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Abstract The pathogenesis of severe acute respiratory syn-
drome coronavirus (SARS-CoV) is an important issue for treat-
ment and prevention of SARS. Recently, SARS-CoV 3CLpro

protease has been implied to be possible relevance to SARS-
CoV pathogenesis. In this study, we intended to identify potential
3CLpro-interacting cellular protein(s) using the phage-displayed
human lung cDNA library. The vacuolar-H+ ATPase (V-ATP-
ase) G1 subunit that contained a 3CLpro cleavage site-like motif
was identified as a 3CLpro-interacting protein, as confirmed using
the co-immunoprecipitation assay and the relative affinity assay.
In addition, our result also demonstrated the cleavage of the V-
ATPase G1 fusion protein and the immunoprecipitation of cellu-
lar V-ATPase G1 by the 3CLpro. Moreover, loading cells with
SNARF-1 pH-sensitive dye showed that the intracellular pH in
3CLpro-expressing cells was significantly lower as compared to
mock cells.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome-associated coronavirus

(SARS-CoV) causes bronchial epithelial denudation, loss of ci-

lia, and multinucleated in lung tissues [1,2], and induces lym-

phopenia, leucopenia, and thrombocytopenia in the SARS

patients [3,4]. The relevance to SARS-CoV pathogenesis be-

comes an attractive issue for developing anti-SARS therapy.

SARS-CoV contains a single positive-stranded RNA genome

that is approximately 30 kb in length and has a 5 0 cap structure

and 3 0 polyA tract [5–7]. The SARS-CoV genome encodes for

replicase, spike, envelope, membrane, and nucleocapsid. The

replicase gene encodes two large overlapping polypeptides

(replicase 1a and 1ab, �450 and �750 kD, respectively),

including 3C-like protease (3CLpro), RNA-dependent RNA

polymerase, and RNA helicase for viral replication and tran-

scription [8]. The SARS-CoV 3CLpro mediates the proteolytic

processing of replicase polypeptides 1a and 1ab into functional
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proteins, thereby playing an important role in viral replication.

In the case of picornaviruses, poliovirus, enterovirus 71, and

rhinovirus, 3C protease have been demonstrated to cleave spe-

cific cellular proteins [9,10], inhibit the cellular translation

[11,12], and induce cell apoptosis [13–15]. Recently, SARS-

CoV 3CLpro cleavage sites have been predicted in cellular pro-

teins such as the cystic fibrosis transmembrane conductance

regulator, and transcription factors CREB-RP and OCT-1

using computational methods [16], signifying SARS-CoV

3CLpro protease can be involved in virus-induced pathology.

In this study, we intended to identify potential 3CLpro-interact-

ing cellular protein(s) using the phage-displayed human lung

cDNA library.
2. Materials and methods

2.1. Biopanning of phage display lung cDNA libraries with SARS-CoV

3CLpro

The 3CLpro-expressing E. coli strain described in our previous report
[17] was used for generation of recombinant 3CLpro His-tag fusion
protein. For biopanning, the T7Select human lung cDNA library fused
at the C terminus of phage capsid protein 10B was purchased from
Novagen (Madison, WI). Following the biopanning procedure in our
previous report [18], five rounds of biopanning for screening 3CLpro-
affinity phage clones were carried out using 3CLpro-coated microplates
(5 lg per well). The 3CLpro-affinity phage clones were eluted with the
soluble 3CLpro. For direct ELISA binding assay, the individual eluted
phage clones that were determined using a plaque assay were coated
onto microplates (1010 p.f.u./well) for 1 h at room temperature. After
blocking phage-coated plates, 100 ll of 20 lg/ml 3CLpro was added
to each well for additional 1-h incubation. Bound 3CLpro was detected
using the ELISA with the anti-His tag monoclonal antibody and anti-
mouse IgG antibodies conjugated to peroxidase (Pharmacia). ELISA
product was developed with a chromogen solution containing ABTS
(2,2 0-azino-di-(3-ethylbenzthiazoline-6-sulfonate)) and hydrogen per-
oxide and then measured at A405 nm. The lung cDNA genes displayed
on 3CLpro-affinity phages were directly amplified using PCR with the
T7 Select UP primer 5 0-GGAGCTGTCGTATTCCAGTCA-30 and
the T7 Select DOWN primer 5 0-CCCCTCAAGACCCGTTTA-30.
The nucleotide sequences of each PCR product were determined using
the sequencing with the ABI PRISM 377 DNA Sequencer (Perkin–El-
mer, USA). The deduced amino acid sequences of 3CLpro-interacting
lung cDNA clones were aligned using the BLAST search (http://
www.ncbi.nlm.nih.gov/BLAST/).

