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account fi nite postsynaptic potentials where their effect is most 
prominent: our new treatment still describes the probability den-
sity evolution on a length scale σ determined by the fl uctuations 
in the input as a diffusion, but we take into account the discrete 
events near the absorbing boundary. With a different approach 
Sirovich et al. (2000) and Sirovich (2003) calculated the equi-
librium solution for fi nite sized excitatory incoming events. De 
Kamps (2003) developed a stable numerical approach to solve 
the equilibrium and non-equilibrium population dynamics. Here 
we are interested in the case of excitatory and inhibitory inputs, 
as they occur in balanced neural networks (van Vreeswijk and 
Sompolinsky, 1996; Brunel, 2000). Secondly, unlike previous 
analytical treatments, we solve the problem in discrete time to 
incorporate the effect of the discretization on the equilibrium 
and response properties of the neuron. This is necessary to get 
a quantitative understanding of artifacts observed in simulation 
studies: in time-driven simulations, the state of the neuron is only 
updated in time steps of size h and the incoming synaptic impulses 
are accumulated over one such time step. However, modern time-
driven simulators (Gewaltig and Diesmann, 2007; Morrison et al., 
2007) are able to take into account exact spike timing and hence 
avoid discretization effects. These methods can be either slower 
or faster than traditional time-driven techniques depending on 
the required accuracy.

INTRODUCTION
Reduced models of neurons and networks are useful tools for 
investigating prominent features of recurrent network dynam-
ics, and serve as guides for biophysically more detailed mod-
els. The leaky integrate-and-fi re neuron (Stein, 1965) is such a 
widely used model, in which an incoming synaptic event causes 
an exponential postsynaptic potential of fi nite amplitude and a 
spike is emitted whenever the membrane potential reaches the 
fi ring threshold, followed by resetting the membrane potential to 
a fi xed potential. This model is effi cient to simulate and in certain 
regimes it is a good approximation of both more complicated neu-
ron models (Izhikevich, 2004) and of real neurons (Rauch et al., 
2003; La Camera et al., 2004; Jovilet et al., 2008). The analytic 
treatment of its dynamics has been performed in the diffusion 
limit (Siegert, 1951; Ricciardi and Sacerdote, 1979; Brunel, 2000), 
where the input current is approximated as Gaussian white noise 
and the equilibrium solution is known exactly. Hohn and Burkitt 
(2001) took into account fi nite synaptic weights to obtain the free 
membrane potential distribution and to solve the fi rst passage 
time problem numerically. Richardson (2007, 2008) developed a 
numerical framework to calculate the equilibrium and response 
properties of linear and non-linear integrate-and-fi re neurons. 
Here we extend the known analytic theory in two respects. Firstly, 
we go beyond a pure diffusion approximation and take into 

Equilibrium and response properties of the integrate-and-fi re 
neuron in discrete time

Moritz Helias1,2*†, Moritz Deger1,2†, Markus Diesmann1,3,4 and Stefan Rotter1,2

1 Bernstein Center for Computational Neuroscience, Freiburg, Germany
2 Computational Neuroscience, Faculty of Biology, Albert-Ludwig University, Freiburg, Germany
3 RIKEN Brain Science Institute, Wako City, Japan
4 Brain and Neural Systems Team, RIKEN Computational Science Research Program, Wako City, Japan

The integrate-and-fi re neuron with exponential postsynaptic potentials is a frequently employed 
model to study neural networks. Simulations in discrete time still have highest performance 
at moderate numerical errors, which makes them fi rst choice for long-term simulations of 
plastic networks. Here we extend the population density approach to investigate how the 
equilibrium and response properties of the leaky integrate-and-fi re neuron are affected by time 
discretization. We present a novel analytical treatment of the boundary condition at threshold, 
taking both discretization of time and fi nite synaptic weights into account. We uncover an 
increased membrane potential density just below threshold as the decisive property that 
explains the deviations found between simulations and the classical diffusion approximation. 
Temporal discretization and fi nite synaptic weights both contribute to this effect. Our treatment 
improves the standard formula to calculate the neuron’s equilibrium fi ring rate. Direct solution 
of the Markov process describing the evolution of the membrane potential density confi rms 
our analysis and yields a method to calculate the fi ring rate exactly. Knowing the shape of the 
membrane potential distribution near threshold enables us to devise the transient response 
properties of the neuron model to synaptic input. We fi nd a pronounced non-linear fast 
response component that has not been described by the prevailing continuous time theory 
for Gaussian white noise input.

Keywords: leaky integrate-and-fi re neuron, discrete time, fi nite synaptic weights, non-linear response, immediate fi ring 

rate response, equilibrium properties, perturbation theory, membrane potential distribution

Edited by:

Wulfram Gerstner, Ecole Polytechnique 
Fédérale de Lausanne, Switzerland

Reviewed by:

Maurizio Mattia, 
Istituto Superiore di Sanità, Italy
Magnus Richardson, 
University of Warwick, UK

*Correspondence:

Moritz Helias, Unit of Computational 
Neurophysics, RIKEN Brain Science 
Institute, 2-1 Hirosawa, Wako-City, 
Saitama 351-0198, Japan. 
e-mail: helias@brain.riken.jp
†Moritz Helias and Moritz Deger have 
contributed equally to this work.



Frontiers in Computational Neuroscience www.frontiersin.org January 2010 | Volume 3 | Article 29 | 2

Helias et al. Integrate-and-fi re neuron in discrete time

The threshold makes this model a non-linear input-output 
device, complicating a full analytic treatment of the dynamics. 
Linearization of the neuron around a given background input and 
treating deviations of the input from baseline as small perturbations 
is the usual solution. In this linear approximation, the response 
of the neuron is quantifi ed by a response kernel. This approach 
enables the characterization of recurrent random networks by a 
phase diagram (Brunel and Hakim, 1999; Brunel, 2000), to explain 
stochastic resonance (Lindner and Schimansky-Geier, 2001), to 
investigate feed-forward transmission of correlation (Tetzlaff et al., 
2003; De la Rocha et al., 2007), and to disentangle the mutual inter-
action of spike-timing dependent synaptic learning rules and neural 
dynamics (Kempter et al., 1999; Helias et al., 2008; Morrison et al., 
2008). For large input transients (Goedeke and Diesmann, 2008) 
recently devised an approximation of the spike density to inves-
tigate synchronization phenomena in synfi re chains (Diesmann 
et al., 1999).

For continuous time and in the diffusion limit, Brunel et al. 
(2001), Lindner and Schimansky-Geier (2001), and Fourcaud-
Trocmé et al. (2003) have calculated the linear response to periodic 
perturbations analytically and concluded, that the integrate-
and-fi re neuron acts as a low-pass fi lter. In contrast, we show that 
for fi nite postsynaptic potentials (and in discrete time) the neu-
ron transmits changes in the input as fast as the time step h in a 
non-linear manner.

The structure of the paper is as follows: In Section “Density 
Equation for the Integrate-and-Fire Neuron” we state the model 
equations for the integrate-and-fi re neuron and derive a Fokker–
Planck equation describing the time evolution of the probability 
density function of the membrane potentials of a population of 
such neurons in discrete time. Section “Boundary Condition at 
the Threshold and Normalization” discusses the boundary con-
ditions that apply to the probability density. Here we show that 
fi nite  synaptic weights as well as the time step markedly infl uence 
the equilibrium properties (mean fi ring rate, stationary probabil-
ity density). In Section “Accuracy and Limits of the Solution” we 
compare our result against simulations and a numerical solution 
to check the accuracy of our approximation. In Section “Response 
Properties” we investigate the response of the neuron to a brief 
perturbation of the membrane potential and we demonstrate an 
immediate non-linear response. Section “Discussion” puts our 
results into the context of computational neuroscience and dis-
cusses the applicability and limits of our theory.

