FIGURE 4 Two-sample MR with exposure as INS-R and outcome as MCHC. To determine the causal link of blood groups with INS-R, we
investigated the association of INS-R with the RBC attributes (MCHC) because it might affect HbA1c, and hence the diagnosis of T2D. We
found that INS-R was associated with higher MCHC using an IVW estimate in the UK Biobank (http://www.nealelab.is/uk-biobank). HbA1c,
glycosylated hemoglobin; INS-R, insulin receptor; IVW, inverse variance weighted; MCHC, mean corpuscular hemoglobin concentration;
MR, Mendelian randomization; T2D, type 2 diabetes.

determined INS-R proteins could have a causal protective association
with T2D.

Limitations
While MR is robust in addressing bias from residual or unmeasured
confounders, the use of MR could potentially be associated with some
limitations. To address the MR assumption of relevance, we only used
SNPs with an F-statistic >10. However, currently available protein
GWASs are quite small, so we were not able to use genome-wide sig-
nificance as a criterion for instrument selection, and it is possible that
the instruments available do not capture the relevant phenotypes well.
Larger GWASs of proteins might provide stronger instruments. To ad-
dress exclusion restriction, we assessed whether the genetic predictors
had possible pleiotropic effects and found that 1 variant for INS-R was
in the highly pleiotropic ABO gene. A leave-one-out analysis clearly
showed that the SNP from ABO was driving the association of INS-R
with T2D. We also used the WM estimator and MR-Egger regression
to detect potential bias, as described by Bowden et al. (51, 54, 55, 71).
Finally, given the limited size of the protein GWASs, we cannot rule out
the possibility that the null results for insulin and IGF-1R are due to lack
of power.

Future directions will be guided by the MR determination of the
causality of the mTOR complexes network downstream of the insulin
signaling pathway on T2D. It is possible that the causal association

of insulin receptors with T2D could be transmitted and amplified via
mTORC1 and mTORC2. In the future, we will confirm findings re-
lated to mTOR genetic variants obtained by MR by testing T2D hu-
man biospecimen and patient-derived organoids obtained from the Na-
tional Disease Research Exchange (NDRI), Human Tissue, and Organ
for Research Resource (https://ndriresource.org/for-researchers/reque
st-tissue).

Conclusions

This MR study is consistent with a causally protective association of
INS-R with T2D. Insulin receptors in RBCs regulate glycolysis and thus
may affect their functionality and integrity, as well as increase oxygen-
carrying capacity, although a pleiotropic effect via ABO cannot be ex-
cluded. INS-R may be a target for intervention by repurposing existing
therapeutics to reduce the risk of T2D.
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