2.2. Co-immunoprecipitation of SARS-CoV 3CLpro protease by

vacuolar-H+ ATPase G1 subunit
For the cell-free co-immunoprecipitation assay, the vacuolar-H+

ATPase gene was cloned into the vector pET32a, and expressed as
the fusion protein with thioredoxin (Trx) at the N-terminus and
blished by Elsevier B.V. All rights reserved.
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His-tag at the C-terminus. The cDNA of the C-terminal vacuolar-H+

ATPase subunit G1 displayed on the 3CLpro-affinity phage clone 7
was amplified by PCR with primers: 5 0-ATCCGAATTCGCCAAG-
GAAGCTGCGG-3 0 and 5 0-CCGCAAGCTTTCCATTTATGCGG-
TAG-3 0. The PCR product was digested with EcoRI and HindIII,
and then cloned into the EcoRI/HindIII site of the expression vector
pET32a (Novagen). The mixture of 3CLpro and vacuolar-H+ ATPase
thioredoxin fusion protein was first incubated with anti-thioredoxin
mAb (Invitrogen) for 4 h at 4 �C, and then reacted with the protein
A-Sepharose beads for the addition of 2-h incubation. After centrifu-
gation, the pellet was washed four times with NET buffer (150 mM
NaCl, 0.1 mM EDTA, 30 mM Tris–HCl, and pH 7.4). The immuno-
precipitate was dissolved in a 2· SDS–PAGE sample buffer without
2-mercaptoethanol and boiled for 10 min. Proteins were resolved on
12% SDS–PAGE gels and electrophoretically transferred to nitrocel-
lulose papers. The resultant blots were blocked with 5% skim milk,
and then reacted with the anti-His tag mAb for 1-h incubation.
The blots were then washed with TBS three times and overlaid with
a 1/1000 dilution of rabbit anti-mouse IgG antibodies conjugated
Fig. 1. Gel electrophoresis of PCR products (A) and deduced amino acid s
displayed on the identified phage clones. (A) After five rounds of biopanning
individual eluted phage plaques were amplified using PCR. (B) The amino acid
from phage Nos. 7,25,31,32,33,34,35, and 46 was deduced from the human
A dashed-line box was marked for the possible 3CLpro cleavage site.
with alkaline phosphatase (KPL). Following another1-h incubation
at room temperature, the blots were developed with NBT/BCIP
(Invitrogen).
2.3. ELISA affinity assay
The wells of a 96-well microtiter plate were coated with 100 ll of

5 lg/ml 3CLpro and were incubated at 4 �C overnight. Following each
incubation and subsequent layer of the enzyme-linked immunosorbent
assay (ELISA), the wells were washed three times with TBS containing
0.05% Tween 20 (TBST). After blocking with 5% skim milk in TBST,
serial dilution of V-ATPase G1 TRX fusion protein or thioredoxin
(TRX) was incubated in 3CLpro-coated wells for 2 h. The bound V-
ATPase G1 TRX fusion protein or TRX protein was detected with
the anti-TRX monoclonal antibody, and then the ELISA product
was developed with goat anti-mouse IgG-HRP conjugate and ABTS/
H2O2 substrates. The relative affinity, Kd, was estimated from the con-
centration necessary for 50% maximal binding based on a computer
program employing Fisher�s statistical model.
equence (B) from SARS-CoV 3CLpro-interacting human lung proteins
with SARS-CoV 3CLpro, the human lung cDNA clones displayed on
sequence of 3CLpro-interacting human lung protein that was identified
lung cDNA nucleotide sequence from 3CLpro-interacting phage No. 7.
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2.4. Trans-cleavage of V-ATPase G1 by SARS-CoV 3CLpro protease
The SARS-CoV 3CLpro protease was incubated with the V-ATPase