DENSITY EQUATION FOR THE INTEGRATE-AND-FIRE NEURON
We consider a leaky integrate-and-fi re neuron (Lapicque, 1907) 
that receives the input current I(t). The membrane potential is 
governed by the differential equation

τdV

dt
t V t R I t( ) ( ) ( )= − + ,

 
(1)

with the membrane time constant τ and the membrane resistance 
R. Whenever the membrane potential reaches the voltage threshold 
Vθ, the neuron elicits a spike and the membrane potential is reset to 
V

r
, where it is clamped for the absolute refractory time τ

r
. The input 

current I(t) is brought about by excitatory and inhibitory point 
events from homogeneous Poisson processes with the rates νe and 

ν
i
, respectively. Each synaptic input causes a δ-shaped (δ denotes 

the Dirac distribution) postsynaptic current, which leads to a jump 
in the membrane potential. The amplitude of an excitatory synaptic 
impulse is w, of an inhibitory impulse −gw,

RI t w t t gw t t
t

i
t

j

i j
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We apply a diffusion equation approach (Brunel and Hakim, 
1999; Ricciardi et al., 1999; Brunel, 2000) to an ensemble of identi-
cal integrate-and-fi re neurons characterized by Eqs. 1 and 2. The 
population is described by a probability density function P(V, t) of 
the membrane potential V. Unlike the above mentioned works, here 
we treat the problem in discrete time where the time t advances in 
time steps h. The case of continuous time can be obtained at any 
step in the limit h → 0. In discrete time, the probability density P(V, 
t) characterizes the system at regular time intervals. In this paper, 
we follow the convention that P(V, t), for t ∈ hN

0
, describes the 

density at the beginning of the time interval. We decompose the evo-
lution of the membrane potential density into three steps: Decay, 
incoming events, and thresholding (Diesmann et al., 2001). During 
the time interval (t, t + h), each neuron’s membrane potential V

i
 

in the ensemble decays by a factor of e−h/τ and hence has the value 
V

i
e−h/τ at the end of the interval. This decay amounts to a shrinkage 

of the membrane potential density �P V t h P V e t eh h( ) ( ), + = ⋅ , ⋅/ /τ τ as 
 illustrated in Figure 1A. We denote with �P  the probability den-
sity function directly before the synaptic impulses in the current 
time interval are taken into account (Morrison and Diesmann, 
2008). At the end of the interval, all synaptic inputs that arrived 
within this interval are taken into account. They cause each indi-
vidual membrane potential to jump by a discrete random number 
γ = wκ

e
 − wgκ

i
, where κ

e
 and κ

i
 are the Poisson distributed ran-

dom numbers of incoming excitatory and inhibitory events in 

FIGURE 1 | (A) Evolution of the membrane potential distribution between two 
adjacent time steps t = 0 and t = h. At the beginning of the interval, the 
distribution is P(V, 0). Each individual membrane potential in the ensemble 
then decays exponentially with the membrane time constant τ resulting in a 
contracted distribution �P V h( ).,  At the end of the interval the synaptic inputs 
are taken into account which cause a redistribution of the membrane 
potentials. All membrane trajectories exceeding the threshold Vθ elicit a spike 
in the interval and the corresponding Vi is reset to Vr. In equilibrium, the 
distribution after one such cycle is identical to the initial distribution 
P(V, h) = P(V, 0) again. (B) Boundary condition at the threshold. The neuron 
receives synaptic inputs during a time step of length h. Their summed effect 
causes the membrane potential to perform a jump of random size γ with 
distribution P(γ). The fi gure shows one particular realization of γ. For positive γ 
(as indicated) the shaded area 

V

V
P V dV

θ

θ

−∫ γ
�( )  of the distribution is shifted above 

threshold in this time step and contributes to the fi ring rate (probability fl ux 
over the threshold). Each such contribution is weighted by the probability P(γ) 
for the jump γ to occur.
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the  interval of length h, respectively. We denote with P(γ) the 
 probability of the jump γ to occur. All membrane trajectories V

i
 

that have crossed the threshold are reset to V
r
, the corresponding 

neuron emits a spike and remains refractory for the time τ
r
. This 

is equivalent to the probability fl ux at time t across the threshold 
being reinserted at the reset V

r
 at time t + τ

r
. The time evolution is 

sketched in Figure 1A. To solve for the equilibrium distribution, 
we have to fi nd the distribution which is invariant to this cycle of 
three subsequent steps, so it must satisfy P(V, t + h) = P(V, t).

To formalize this approach, we follow Ricciardi et al. (1999) and 
assume that the main contributions to the time evolution of the 
membrane potential distribution can be described by an infi ni-
tesimal drift and a diffusion term. This is true as long as synaptic 
amplitudes are small (w � Vθ − V

r
). However, in the region near 

the threshold Vθ we treat the fi nite synaptic weights separately giv-
ing rise to the boundary condition described in Section “Boundary 
Condition at the Threshold and Normalization”. The complete 
derivation of the Fokker–Planck equation for discrete time can be 
found in Section “Derivation of the Fokker–Planck Equation” in 
Appendix. We fi nd it convenient to introduce the dimensionless 
voltage y and the dimensionless probability density Q defi ned as

y
V

F e

Q y t P y
h

F
t

F
h h:= − := −

, := + ,⎛
⎝⎜

⎞
⎠⎟ ⋅ ,

− /
τ

τμ
σ

σ μ
τ

σ
ν τ

with 1

0

( ) ( )
 

(3)

where we introduced the mean µ: = wτ (ν
e
 − gν

i
) and variance 

σ2 := τw2(ν
e
 + g2ν

i
) of the equivalent Gaussian white noise match-

ing the fi rst and second moment of the incoming synaptic events 
as well as the neuron’s equilibrium fi ring rate ν

0
. Subsequently we 

use the shorthands yθ = y(Vθ) and y
r
 = y(V

r
). For the equilibrium 

case the probability fl ux operator S can be expressed in terms of 
the dimensionless voltage y, acting on Q as

ν τ
0

1 21
1

2
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

= − +( ) − + ∂
∂
.S F y

h
y F

y  
(4)

We drop the time dependence of both P and Q in what follows. 
The density in equilibrium has to fulfi ll the stationary Fokker–
Planck equation (Eq. 22) which is equivalent to a piecewise constant 
probability fl ux

ν θ
0
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( )
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(5)

because the neuron spikes with its mean fi ring rate ν
0
, which equals 

the probability fl ux between reset and threshold. For y
r
 ≤ y ≤ yθ 

Eq. 5 is a linear ordinary differential equation of fi rst order so the 
general solution is a sum of a particular (Q

p
) and the homogene-

ous solution (Q
h
)

Q y Q y A Q yp h( ) ( ) ( )= + ⋅ .
 