G1 TRX fusion protein or TRX protein in 100 mM Tri–HCl (pH
9.0) at 37 �C. The proteolytic processing was analyzed using Western
blotting with anti-His tag antibody. Band intensities of the V-ATPase
G1 TRX fusion protein or TRX protein on the nitrocellulose were
quantified by densitometric analysis.

2.5. Immunoprecipitates of cell extract by 3CLpro

The 3CLpro gene was cloned into the pcDNA3.1 vector and gener-
ated as a His-tag fusion protein [17]. The resulting plasmid
pcDNA3.1-SARS CoV 3CLpro (pSARS-CoV 3CLpro) (4.5 lg) plus
indicator vector pEGFP-N1 (0.5 lg) was transfected into HL-CZ cells,
a human promonocyte cell line [19], using the GenePorter reagent. The
cell extract of the 3CLpro-expressing cells and mock cells was incubated
with anti-His tag antibody to 3CLpro for 4 h at 4 �C, and then reacted
with the protein A-Sepharose beads for the addition of 2-h incubation.
The immunoprecipitate was analyzed using Coomassie blue staining,
and Western blotting with anti-His tag antibody to 3CLpro and chicken
anti-V-ATPase G1 polyclonal antibody (Chemicon).

2.6. Measurement of intracellular pH in transfected cells with SNARF-1
Transfected cells were washed three times with PBS and incubated

with 20 lM carboxy SNARF-1 (Molecular Probe) for 30 min at room
temperature. Subsequently, the cells were washed with PBS again and
then placed into the microplates. A dual-emission ration at 580 and
640 nm of intracellular dye was detected using a fixed excitation at
514 nm, and then converted to intracellular pH (pHi) according to pre-
vious reports [20].
Fig. 2. The specific interaction of SARS-CoV 3CLpro with V-ATPase
G1 TRX fusion protein using co-immunoprecipitation assay (A) and
the binding affinity assay (B). (A) An equal amount of V-ATPase G1
TRX fusion protein and the SARS-CoV 3CLpro was first incubated
with anti-TRX mAb at 4 �C overnight, followed by incubation with
the protein A-Sepharose beads for the addition of 2-h incubation.
After centrifugation, the pellet was washed with NET buffer, and then
dissolved in 2· SDS–PAGE sample buffer without 2-mercaptoethanol
and boiled for 10 min. Following the western blot procedure, the blot
was probed with mouse anti-His tag antibodies, and developed with an
alkaline phosphatase-conjugated secondary antibody and NBT/BCIP
substrates. (B) 100 ll of 5 lg/ml 3CLpro was coated onto 96-well plates;
followed by incubation with the indicated concentration of V-ATPase
G1 TRX fusion protein or thioredoxin (TRX). Bound V-ATPase G1
TRX fusion protein or thioredoxin was detected using anti-TRX
monoclonal antibody. The ELISA product was developed with goat
anti-mouse IgG-HRP conjugate and ABTS/H2O2 substrates.
3. Results

3.1. Identification of SARS-CoV 3CLpro-interacting lung

protein(s)

For identifying potential 3CLpro-interacting human lung

proteins, affinity selection of a phage-displayed human lung

cDNA library with recombinant 3CLpro protein was carried

out. After five rounds of biopanning, fifty eluted phage plaques

were selected for determining relative affinities to SARS-CoV

3CLpro using direct binding ELISA assay. Ten of the fifty

phage clones, phage-7,8,25,31,32,33,34,35,45, and 46 had

higher absorbance values of the ELISA product compared to

other phage clones (data not shown here). In addition, these

ten selected phage clones showed approximately 3–5-fold in-

creases in direct ELISA binding compared to the wild type

phage T7. Therefore, these ten identified phage clones were

suggested to display the high affinity of lung cDNA clones to

SARS-CoV 3CLpro.