(6)

The constant A has to be determined from the boundary con-
dition (see Section “Boundary Condition at the Threshold and 
Normalization”). The homogeneous solution satisfi es SQ

h
(y) = 0 

so it has the form (see Section “General Solution of the Flux 
Differential Equation” in Appendix).
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Here 
2
F

1
(a, b, c ; z) denotes the Gauss hypergeometric series 

(Abramowitz and Stegun, 1974). We obtain the particular solution 
of Eq. 5 by variation of constants, which yields
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F
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In the second line we used Z(H; y) as a shorthand for the 
integral of z(H; y), as defi ned in Eq. 27. We choose the upper 
bound yθ of the integral such that Q

p
(yθ) = 0. In order for the 

complete solution to be continuous at y
r
, the general solution 

of Eq. 5 reads
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(10)

BOUNDARY CONDITION AT THE THRESHOLD AND 
NORMALIZATION
To determine the constant A appearing in Eq. 10, we need to con-
sider the boundary condition at the threshold. Figure 1B sketches 
the main idea: The probability fl ux over the threshold during 
one time step h is caused by those membrane potential trajecto-
ries which are carried over the threshold by the stochastic input 
within this time step. With γ denoting the discrete jump of the 
membrane potential due to the sum of excitatory and inhibitory 
inputs received in the current time step h, the probability mass 
crossing the threshold is ∫ −V

V P V dV
θ

θ
γ

�( ) . Here �P V( ) is the probability 
density observed prior to spike arrival at the end of the time step 
(as described in Section “Density Equation for the Integrate-and-
Fire Neuron”). The membrane potential jump γ is caused by the 
synaptic inputs and hence is a random variable with a probability 
P(γ) (Eq. 29, Section “Boundary Condition at the Threshold” in 
Appendix). A threshold in a clock driven simulation can therefore 
alternatively be interpreted as a soft absorbing boundary: Within 
a simulation time step it may temporarily be crossed without pro-
ducing a spike, as long as the net sum of excitatory and inhibitory 
synaptic events during the time step does not drive the membrane 
voltage above threshold.

We express the membrane potential density �P prior to spike 
arrival by the probability density at the beginning of the time step 
P as �P V P V e eh h( ) ( ) .= ⋅ ⋅/ /τ τ  Our main assumption is that the shape 
of the density is to a good approximation described by the general 
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solution (Eq. 10) of the corresponding diffusion process and hence 
varies on a length scale σ determined by the fl uctuations in the 
input. Note that �P V( )= 0 for V ≥ Vθe

−h/τ due to the decay within 
one time bin (compare Figure 1A). So the membrane potential 
jump γ must be positive and it must satisfy γ > Vθ − Vθe

−h/τ = VθF 
in order to contribute to the fl ux (see Figure 1B). The total fl ux 
over the threshold equals the fi ring rate ν

0
 of the neuron. So we 

obtain the condition

ν γ
γ

γ> γ

θ θ
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θ θ
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A similar condition appears in the case of excitatory synaptic 
events in continuous time (Sirovich, 2003). We express P(V) by 
Q(y) using the general solution (Eq. 10) and solve for the constant 
A, which yields

A
F Q y dy

Q y dy

V F pY

y

V F hY

y=
−

.
>

>

∑ ∫
∑ ∫

P

P

( ) ( )

( ) ( )

γ

γ

γ

γ

θ γ

θ

θ γ

θ

 

(12)

with

Y
Fe Vh

h

γ

τ
θ

τ γ μ
σ

=
−( )+

For the details of the derivation see Section “Boundary Condition 
at the Threshold” in Appendix, where we also give an expression 
to evaluate the integrals using a Taylor expansion of Q(y) at the 
threshold utilizing Eq. 35

A
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with

M Y yn V F

n
= −( ) .>∑ P( )γ

γ γ θ
θ

Here, M
n
 is the n-th rectifi ed moment of the distribution P 

of the membrane potential jumps due to synaptic input and c
n
 

is the n-th derivative evaluated at the threshold Q yp
n( )( ).θ  It is 

obtained from the recurrence relation (Eq. 33) derived in Section 
“Boundary Condition at the Threshold” in Appendix. Note that this 
boundary condition fi xes the value of the density at the threshold 
Q(yθ) = AQ

h
(yθ), so we have expressed the non-local boundary con-

dition (Eq. 11) (containing integrals of P) by a Dirichlet boundary 
condition at threshold yθ (Eq. 13).

In the diffusion limit the probability density vanishes at the 
threshold P(Vθ) = 0. This is mandatory because the infi nitely high 
rate of incoming excitatory events would instantly deplete the states 
just below threshold. On the other hand, if the density did not 
 vanish at the threshold this would imply an infi nitely high fi ring 
rate of the neuron itself. Here in contrast, taking fi nite synaptic 
weights and fi nite incoming synaptic input rates into account, a 

value P V A Q y Vh( ) ( )θ 0 θν τ σ >= / ( ) 0 at the threshold is compatible 
with the boundary condition, as can be seen from Figure 2B. In 
addition, the time discretization even promotes this effect which 
can readily be understood: The density decays during a time step, 
so the highest voltage occupied by a neuron is Vθe

−h/τ at the end of 
the time step, resulting in a gap of the density of size Vθ(1 − e−h/τ) 
just below threshold. The value of the membrane potential density 
at the threshold is the outcome of an equilibrium between the 
diffusive infl ux from left and the outfl ux over the boundary to the 
right. If the gap reduces the outfl ux, the density P(Vθ) will settle at 
an even higher value. Figure 6A visualizes the effect for different 
temporal resolutions.

The calculation of the normalization condition of the prob-
ability density function (see Section “Normalization” in Appendix) 
determines the equilibrium fi ring rate ν

0
 of the neuron as
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2
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(14)

In particular for small σ it is necessary to transform the inte-
grand in the second term to a numerically well-behaved function 
(Eq. 36) as given in Section “Normalization” in Appendix.

Knowing the normalization constant, we can use Eq. 10 
together with Eq. 3 to compare the probability density P(V) to 
direct simulation (using NEST; Gewaltig and Diesmann, 2007) 
and to the existing theory (Ricciardi and Sacerdote, 1979; Brunel, 
2000) in the diffusion limit, see Figure 2A. Although we chose 
synaptic weights w = 0.1 mV � Vθ − V

r
 = 15.0 mV and small 

simulation time steps h = 0.1 ms, especially at the threshold there 
is a pronounced deviation of the simulated density from the one 
obtained in the diffusion limit. Figure 2C graphs the dependence 
of the neuron’s Firing rate on the strength of fl uctuations σ in 
the input.. The pure diffusion approximation exhibits a consist-
ent overestimation of the simulated rate, whereas our solution 
(Eq. 14) shows only a slight underestimation, as can be seen in 
Figure 2D in more detail.

ACCURACY AND LIMITS OF THE SOLUTION
To check the accuracy of our theory, we compare it to a numerically 
obtained solution for the equilibrium distribution and fi ring rate. 
To this end we model the membrane potential as a Markov proc-
ess the state of which is completely determined by the membrane 
potential distribution P(V, t) which undergoes transitions between 
adjacent time steps. These transitions are composed of the sequence 
of decay (D), voltage jumps due to synaptic input (J) and the thresh-
olding operation (T). We discretize the voltage axis and determine 
the composed transition matrix TJD between discrete voltage bins. 
Due to the Perron–Frobenius theorem (MacCluer, 2000), the col-
umn-stochastic transition matrix [satisfying Σ

j
(TJD)

ij
 = 1 ∀i] has 

an eigenvalue 1 that corresponds to the equilibrium state. We deter-
mine the corresponding eigenvector numerically which yields the 
equilibrium distribution and allows to calculate the fi ring rate. 
For details see Section “Numerical Solution of the Equilibrium 
Distribution” in Appendix.
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Figure 3A shows the probability density obtained by the three 
different methods: Direct simulation, numerical solution of the 
Markov system, and theory (Eq. 10). The agreement of all three 
variables in the relevant range below the threshold is excellent. 
However, the equilibrium fi ring rate shows a deviation of up to 
0.5 Hz (Figure 2D). Compared to the frequently applied pure diffu-
sion approximation, this is an improvement by a factor of about 2. 
The numerical solution agrees within the limits of the rate estima-
tion. The limited precision of the analytic treatment is explained by 
the detailed shape of the probability density just below threshold 
(Figure 3A): The numerically determined density exhibits a modu-
lation on a scale much smaller than the scale σ of the analytic solu-
tion. It is determined by a combination of temporal discretization 
and non-vanishing synaptic weights. If the synaptic weights are 
suffi ciently large (in Figure 3A at w = 0.15, 0.25 mV) the effect of 
the time discretization becomes apparent. The observed modula-
tion has a periodicity of [ exp( )]1 0 075− − / .h Vτ θ � mV equal to the 
decay of the membrane voltage near threshold within one time 
step. The zoom-in shown in Figure 3C confi rms this numeric value. 
However, if the synaptic weights are suffi ciently small (in Figure 3A 
at w = 0.05 mV) the modulation is reduced, because the synaptic 
jumps then mix adjacent states in a similar voltage range.

Figure 3B shows the deviation of the analytical approximation for 
the membrane potential distribution from the close to exact numeri-
cal solution of the Markov system. The new  boundary  condition 

(Eq. 13) improves the agreement close to threshold compared to 
the pure diffusion approximation. However, even far away from 
threshold and varying on a voltage scale σ there is still a deviation, 
which is qualitatively proportional to the derivative of the density. 
This amounts to a shift along the voltage axis of the analytical and 
the numerical result. This deviation largely vanishes for a more 
symmetric jump distribution (g = 1, black graph in Figure 3B). This 
indicates the truncation of the Kramers–Moyal expansion after the 
second term to be the reason, because it is equivalent to neglecting 
all cumulants of the jump distribution beyond order 2, and in par-
ticular neglecting its skewness in the unbalanced case (g ≠ 1).

Figure 3D displays the deviation of the analytically derived fi ring 
rate from the numerical result for different synaptic amplitudes w. For 
a large range of synaptic weights, the new approximation is better than 
the pure diffusion approximation. Only near the maximum possible 
weight wmax mV,= / .σ μ2 2 08�  defi ned by the condition of a positive 
inhibitory rate, the new approximation becomes slightly worse than 
the pure diffusion approximation. However, in this range any diffusion 
approximation is expected to fail, because already a small number of 
synaptic events (� 8) drives the neuron from reset to threshold.

RESPONSE PROPERTIES
We now explore further consequences of the non-vanishing 
membrane potential density just below threshold. We suspect 
the response properties of the neuron to be affected, because 

FIGURE 2 | (A) Membrane potential distribution in equilibrium (Eq. 10) (gray), 
theory in diffusion limit neglecting fi nite synaptic weights and discrete time 
(light gray) from Brunel (2000) and direct simulation (black dots) binned to 
ΔV = 0.1 mV. Neuron parameters: Neuron parameters: τ = 20 ms, 
Vθ = 15.0 mV, Vr = 0, w = 0.1 mV, g = 4, τr = 1 ms. Incoming synaptic rate 
νe = 29800 Hz, νi = 5950 Hz (corresponding to µ = 12.0 mV and σ = 5.0 mV). 
Time discretization h = 0.1 ms. (B) Zoom in of (A). In addition the numerical 
solution of the Markov process according to Section “Numerical Solution of 
the Equilibrium distribution” in Appendix is displayed (dark gray; discretization 
ΔV = 0.01 mV). The probability of the membrane potential jumping across 

threshold in a time step h is given as light gray steps. (C) Equilibrium fi ring rate 
as a function of the fl uctuations σ in the input from theory (Eq. 14) (gray), 
direct simulation (black error bars), theory neglecting fi nite weights and 
discrete time (light gray) and numeric solution of the Markov process (Eq. 37) 
(dark gray). Same parameters as in A, but νe, νi chosen to realize mean input 
µ = 5.0 and the fl uctuation σ as given by the abscissa. (D) Deviation of analytic 
fi ring rate (Eq. 14) (gray), of the numerically obtained rate according to Section 
“Numerical Solution of the Equilibrium distribution” in Appendix (black), and of 
the rate in diffusion limit from Brunel (2000) (light gray) with respect to the 
directly simulated rate.
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an increased  density below threshold means that there are more 
 neurons brought to fi re by a small positive defl ection of the mem-
brane potential. Previous analytical work (Brunel et al., 2001) 
showed that synaptic fi ltering increases the density below threshold 
and hence leads to an immediate response of the neuron. In this 
section we demonstrate a comparable effect due to fi nite synaptic 
weights and time discretization.

The response of a neuron to an impulse-like additional input 
of amplitude s is of particular interest: It allows to calculate the 
correlation between the incoming spike train and the spiking 
activity produced by the neuron itself. Up to linear approximation, 
the impulse response uniquely determines the system. Here, we 
present two characteristic features of this response with respect 
to an impulse-like perturbation of the membrane potential: First, 
we calculate its integral over time n

r
 (Eq. 15). This can be under-

stood as the total number of additional (s > 0) or suppressed 
(s < 0) action potentials of the neuron due to the perturbation. 
Secondly, we look at the instantaneous fi ring rate directly after the 
perturbation occurred. This is an interesting quantity, because an 
immediate response to an input enables the neuron to transmit 
information from the input to the output with arbitrary speed.

A δ-impulse, which can be understood as the limit of a very 
short but very strong current injection with integral 1, produces 
a deterministic change of the membrane potential by u(t) within 

a given time step. Eq. 23 shows that this perturbation can be 
 considered as a time dependent mean input μ μ τ( ) ( ).t u th= +  If 
the neuron was in equilibrium before, without loss of generality, 
we can assume this perturbation to take place in the time step (0,h). 
Within this interval the membrane potential changes determin-
istically by u(t): = sδ

t,0
, where s is the amplitude of the jump the 

membrane potential performs. We understand t as the discrete 
time advancing in steps of h and δ

i,j
 = 1 if i = j and 0 otherwise 

(Kronecker symbol). In the continuous limit h → 0, this would 
be equivalent to an impulse like current injection RI(t) = τsδ(t). 
First, we are interested in the integral response n

r
 of the neuron’s 

fi ring rate

n t dtr := − ,
∞

∫( ( ) )ν ν0

0  
(15)

also called “DC-susceptibility”. In linear approximation (in linear 
response theory), the deviation of the neuron’s fi ring rate from 
its equilibrium rate is called “impulse response” of the fi ring rate. 
From the theory of linear systems we know that the integral of the 
impulse response equals the step response of the system. Hence 
Eq. 15 can be written up to the linear terms as

n s
d

d
O sr = + .τ ν

μ
0 2( )

 (16)