Lung cDNA clones displayed on these ten 3CLpro-interact-

ing phages were subsequently amplified using PCR. Gel elec-

trophoresis of the PCR products revealed that about 400

base pair products were amplified from eight phage clones,

phage-7,25,31,32,33,34,35, and 46 (Fig. 1A, lanes

2,4,5,6,7,8,9, and 11), and about 300 pair products were

found in two phage clones, phage-8 and 45 (Fig. 1A, lanes 3

and 10). Direct sequencing of the PCR products showed the

same nucleotide sequences of lung cDNA clones displayed

on phage-7,25,31,32,33,34,35, and 46 (Fig. 1B). The BLAST

alignment search indicated that the deduced amino acid se-

quence of the 3CLpro-interacting lung cDNA clone was identi-

cal to the C-terminus of vacuolar ATP synthase subunit G 1

(V-ATPase G1 subunit) (GenBank Accession No. O75348

and NP_004879). Interestingly, V-ATPase G1 contains a motif

Thr-Ile-Leu-Gln-Thr, being similar to the conserved 3CLpro

cleavage sites (Val/Thr)-X-Leu-Gln-(Ser/Ala).
3.2. Binding interaction of 3CLpro with V-ATPase G1

To test the specific interaction of 3CLpro with V-ATPase G1,

the identified lung cDNA clone encoding for the C-terminus of

V-ATPase G1 subunit was cloned into the bacterial expression

vector pET32a, being generated as a thioredoxin (TRX) and

His-tag fusion protein in E. coli. Co-immunoprecipitation of
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the 3CLpro protein with the V-ATPase G1 TRX fusion protein

was performed. After centrifugation, the protein complex was

precipitated by the anti-thioredoxin antibody and the protein

A-Sepharose beads. Western blot analysis of the immunopre-

cipitate demonstrated that 3CLpro was precipitated by the V-

ATPase G1 TRX fusion protein (Fig. 2A, lane 5) but not the

TRX protein (Fig. 2A, lane 2). Furthermore, direct binding

of V-ATPase G1 TRX fusion protein to SARS-CoV 3CLpro

showed a dose-dependent manner in the ELISA assay

(Fig. 2B). The relative binding affinity (Kd) of the V-ATPase

G1 TRX fusion protein to recombinant 3CLpro protease was

approximately 1.9 lM, indicating that the V-ATPase G1 sub-

unit was sufficient for binding to SARS-CoV 3CLpro.

3.3. Cleavage of V-ATPase G1 by SARS-CoV 3CLpro

Because the V-ATPase G1 contains a possible cleavage site

for 3CLpro, the trans-cleavage reaction of 3CLpro with the V-

ATPase G1 TRX fusion protein was carried out in the alkaline

buffer at 37 �C. In Western blot analysis with anti-His tag anti-

body, the V-ATPase G1 TRX fusion protein but not the TRX

protein was cleaved by the 3CLpro protease (Fig. 3). Based on

the remaining amount of the V-ATPase G1 TRX fusion pro-

tein, densitometric analysis demonstrated that the percentage

of the cleaved V-ATPase G1 TRX fusion protein reached up

to approximately 70% (Fig. 3, lanes 7–9); however, no signifi-

cant change was found in the amount of the TRX protein

(Fig. 3, lanes 3–5).

3.4. Interaction of SARS-CoV 3CLpro with cellular V-ATPase

G1

To examine the cell-based interaction of SARS-CoV 3CLpro

with V-ATPase G1, the SARS-CoV 3CLpro gene was cloned

into the mammalian expression vector pcDNA3.1, and then

transfected into human promonocyte HL-CZ cells. Western

blotting analysis of cell lysates with anti-His-tag antibody

demonstrated a major 68-kDa band for the dimer and a minor

34-kDa band in the 3CLpro-expressing cells (not shown here).