FIGURE 3 | (A) Membrane potential distribution near threshold for fi xed 
µ = 12.0 and σ = 5.0 but different synaptic weights (black: w = 0.05 mV, dark 
gray: w = 0.15 mV, gray: w = 0.25 mV). Numerical solution of the Markov 
process according to Section “Numerical Solution of the Equilibrium 
distribution” in Appendix (dotted lines, discretization ΔV = 0.01 mV), analytic 
solution (Eq. 10) (solid line) and theory in diffusion limit neglecting fi nite 
synaptic weights and discrete time (light gray) from Brunel (2000). (B) Deviation 
ΔP = Pana = Pnum of the analytic membrane potential distribution (Eq. 10) from 
the numerically obtained distribution from Section “Numerical Solution of the 

Equilibrium distribution” in Appendix (black: w = 0.15 mV; g = 1.0, gray: 
w = 0.15, g = 4). Discrepancy between the diffusion approximation (Brunel, 
2000) and the numerically obtained solution described in Section “Numerical 
Solution of the Equilibrium distribution” in Appendix (light gray: w = 0.15 mV, 
g = 4). (C) Zoom in of (B) for w = 0.15 mV, g = 4. (D) Error of the analytic fi ring 
rate (Eq. 14) (black) and of the pure diffusion approximation (light gray) 
compared to the numerically obtained rate from Section “Numerical Solution of 
the Equilibrium distribution” in Appendix for different synaptic amplitudes w. 
Further parameters as in Figure 2A.
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To calculate d
d
ν
μ

0 , where ν0 is given by Eq. 14, we also need to take 
into account the dependence of A on µ. The straightforward but 
lengthy calculation can be found in Section “Response of Firing 
Rate to Impulse like Perturbation of Mean Input” in Appendix, 
which leads to

d
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There, we also derive a recurrence relation for the deriva-
tives of Q to evaluate the sums appearing in the last term. Eq. 16 
shows the integral response for a positive and a negative per-
turbation to be symmetric to linear approximation in a whole 
range of fi ring rates (the range of σ results in the fi ring rates of 
Figure 2C). Especially at low σ, the linear approximation exhibits 
a pronounced deviation from direct simulation results. At fi xed 
σ = 5.0 mV, Figure 4C shows the very good agreement of this 
linear approximation for suffi ciently small perturbations and 
also slight deviations, as expected, at larger positive values. These 
deviations are discussed below.

Another quantity of interest is the instantaneous response of 
the neuron to the impulse-like perturbation. In the framework of 
discrete time, the fastest response possible is the emission of a spike 
in the same time step as the neuron receives the perturbation (this 
preserves causality; Morrison and Diesmann, 2008). We call this the 
“instantaneous response”. To quantify the response we follow similar 
arguments as in Section “Boundary Condition at the Threshold and 
Normalization” and determine the probability mass crossing the 
threshold within the time step when the perturbation s occurred. Just 
prior to the perturbation we assume the neuron to be in equilibrium, 
hence its membrane potential distribution is given by Q(y). We have 
to take into account the additional deterministic change of mem-
brane potential u(t): = sδ

t,0
 caused by the perturbation in the condi-

tion for the fi ring rate (Eq. 11). The instantaneous rate in the time 
bin of the perturbation is then caused by the deterministic change 
s superimposed with all stochastically arriving synaptic impulses 
whose summed effect on the membrane potential is a jump γ

ν ν γ
γ θ γ

θ

inst( ) ( ) ( )s
F

Q y dy
s V F Y

y

s

= ,
+ >
∑ ∫

+

0 P
 

(17)

with

Y
F V s e

s
h

h

γ

τ
θ γ μ

σ

τ

+ =
− +( ) +

.
( )

FIGURE 4 | (A) Illustration of the instantaneous fi ring rate due to a 
perturbation of size s: During the time bin h, synaptic inputs cause a jump γ 
of the membrane potential in addition to the perturbation s. The probability 
mass (shaded area) is shifted above threshold with probability P(γ) and 
produces the response of the neuron. Due to the shape of the probability 
density near the threshold, this area has a linearly [proportional to sP(Vθ), area 
of the rectangular base] and a quadratically increasing contribution 
[proportional to − 1

2
2s VP

V
∂
∂ ( )θ , area of the triangle] in s. (B) Firing rate as function 

of time after a perturbation of size s = 0.5 mV (upper trace) and of size 

s = −0.5 mV (lower trace) in the time bin [0, h). The black crosses denote 
the analytic peak response given by Eq. 17 for both cases. Solid curves 
from direct simulation of the response. Parameters as in Figure 2, but 
incoming synaptic rates νe = 29600 Hz, νi = 5962.5 Hz (corresponding to 
µ = 11.5 mV and σ = 5.0 mV). (C) Integral response (Eq. 15) (gray) depending 
on the strength of the perturbation, direct simulation (black dots). (D) 
Instantaneous response depending on the strength of the perturbation s. 
Theory using Eq. 17 (gray) and direct simulation (black). Other parameters in 
(C,D) as in (B).
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As in Section “Boundary Condition at the Threshold” in Appendix, 
we evaluate the integral using the series expansion of Q at the thresh-
old employing Eqs. 34 and 35. We obtain for the instantaneous rate

ν ν0
γ

θ
θ

θ γ

θ

inst( ) ( )
( )

( )s
F

c Q y d

n
y y dy

s V F n

n n n
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y
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!
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∞

∑ ∑∫
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s V F
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n( )
( )( )P

The sequences c
n
 and d

n
 are derived in Section “Boundary 

Condition at the Threshold” in Appendix, Eq. 33. For small pertur-
bations of the order of a synaptic weight, the series can be truncated 
at low n. Throughout this paper we use n = 3. From this expression 
we see, that the lowest order terms of the response are linear and 
quadratic in the size of the perturbation s. The linear term (n = 0) is 
proportional to Q(yθ), the quadratic term to −Q′(yθ). Geometrically 
this can be understood from Figure 4A: the shaded area is pro-
portional to the instantaneous fi ring rate and increases to good 
approximation with the linear term sP(Vθ) (area of the rectangular 
base) and the quadratic term − 1

2
2s VP

V
∂
∂ θ( ) (area of the triangle).

This non-linearity can readily be observed. Figure 4B shows a 
typical rate transient for a positive perturbation and a negative per-
turbation of equal magnitude. The resulting immediate rate defl ec-
tion for the positive perturbation is much more pronounced, while 
the following tail of the response is more symmetric in both cases. 
To compare the instantaneous response to the integral response 
n

r
 we look at the number of spikes n

inst
 produced (s > 0) or sup-

pressed (s < 0) in comparison with the base rate in the time step 
of perturbation

n hinst inst= − .( )ν ν0  (18)