For further analyzing the binding of cellular V-ATPase G1 to

3CLpro, the cell lysate of the 3CLpro-expressing cells and mock

cells was precipitated by anti-His tag antibody to 3CLpro

(Fig. 4A–C). In the Coomassie-stained gel, the immunoprecip-
Fig. 3. Trans-cleavage of V-ATPase G1 TRX fusion protein by SARS-CoV
the V-ATPase G1 TRX fusion protein (lanes 6–9) or TRX protein (lanes 2–5)
was analyzed using Western blotting with anti-His tag antibody. Lane 1, pr
itate by anti-His tag antibody contained many cellular proteins

from the 3CLpro-expressing cells (Fig. 4A, lane 6), while only a

few proteins from mock cells (Fig. 4A, lane 3). Of the cellular

proteins in the immunoprecipitate, a 68-kDa – immunoreac-

tive band for the dimer 3CLpro was found using Western

blotting with anti-His tag antibody (Fig. 4B, lane 6). In

addition, Western blot analysis with anti-V-ATPase G1 poly-

clonal antibodies demonstrated a major 13-kDa band for

cellular V-ATPase G1 protein in the 3CLpro-precipitated pellet

(Fig. 4C, lane 6). The result confirmed the interaction between

3CLpro and V-ATPase G1 in the HL-CZ cells. Since V-ATPase

in the plasma and lysosomal membranes is the major proton-

extruding molecule for controlling cytosolic pHi [21,22], the

cytosolic pHi in SARS-CoV 3CLpro – expressing cells and

pcDNA3.1-expressing cells was determined by the fluorescence

of SNARF-1 (Fig. 4D). Cytosolic pHi of SARS-CoV 3CLpro –

expressing cells (pHi = 7.70 ± 0.002) was significantly lower (t

test, P < 0.05) than that of pcDNA3.1-expressing cells

(pHi = 7.79 ± 0.009).
4. Discussion

V-ATPase G subunit 1 was identified as a SARS-CoV

3CLpro-interacting protein by the affinity selection of a

phage-displayed human lung cDNA library (Fig. 1). Co-

immunoprecipitation analysis and direct binding affinity dem-

onstrated the specific interaction of 3CLpro with V-ATPase G

subunit 1 (Figs. 2 and 4). V-ATPase resides on the membranes

of acidic organelles such as secretary granules, lysosomes, and

the trans-Golgi network, being the major proton-extruding

molecule for maintaining acidic environment [21–25]. V-

ATPase is a multisubunit complex with two functional

domains, namely, the peripheral V1 domain and the integral

V0 domain. V-ATPase G subunit 1 belongs to the accessory

V1 subunits, being responsible for ATP hydrolysis. Interest-

ingly, human papillomavirus 16 (HPV16) E5 protein has been

demonstrated to bind to the 16-kDa subunit of the vacuolar

H(+)-ATPase (16 K) [26], and to inhibit the assembly, stability

and complex formation of the V-ATPase [27]. Our findings are

in agreement with the previous reports [26,27] showing that
3CLpro protease. The SARS-CoV 3CLpro protease was incubated with
in 100 mM Tris–HCl, (pH 9.0) at 37 �C, and the proteolytic processing
otein markers.



Fig. 4. Cell-based co-immunoprecipitation (A–C) and decrease intracellular pH (D) by SARS-CoV 3CLpro protease. The cell lysates of 3CLpro-
expressing cells and mock cells were immunoprecipitated by anti-His tag to 3CLpro. The immunoprecipitate was analyzed using Coomassie blue
staining (A), and Western blotting with anti-His tag antibody to 3CLpro (B) and chicken anti-V-ATPase G1 polyclonal antibody (C). In addition, the
3CLpro-expressing cells and mock cells were incubated with 20 lM carboxy SNARF-1 for 30 min at room temperature. A dual-emission ration at 580
and 640 nm of intracellular dye was detected using a fixed excitation at 514 nm, and then converted to intracellular pH (D).
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vacuolar H(+)-ATPase can be involved in the virus-induced

pathogenesis.