Figure 4D shows the dependence of this instantaneous 
response n

inst
 on the strength of the perturbation. In contrast to 

the integral response, even at small perturbations of the order of 
a single synaptic weight the instantaneous response is strongly 
non-linear and has a rectifying effect, refl ecting the fact that 
negative perturbations have a much weaker effect than positive 
ones. Theory and direct simulation fi t to high accuracy for a large 
range of different levels of fl uctuation σ, as shown in Figure 5B. 
There is an optimal level of fl uctuations around σ � 3 mV to 
foster the direct response to a positive perturbation which can 
be interpreted as stochastic resonance. For periodic input sig-
nals stochastic resonance has been described before (Lindner 
and Schimansky-Geier, 2001) and for slow transient inputs an 
adiabatic approximation can explain this aperiodic stochastic 
resonance (Collins et al., 1996). Figures 5C,D reveal the reason 
for the response to fast transients to depend on the strength of 
noise. The probability density just below threshold assumes a 
maximum for an intermediate magnitude of fl uctuations (middle 
gray curve, σ = 3 mV), resulting in a maximum of probability to 
be shifted across threshold by a small perturbation. The density 
below threshold is determined by two competing effects: At low 
levels of noise, increasing the fl uctuations spreads out the density, 
pushing it closer to the threshold and therefore promoting the 
response. Further increasing the fl uctuations, the rectifying nature 
of the absorbing boundary gains importance, since a positive 
fl uctuation easily leads to a threshold crossing and absorption 
of the state in contrast to negative fl uctuations. Effectively, this 
results in a net drift to lower voltages, decreasing the density 

FIGURE 5 | (A) Integral response nr (Eq. 15) for perturbation s = 0.5 mV (upper 
graph) and s = −0.5 mV (lower graph) as a function of the fl uctuations σ of 
synaptic input. Theoretical prediction (Eq. 16) (gray) and direct simulation (black 
dots). (B) Instantaneous response ninst (Eq. 18) to a perturbation s = 0.5 mV (top 

graph) and to a perturbation s = −0.5 mV (bottom graph). Analytic result using 
Eq. 17 (gray) and direct simulation (black dots). (C,D) P.d.f. of the membrane 
potential for σ∈{2, 3, 6} mV shown in dark gray, gray and light gray, respectively. 
Other parameters as in Figure 2C.
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near threshold and therefore the response. The contribution of 
the instantaneous response to the integral response is not cap-
tured by the linear theory (Eq. 16) by defi nition. This explains the 
positive deviation between simulation and the linear expectation 
observed in Figure 5A for the positive perturbation at low σ and 
the deviation in Figure 4C at large positive s. It shows the limits 
of validity for the linear perturbation theory for large perturba-
tions (�1 mV).

The time step of the simulation has an effect on the bound-
ary condition at the fi ring threshold, as outlined in Section 
“Boundary Condition at the Threshold and Normalization”. 
Figure 6A shows the detailed shape of the membrane potential 
distribution just below threshold: For coarser time discretization 
the value at the boundary increases. Consequently, the instanta-
neous response of the neuron to a perturbation within the same 
time step increases as well (not shown). For a fair comparison, 
however, we integrated the response over the same time interval 
for all time resolutions. This is shown in Figure 6B. For positive 
perturbations a coarser time discretization increases the response 
only marginally. The  threshold-nonlinear behavior observed for 
perturbations around s = 0, however, is linearized by larger time 
steps, as can be seen by comparing Figure 6B (for h = 0.5 ms) 
to Figure 4D (for h = 0.1 ms). The reason is the linear increase 
of the variance of the accumulated synaptic events in propor-
tion to the time step h, diminishing the relative contribution 
of the perturbation and therefore weakening the non-linearity 
around s = 0.

In the limit of continuous time (Helias et al., 2009) the density at 
threshold vanishes on a voltage scale given by the synaptic weight as 
shown in Figure 6C,D. This limit can alternatively be obtained from 
the theory presented here by letting h → 0. Overall, our approach 
assuming the density to be discontinuous at threshold provides a 
better approximation than the classical diffusion limit, in which 
the density goes to 0 on the scale σ.

DISCUSSION
We present a novel treatment of both equilibrium and transient 
response properties of the integrate-and-fi re neuron, where we 
extend the existing theory in two respects: Firstly, we allow for 
fi nite synaptic weights and secondly we incorporate the effect 
of time-discretization. We show that the appropriate absorbing 
boundary amounts to a Dirichlet boundary condition for the 
probability density assuming a fi nite value. The interesting spe-
cial case of fi nite postsynaptic potentials in continuous time is 
taken care of in a separate manuscript (Helias et al., 2009). These 
results can alternatively be obtained from the theory presented 
in the current work by taking the limit h → 0 in all equations 
presented. It turns out that the probability density in continu-
ous time vanishes at threshold, but only on a very short voltage 
scale, such that qualitatively similar results hold for the response 
properties. Previously, low-pass fi ltering of synaptic noise has 
been demonstrated to have a similar effect on the membrane 
potential density (Brunel et al., 2001). In our case, the conse-
quences are comparable to the work cited: the neurons just below 

FIGURE 6 | (A) Membrane potential distribution near the threshold for 
different simulation resolutions (black: h = 0.02 ms, gray: h = 0.1 ms, light 
gray: h = 0.5 ms). Analytic solution (Eq. 10) (solid gray and light gray lines), 
limit for h →0 of our theory (solid black line), direct simulation (dots), and 
theory of diffusion limit neglecting fi nite synaptic weights and discrete time 
(black dotted line) from Brunel (2000). (B) Direct simulation of the number of 
spikes n t dtt

t

Δ = −∫0 0

Δ
ν ν( )  within the time window Δt = max (hi) = 0.5 ms 

excessing base rate caused by the perturbation for different simulation 
resolutions h (gray code as in A). Other parameters as in Figure 4B.
 (C) Membrane potential distribution in continuous time for the same 
parameters as in Figure 2A. Direct simulation in continuous time (black dots) 
and theory (gray) in the limit h → 0 (Helias et al., 2009). (D) Zoom in of (C) 
near threshold (black dots, gray) and pure diffusion approximation (light gray) 
from Brunel (2000).



Frontiers in Computational Neuroscience www.frontiersin.org January 2010 | Volume 3 | Article 29 | 10

Helias et al. Integrate-and-fi re neuron in discrete time

threshold can be caused to fi re even by very small perturbations, 
and do not act as a low-pass fi lter, but rather respond instan-
taneously. In the absence of synaptic fi ltering, an instantane-
ous response has so far only been found for noise coded signals 
(Lindner and Schimansky-Geier, 2001). Since our treatment of 
the  instantaneous response is not based on perturbation theory, 
we are able to uncover its full non-linear dependence on the 
strength of the perturbation.

The novel analysis captures the equilibrium properties (prob-
ability density and mean fi ring rate) more accurately than the 
previous theory in the diffusion limit. Therefore, our theory 
allows for a better interpretation and understanding of simula-
tion results. In particular it enables the quantifi cation of artifacts 
due to time discretization, which have been discussed previously 
(Hansel et al., 1998) in the context of artifi cial synchrony: The 
instantaneous response of the neuron model increases slightly 
with coarser discretization. To our knowledge, the treatment of an 
integrate-and-fi re neuron by a density approach in discrete time is 
new as such. The description of the time evolution of a population 
of neurons in discrete time as a Markov process yields accurate 
fi gures for the mean fi ring rate and the equilibrium membrane 
potential density. The advantage of this method is that the com-
putational costs are independent of the number of neurons in the 
population. If only the equilibrium and instantaneous response 
properties for a large number of non-interacting, identical neu-
rons are required, this method is an effective replacement of direct 
simulation. However, both, the precision and the computational 
costs increase with fi ner discretization of the voltage axis. The 
complexity is dominated by the solution of an M × M system of 
linear equations, M being the number of discretization levels of 
the membrane voltage.