Cleavage of the V-ATPase G1 fusion protein by SARS-CoV

3CLpro was found in this study (Fig. 3), implying that 3CLpro

potentially cleaves the cellular V-ATPase G1, and affects the

function of vacuolar H(+)-ATPase. Meanwhile, a significant
intracellular acidification has been demonstrated in the

3CLpro-expressing cells (Fig. 4D). The result correlated well

with previous reports in that V-ATPase-specific inhibitors

cause acidic pHi [28,29], and influences cell apoptosis [30,31].

Recent studies demonstrate the binding interaction of V-ATP-

ase with F-actin, being important for regulating in response to
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phosphatidylinositol 3-kinase activity [32]. Comparing to the

immunoprecipitate of mock cell extract by anti-His tag

antibody (Fig. 4A, lane 3), significantly more proteins were

precipitated in the 3CLpro-expressing cells (Fig. 4A, lane 6),

in which some proteins such as F-actin could be brought down

by V- ATPase G1.

In conclusion, a phage displayed library encoding sequences

from human lung cDNA was used to identify potential

3CLpro-interacting lung proteins. V-ATPase G1 was identified

as a 3CLpro-interacting protein in this study. The interaction of

3CLpro with V-ATPase G1 resulted in the cleavage of V-

ATPase G1. This interaction is likely to be involved in the

virus-induced pathogenesis.

Acknowledgments: We thank the National Science Council (Taiwan)
and China Medical University for financial supports (NSC93-2320-
B-039-051, 93-2745-B-039-004-URD, and CMU-93-MT-04).
References

[1] Nicholls, J.M., Poon, L.L., Lee, K.C., Ng, W.F., Lai, S.T., Leung,
C.Y., Chu, C.M., Hui, P.K., Mak, K.L., Lim, W., Yan, K.W.,
Chan, K.H., Tsang, N.C., Guan, Y., Yuen, K.Y. and Peiris, J.S.
(2003) Lung pathology of fatal severe acute respiratory syndrome.
Lancet 361, 1773–1778.

[2] Lang, Z., Zhang, L., Zhang, S., Meng, X., Li, J., Song, C., Sun, L.
and Zhou, Y. (2003) Pathological study on severe acute respira-
tory syndrome. Chin. Med. J. (Engl). 116, 976–980.

[3] Wang, W.K., Chen, S.Y., Liu, I.J., Kao, C.L., Chen, H.L.,
Chiang, B.L., Wang, J.T., Sheng, W.H., Hsueh, P.R., Yang, C.F.,
Yang, P.C. and Chang, S.C. (2004) Temporal relationship of viral
load, ribavirin, interleukin (IL)-6, IL-8, and clinical progression in
patients with severe acute respiratory syndrome. Clin. Infect Dis.
39, 1071–1075.

[4] Huang, K.J., Su, I.J., Theron, M., Wu, Y.C., Lai, S.K., Liu, C.C.
and Lei, H.Y. (2005) An interferon-gamma-related cytokine
storm in SARS patients. J. Med. Virol. 75, 185–194.

[5] Lai, M.M.C. and Holmes, K.V. (2001) Coronaviridae: the viruses
and their replication in: Fields Virology (Knipe, D.M. andHowley,
P.M., Eds.), Lippincott Williams and Wilkins, New York.

[6] Enjuanes, L., Brian, D., Cavanagh, D., Holmes, K., Lai, M.M.C.,
Laude, H., Masters, P., Rottier, P., Siddell, S.G., Spaan, W.G.M.,
Taguchi, F. and Talbot, P. (2000) Coronaviridae in: Virus
Taxonomy (van Regenmortal, M.H.V., Fauqet, C.M., Bishop,
E.B., Carstens, E.B., Estes, M.K., Lemon, S.M., Mayo, M.A.,
McGeoch, D.J., Pringle, C.R. and Wickner, R.B., Eds.), Aca-
demic Press, New York.