Our result can be applied to several problems of neural 
dynamics: Concerning recurrent networks, where the dynamics 
is replaced mostly by linear fi lters, our result suggests to extend 
the reduced model of a neuron by a linear fi lter plus an instan-
taneous response depending quadratically on the rectifi ed input 
fl uctuation with respect to baseline. The instantaneous non-linear 
response contributes to the peak at zero time-lag of the cross 
correlation function, which infl uences the transmission of cor-
related inputs by pairs of neurons to their output (Tetzlaff et al., 
2003; De la Rocha et al., 2007). Spike timing dependent synap-
tic learning rules are sensitive to the shape of the correlation 
function between input and output of a neuron. The expansive 
increase of the immediate response with the size of the incom-
ing synaptic event amounts to decrease of mean response time 
∫ − / ∫ −∞ ∞

0 0 0 0t t dt t dt( ( ) ) ( )ν ν ν ν  of the neuron with respect to the 
incoming spike. This decrease can be detected by a spike tim-
ing dependent learning rule typically causing stronger synaptic 
potentiation at smaller latencies. Furthermore, it facilitates fast 
feed-forward processing observed in neural networks. The non-
linearity between input and output transient is a property which 
might be useful to perform neural calculations (Herz et al., 2006) 
and to increase the memory capacity of neural networks (Poirazi 
and Mel, 2001).

Moreover we observe aperiodic stochastic resonance for fast 
input transients here, which has previously been described for 
slow transients (Collins et al., 1996): a certain range of noise 

amplitude promotes the modulation of the fi ring rate by these 
input signals. A qualitative understanding can readily be gained, 
observing that the membrane potential density near the threshold 
assumes a maximum at a certain noise level and hence alleviates 
the neuron’s response. One consequence is the noise-induced 
enhancement of the transmission of correlated activity through 
networks of neurons. Also, the response properties strongly affect 
the correlation between the efferent and afferent activity of a 
neuron, which infl uences spike timing dependent learning and 
effectively promotes the cooperative strengthening of synapses 
targeting the same neuron.

Our theory contains as a central assumption the applicability 
of a Fokker–Planck equation to describe the membrane potential 
distribution. Implicitly this assumes that all cumulants of the 
input current beyond order two vanish. As long as the fi ring 
rate of the incoming events is high and the synaptic weights are 
small, this is a good approximation. However, for low input rates 
and large synaptic weights these assumptions are violated and 
deviations are found. In particular the skewness of the distribu-
tion of synaptic jumps for asymmetric excitatory and inhibitory 
inputs induces deviations of the probability density obtained 
from our theory. A combination of our boundary condition with 
a more accurate treatment of the higher moments (Hohn and 
Burkitt, 2001; Kuhn et al., 2003) could provide better results in 
this case.

The second approximation in our theory is the behavior at 
threshold: We assume the density to vary on the scale σ in the 
whole domain. This approximation is satisfi ed to high precision 
far off the threshold and the reset, but especially close to these 
boundaries, modulations on the order of a synaptic weight and due 
to the deterministic evolution of the membrane potential within 
one time step become apparent. They are outside the scope of our 
current theory and the modulations at threshold have a notice-
able effect on the accuracy of the predicted fi ring rate. Distributed 
synaptic weights should reduce this effect. The oscillations near the 
reset can be diminished by a different reset mechanism V ← V − Vθ 
proposed by Carl van Vreeswijk (private communication). Apart 
from a better agreement of the densities near reset, this has no 
noticeable effect on the results presented here. Fourcaud-Trocmé 
et al. (2003) and Naundorf et al. (2005) found the spike genera-
tion mechanism to infl uence the response properties of neurons at 
high frequencies: they showed the response of the integrate-and-
fi re neuron to high-frequency sinusoidal currents in presence of 
fi ltered noise to be due to its hard threshold. Future work should 
investigate whether the immediate non-linear response observed 
here is also a property of neurons with more realistic thresholds, 
such as the exponential integrate-and-fi re neuron (Fourcaud-
Trocmé et al., 2003).

APPENDIX
DERIVATION OF THE FOKKER–PLANCK EQUATION
To formalize the approach outlined in Section “Density Equation 
for the Integrate-and-Fire Neuron” we follow (Ricciardi et al., 1999) 
and assume that the main contributions to the time evolution of 
the membrane potential distribution can be described by an infi ni-
tesimal drift and diffusion term. This is true, as long as the rate 
of incoming events is large ν ν τe i, � 1  and postsynaptic potentials 
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are small w � Vθ − V
r
. However, in the region near the threshold 

Vθ we treat the fi nite synaptic weights separately giving rise to the 
boundary condition described in Section “Boundary Condition 
at the Threshold and Normalization”. In addition to the stochastic 
input due to the incoming Poisson events, we assume the membrane 
potential to perform the deterministic change u(t), caused by an 
additional input. If E[] denotes the expectation value over realiza-
tions of the stochastic input, the infi nitesimal drift becomes
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where we used E E[ ( )] [ ] ( )ι κ κ ν νt h w wg wh ge i e i, = − = −  and 
introduced the abbreviations F e h:= − − /1 τ  and the mean input 
μ τ ν ν:= −( )w ge i . The infi nitesimal variance hence is
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We use the explicit form of the second moments of the stochastic 
and the total input current, which are
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i
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Following Ricciardi et al. (1999) we set up a diffusion equation 
for the membrane potential. The right hand side of this Fokker–
Planck equation reads
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where we defi ned the probability fl ux operator S. Since we treat the 
problem in discrete time, a derivative with respect to time must be 
expressed as a fi nite difference. So the differential equation for the 
membrane potential distribution takes the form
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Letting the derivative on the right hand side act on A
2
 explicitly 

leads to
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We fi nd it convenient to introduce the dimensionless voltage 

y
F
h:= −τ μ
σ
V

. In addition, we express the probability density by a 
dimensionless density Q y t P y th

F( ) ( ) ., := + ,( )⋅σ μ τ
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 For the case 
u t( )= 0 the fl ux operator (Eq. 23) expressed in y and acting on Q 
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GENERAL SOLUTION OF THE FLUX DIFFERENTIAL EQUATION
To obtain the homogeneous solution of the Fokker–Planck equa-
tion (Eq. 22) we need to solve Eq. 5. Being a linear ordinary differ-
ential equation it has a particular (Q

p
) and a homogeneous solution 

(Q
h
), so the general solution can be written as

Q y Q y A Q yp h( ) ( ) ( )= + ⋅ .  (25)

First, we determine the homogeneous solution (Eq. 6) satisfy-
ing SQ

h
 = 0.
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We choose the integration constant C such that eC
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According to Abramowitz and Stegun (1974) we can express this 
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Note that in the continuous limit h → 0 the homogeneous solu-
tion becomes a Gaussian Q y eh

y( )→ − 2

 as in the diffusion limit. Its 
integral is also a hypergeometric series and we defi ne
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where for Hs < 1
2 the limit Z∞ exists
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For large negative H →−∞ (corresponding to h→ 0) this 
function turns into the known expression from the diffusion limit 
Z H y y( ) ( ( )).; → +π

2 1 erf

We determine the particular solution Qp of Eq. 5 that satisfi es 
SQp = ν0 by variation of constants
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(yθ) = 0, which will be of advantage to 

determine the boundary condition at the threshold. To satisfy Eq. 5 
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From the second to the third line, for numerical convenience 
we separated out the strongly divergent factor of Eq. 27 utilizing 
the identity (Abramowitz and Stegun, 1974)
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BOUNDARY CONDITION AT THE THRESHOLD
The numbers of incoming synaptic events κ

e
, κ

i
 in a small time 

interval h are independently distributed with a Poisson distribution, 
so P( ) ( )q r e

q r

q r, = ! !
− +α β α β  is the probability mass function to obtain 
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q excitatory and r inhibitory synaptic events. The corresponding 
jump of the membrane potential is of size γ = (q − gr)w. The actual 
distribution of voltage jumps can hence be expressed as
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From the normalization condition it follows, that the mem-
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We express P(V) by the dimensionless distribution Q(y) where 
we use
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We solve for A to obtain
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Using the explicit form for P(γ) (Eq. 29), we can replace the 
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Taylor expansion of Q around the threshold and recurrence
 relation of derivatives
In order to evaluate Eq. 12, we can make use of the fact, that 
the width of the voltage jump distribution (Eq. 29) is typically 
small compared to the length scale σ on which the probability 
density function changes. So we can well approximate the prob-
ability density near the threshold by a Taylor polynomial of low 
degree. To this end, we derive a recurrence relation for the higher 
derivatives of P, or equivalently Q, here. The equilibrium prob-
ability density satisfi es the fl ux differential equation (Eq. 5) with 
the fl ux operator given by Eq. 24 with S

ν0
1= . So, for y
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 ≤ y ≤ yθ, 
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We defi ne the shorthand q
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 which has the property

q
h

y F q yFy y= + =
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

1

2
2τ ′

From this relation, we can recursively calculate the derivatives 
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It is easy to show by induction that the derivatives recurse for 
n ≥ 2 by
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Due to linearity in Q of the differential equation (Eq. 24) 
and our choice Q

p
(yθ) = 0, we can split up the n-th deriva-

tive into the n-th derivative of the homogeneous solution, 
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which is proportional to Q(yθ) and the n-th derivative of the 
 inhomogeneous solution, which is independent of Q(yθ) and 
write it as Q(n)(yθ) = c

n
 + d

n
Q(yθ) with
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The expansion of Q around the threshold hence can be 
 written as
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where we identifi ed the particular solution (Eq. 9) and the homo-
geneous solution (Eq. 26), respectively. Plugging the expansion 
Eq. 34 into Eq. 12 to obtain the boundary condition at the thresh-
old, we get
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with
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NORMALIZATION
The probability density function has to be normalized
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Both, the numerator and denominator in the boundary term go 
to 0 for large negative x. To improve numeric stability in this case, 
we found it necessary to replace the fraction by its approximation 
using l’Hopital’s rule. It yields
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It allows us to calculate the mean fi ring rate ν
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NUMERICAL SOLUTION OF THE EQUILIBRIUM DISTRIBUTION
By discretizing the voltage range into bins where the size ΔV of 
a bin is chosen such that we can assume the probability density 
to be approximately constant within a bin and that ΔV integrally 
divides the synaptic weight w and gw, we can formulate the time 
evolution of the equilibrium distribution as a Markov Process on 
a discrete space. To this end we defi ne the discretization operator 
G on the voltage axis as

G V i
V

V
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Δ
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The probability distribution P then becomes a vector 
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p  with 
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where we use ν
i
 = ΔV·i. Since we can assume the probability density 

to vanish for V → −∞, we can defi ne a cutoff at some  suffi ciently 
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negative voltage V− to obtain a fi nite dimensional space of  dimension 
V V

V
θ
Δ
− − . In one time step, the voltage distribution decays, which is 

expressed by the linear operator D with
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Similarly, we can express the effect of the input as a linear opera-
tor, given the jump distribution P(γ) Eq. 29, as
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The evolution by one time step (as defi ned in Section “Density 
Equation for the Integrate-and-Fire Neuron”) is the composition 
of the three operations, D, J, and T
� �
p t h TJDp t( ) ( )+ = .

To fi nd the stationary solution, we have to solve for the eigenvec-
tor to the eigenvalue 1 of TJD. This eigenvector exists because of the 
Perron–Frobenius theorem (MacCluer, 2000), since our propaga-
tion matrix is column-stochastic Σ

j
(TJD)

ij
 = 1∀i. To additionally 

impose the constraint that the solution must be normalized, we 
add the equation ΔVΣ

i
p
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 = 1 to the fi rst row, which we can write 

with N
ij
 = ΔVδ

i,0
 as
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The stationary solution can then be found by numerically solv-
ing this linear equation for 

�
p. We use Python (Python Software 

Foundation, 2008) and the linear algebra package of SciPy (Jones 
et al., 2001) for this purpose. The fi ring rate can be calculated from 
the equilibrium distribution 

�
p  from the probability mass exceeding 

the threshold in one time step
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RESPONSE OF FIRING RATE TO IMPULSE LIKE PERTURBATION 
OF MEAN INPUT
To calculate the DC-susceptibility of the fi ring rate with respect 
to µ we need to calculate 
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To calculate dA
dμ  we need the boundary condition (Eq. 30) which 

determines A
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Inserting the expression (Eq. 40) into (Eq. 38) we can write

d

d

h

F

F

h
Az

F
y

z
F

y

ν
μ τ

τ
σ

σ

θ

θ

0
1 2

2

2
1

1

1 1
2

−

= ⎛⎝⎜
⎞
⎠⎟ − − ;⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

+ − ;⎛
⎝⎜

⎞
⎠⎠⎟ − ;⎛
⎝⎜

⎞
⎠⎟

+ − − ;⎛
⎝⎜

⎞
⎠⎟ − ;

+ >

Z
F

y

z
F

y Z
F

y

F

h

y

y

V

1
1

1 1
2 1

1

2

1

θ

γ

σ

τ
σ

θ

θ

r

( )

FF Y

y

V F Y

y

F

Q

Z
Z

F
y

h

F

∑
∑ >

− ;⋅
− ;⎛

⎝⎜
⎞
⎠⎟
⎤

⎦

⎥
⎥

= −

P

P

( )

( ) ( )

γ

γ

σ

γ

θ

θ γ

θ

γ

θ
1

1
1

1

QQ y
h

F
z

F
y Z

F
y

h

F

r r

V F

( )θ

γ

τσ

σ
θ

+ ⎛⎝⎜
⎞
⎠⎟ − ;⎛

⎝⎜
⎞
⎠⎟ − ;⎛
⎝⎜

⎞
⎠⎟

+ >∑

2
2 1

2 1
1

P(( )

( )

γ

γ
γ

θ

θ γ

θ

γ

θ
Y

y

V F Y

y

F

Q

Z
Z

F
y

>∑ − ;⋅( )
− ;⎛

⎝⎜
⎞
⎠⎟ .P 1

1
1

1

We can make use of the series expansion of Q at the thresh-
old (Eqs. 34 and 35) to compute the numerator of in the last 
term as
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NUMERICAL IMPLEMENTATION OF HYPERGEOMETRIC SERIES
The hypergeometric series F(a, b, c, z): = 

2
F

1
(a, b, c, z) is hard to 

evaluate for large absolute values of a and b = 1. Here we use the 
linear transformation formula (Abramowitz and Stegun, 1974)
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We use these two relations to defi ne a recursive function which 
reduces the magnitude of a (using the fi rst relation for a < 0 and 
the second for a > 0).
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