[7] Holmes, K.V. (2001) Coronaviruses in: Fields Virology (Knipe,
D.M. and Howley, P.M., Eds.), Lippincott Williams and Wilkins,
New York.

[8] Ziebuhr, J., Snijder, E.J. and Gorbalenya, A.E. (2000) Virus-
encoded proteinases and proteolytic processing in the Nidovirales.
J. Gen. Virol. 81, 853–879.

[9] Yalamanchili, P., Weidman, K. and Dasgupta, A. (1997) Cleav-
age of transcriptional activator Oct-1 by poliovirus encoded
protease 3Cpro. Virology 239, 176–185.

[10] Yalamanchili, P., Datta, U. and Dasgupta, A. (1997) Inhibition of
host cell transcription by poliovirus: cleavage of transcription
factor CREB by poliovirus-encoded protease 3Cpro. J. Virol. 71,
1220–1226.

[11] Urzainqui, A. and Carrasco, L. (1989) Degradation of cellular
proteins during poliovirus infection: studies by two-dimensional
gel electrophoresis. J. Virol. 63, 4729–4735.

[12] Blom, N., Hansen, J., Blaas, D. and Brunak, S. (1996) Cleavage
site analysis in picornaviral polyproteins: discovering cellular
targets by neural networks. Protein Sci. 5, 2203–2216.

[13] Calandria, C., Irurzun, A., Barco, A. and Carrasco, L. (2004)
Individual expression of poliovirus 2Apro and 3Cpro induces
activation of caspase-3 and PARP cleavage in HeLa cells. Virus
Res. 104, 39–49.
[14] Li, M.L., Hsu, T.A., Chen, T.C., Chang, S.C., Lee, J.C., Chen,
C.C., Stollar, V. and Shih, S.R. (2002) The 3C protease activity of
enterovirus 71 induces human neural cell apoptosis. Virology 293,
386–395.

[15] Funkhouser, A.W., Kang, J.A., Tan, A., Li, J., Zhou, L., Abe,
M.K., Solway, J. and Hershenson, M.B. (2004) Rhinovirus 16 3C
protease induces interleukin-8 and granulocyte-macrophage col-
ony-stimulating factor expression in human bronchial epithelial
cells. Pediatr Res. 55, 13–18.

[16] Kiemer, L., Lund, O., Brunak, S. and Blom, N. (2004) Corona-
virus 3CLpro proteinase cleavage sites: possible relevance to
SARS virus pathology. BMC Bioinformatics 5, 72.

[17] Lin, C.W., Tsai, C.H., Tsai, F.J., Chen, P.J., Lai, C.C., Wan, L.,
Chiu, H.H. and Lin, K.H. (2004) Characterization of trans- and
cis-cleavage activity of the SARS coronavirus 3CLpro protease:
basis for the in vitro screening of anti-SARS drugs. FEBS Lett.
574, 131–137.

[18] Liu, W.T., Chen, C.L., Lee, S.S., Chan, C.C., Lo, F.L. and Ko,
Y.C. (1991) Isolation of dengue virus with a human promonocyte
cell line. Am. J. Trop. Med. Hyg. 44, 494–499.

[19] Lin, C.W. and Wu, S.C. (2004) Identification of mimotopes of the
Japanese encephalitis virus envelope protein using phage-dis-
played combinatorial peptide library. J. Mol. Microbiol. Biotech-
nol. 8, 34–42.

[20] Martinez-Zaguilan, R., Raghunand, N., Lynch, R.M., Bellamy,
W., Martinez, G.M., Rojas, B., Smith, D., Dalton, W.S. and
Gillies, R.J. (1999) pH and drug resistance. II. Turnover of acidic
vesicles and resistance to weakly basic chemotherapeutic drugs.
Biochem. Pharmacol. 57, 1037–1046.

[21] Swallow, C.J., Grinstein, S. and Rotstein, O.D. (1990) A vacuolar
type H(+)-ATPase regulates cytoplasmic pH in murine macro-
phages. J. Biol. Chem. 265, 7645–7654.

[22] Conboy, I.M., Manoli, D., Mhaiskar, V. and Jones, P.P. (1999)
Calcineurin and vacuolar-type H+-ATPase modulate macrophage
effector functions. Proc. Natl. Acad. Sci. USA 96, 6324–6329.

[23] Bidani, A., Reisner, B.S., Haque, A.K., Wen, J., Helmer, R.E.,
Tuazon, D.M. and Heming, T.A. (2000) Bactericidal activity of
alveolar macrophages is suppressed by V-ATPase inhibition.
Lung 178, 91–104.

[24] Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B.,
Pei, J., Liu, Y., Chen, J. and Lai, L. (2004) Biosynthesis,
purification, and substrate specificity of severe acute respiratory
syndrome coronavirus 3C-like proteinase. J. Biol. Chem. 279,
1637–1642.

[25] Nelson, N. (1991) Structure and pharmacology of the proton-
ATPases. Trends Pharmacol. Sci. 12, 71–75.

[26] Gieswein, C.E., Sharom, F.J. and Wildeman, A.G. (2003)
Oligomerization of the E5 protein of human papillomavirus type
16 occurs through multiple hydrophobic regions. Virology 313,
415–426.

[27] Briggs, M.W., Adam, J.L. and McCance, D.J. (2001) The human
papillomavirus type 16 E5 protein alters vacuolar H(+)-ATPase
function and stability in Saccharomyces cerevisiae. Virology 280,
169–175.

[28] Conboy, I.M., Manoli, D., Mhaiskar, V. and Jones, P.P. (1999)
Calcineurin and vacuolar-type H+-ATPase modulate macrophage
effector functions. Proc. Natl. Acad. Sci. USA 96, 6324–6329.

[29] Heming, T.A. and Bidani, A. (2003) Intracellular pH regulation in
U937 human monocytes: roles of V-ATPase and Na+/H+

exchange. Immunobiology 207, 141–148.
[30] Yoshimoto, Y. and Imoto, M. (2002) Induction of EGF-depen-

dent apoptosis by vacuolar-type H(+)-ATPase inhibitors in A431
cells overexpressing the EGF receptor. Exp. Cell Res. 279, 118–
127.

[31] Xu, J., Feng, H.T., Wang, C., Yip, K.H., Pavlos, N., Papadim-
itriou, J.M., Wood, D. and Zheng, M.H. (2003) Effects of
Bafilomycin A1: an inhibitor of vacuolar H (+)-ATPases on
endocytosis and apoptosis in RAW cells and RAW cell-derived
osteoclasts. J. Cell Biochem. 88, 1256–1264.

[32] Chen, S.H., Bubb, M.R., Yarmola, E.G., Zuo, J., Jiang, J., Lee,
B.S., Lu, M., Gluck, S.L., Hurst, I.R. and Holliday, L.S. (2004)
Vacuolar H+-ATPase binding to microfilaments: regulation in
response to phosphatidylinositol 3-kinase activity and detailed
characterization of the actin-binding site in subunit B. J. Biol.
Chem. 279, 7988–7998.


	Binding interaction of SARS coronavirus 3CLpro protease with vacuolar-H+ ATPase G1 subunit
	Introduction
	Materials and methods
	Biopanning of phage display lung cDNA libraries with SARS-CoV 3CLpro
	Co-immunoprecipitation of SARS-CoV 3CLpro protease by vacuolar-H+ ATPase G1 subunit
	ELISA affinity assay
	Trans-cleavage of V-ATPase G1 by SARS-CoV 3CLpro protease
	Immunoprecipitates of cell extract by 3CLpro
	Measurement of intracellular pH in transfected cells with SNARF-1

	Results
	Identification of SARS-CoV 3CLpro-interacting lung protein(s)
	Binding interaction of 3CLpro with V-ATPase G1
	Cleavage of V-ATPase G1 by SARS-CoV 3CLpro
	Interaction of SARS-CoV 3CLpro with cellular V-ATPase G1

	Discussion
	Acknowledgments
	References


